Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5...

14
Summary of “LArTPC Reconstruction Assessment and Requirements Workshops” Amir Farbin UTA

Transcript of Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5...

Page 1: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Summary of “LArTPC Reconstruction Assessment

and Requirements Workshops”Amir Farbin

UTA

Page 2: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Context Origins of the two contiguous workshops

•  Reconstruction assessment workshop:–  Requested through the Fermilab PAC by the Long-Baseline

Neutrino Committee (LBNC) as a first step along a path of focusing community attention on automated reconstruction in LAr TPCs

•  Requirements workshop:–  Community-led effort to collectively put together a shared goal

of setting overall requirements for a LAr eco-system of software, hardware, and computing to guide work over the next few years

–  While strongly encouraged by the LBNC, bottoms up is a much better approach!

•  Two goals are tightly connected and the LBNC would like to see ownership of the outcomes by the community

10/19/2015Introduction and context for the workshops2

• Link: https://indico.fnal.gov/conferenceDisplay.py?confId=10394

• Prompted by LBNC

• Actually 2 workshops

• LBNC Mandate Expanded to LBN and SBN

• Primary organizer Ruth Pordes with representatives from nearly all LArTPC experiments…

David MacFarlane

PAC feedback on the SBN program from June 2015

•  Concerned about:–  Pace at which automated LAr reconstruction is developing,

despite being absolutely crucial to the SBN and LBN programs–  Slow progress in coordinating the analysis across the three

experiments, which is critical to the success of the SBN program and required for Stage 2 approval

–  Very aggressive SBN schedule with little flexibility•  Recommended that Fermilab continues:

–  Monitoring progress on achieving automated event reconstruction

–  Providing relevant resources and expertise towards catalyzing this effort, since it is critical to quickly demonstrate the capabilities of the LArTPC technology.

10/19/2015Introduction and context for the workshops5

Page 3: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

• LArTPC Reco must meet assumptions made for DUNE reach.

• Full Simulation and Automatic reconstruction for CD-2

• Need a thorough assessment for CD-2

LBNC comments on DUNE Far Detector (FD) Task Force

•  Comments from Sept review–  The LBNC notes that the 80% efficiency for automated

reconstruction for quasi-elastic, resonant elastic scattering and deep-inelastic scattering events is a key assumption in the projected physics reach of DUNE. Much progress in demonstrating this capability should be accomplished by the TF within the next 18 months.

–  An important part of the FDTF planning would be to lay out a common understanding of the level of reconstruction sophistication needed at various stages during the 18 months and then beyond through the DUNE design phase leading up to CD-2

10/19/20159 Introduction and context for the workshops

LBNC request post the reconstruction workshop

•  Ambitious: will take time and effort beyond these two days!•  A comprehensive summary of the current status of and future

plans for further development of automated reconstruction efforts:–  Basic physics information, such as event classes and

topologies, backgrounds for each experiment, performance requirements, etc.;

–  Current state-of-the-art, including quantified performance of the reconstruction;

–  Leadership for the current effort and the level of effort across the collaboration;

–  Degree to which the effort relies on common software tools, such as analysis framework development, etc. and their further development;

10/19/2015Introduction and context for the workshops10

LBNC request post the reconstruction workshop

–  Timeline, milestones, deliverables and level of effort required for further development;

–  Linkages to hardware system development and experience with neutrino and test beam data

–  Assessment of areas of commonality with other SBN or LBN experiments; and

–  Assessment of resource limitations and impact of bringing additional targeted help, either from Fermilab or in cooperation with other science collaborations.

•  Workshop should consider mechanisms for sharing the results of development progress on a more continuous basis–  e.g., though an ongoing joint steering committee, a regular

forum for exchange on development progress, and/or future more extensive workshop devoted to LAr reconstruction

10/19/2015Introduction and context for the workshops11

David MacFarlane

Page 4: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Assessment Workshop

Page 5: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

ArgoNeuT • Long list of accomplishments/measurements:

• Tracking, calorimetry, shower reco, PID, …

• Example: Full Auto redo for inclusive CC x-section

• 42%/59% off for neutrino/antineutrino

• 5-10% Energy resolution

• 1 degree angle resolution

ArgoNeuT and LArSoft

• ArgoNeuT was the first user of LArSoft after Brian Rebel et al. started this project.

• Pioneered in development and validation of simulation and reconstruction tools.

• Physics analyses done using LArSoft.

3Topological Analysis 1µ+Np • A first Topological analysis is developed

by the ArgoNeuT experiment: 1µ+Np (0π)- Sensitive to nuclear effects- Observation of back-to-back proton pairs

• Analysis steps- automated reconstruction (muon angle and momentum)- visual scanning

- hit selection- automated track and

calorimetric reconstruction• Background (pion) removed

• GENIE MC:

- Estimate efficiency of the automated reconstruction, detector acceptance and proton containment (for PID)

- estimate backgrounds• NC background • Wrong-sign (WS) background• π0 with both γ not converting

18

Proton/angle/and/momentum

PRD 90, 012008 (2014)

Tingjun Yang

• Visual scanning for some analyses

Page 6: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

ICURUS• Highlighted the

importance of a powerful event display + hand scanning tool.

• QScan Demo

Selection of νe events•  The relatively small number of recorded CNGS neutrino interaction

events (~3000) allowed a semi automatic approach based on a pre-selection of events followed by a careful visual analysis of all physically interesting data; the reconstructed objects can be saved/modified using a flexible ROOT-based I/O system

•  The developed software framework is based on: " Central package (fullreco) for data decoding, basic reconstruction " Qt-based event display (Qscan) for visualization/scanning and

human interface " Event loop code (AnalysisLoop) for batch analyses and ROOT I/O " Higher-level analysis tools (Muon momentum by MCS, EM shower

reconstruction, particle identification, 3D reconstruction…); " Interface with FLUKA for analysis/visualization of simulated

events; " Interface with mySQL for access to DB;

ICARUS T600 software framework

Slide# : 5ICARUS_2015

Selection of νe eventsQscan event display for the ICARUS events

Slide# : 6ICARUS_2015

Typical νµCC event (Collection view)

~4.5 m ~7 GeV deposited energy

1.5m drift

muon is ~13m long

•  Qscan is a qt-based tool for a fast visualization of events in the T600: " the 2D projections associated to the wire planes are shown using a

grey/color scale based on signal height/deposited energy; " the waveforms of wires and PMT signals can be displayed and fast

Fourier transform tool available, useful for noise monitoring

Typical MIP signal in Coll.

Selection of νe events•  Reference points and vertices can be defined to mark interesting

features of the event in a 2D view (primary interaction, delta rays, decay point of tracks, shower features, muon begin/end point for the momentum measurement via MCS);

•  They can be selected manually in Qscan and can be associated to clusters and matched between different views providing additional input to 3D reconstruction;

•  An automatic tool for the primary vertex identification is available; •  Reference points and vertices can be saved in root files;

Reference points and vertices

Slide# : 9ICARUS_2015

C. FARNESE

Page 7: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

MicroBooNE• Reminded us

that noise can significantly increase data volume…

MicroBooNE Commissioning• Bringing complex detectors online for the first time is rarely a smooth process

• In particular, there are almost always surprises

• Two issues directly impacting reconstruction

• Dead channels

• Tend to be in groups as opposed to the assumed isolated dead channels one might have studied in developing algorithms

• Noisy channels with several different signatures

• “zig-zag” - high frequency tick-to-tick oscillations in randomly distributed short bursts

• “correlated” - low frequency (~20 kHz) correlated across wires

• “chirping” - transient issue, switching between “dead” and “live” with large baseline excursions

• “high noise” - steady state very high rms noise - effectively dead channels for recon

• Redirection of reconstruction resources to address these issues

• Attacking noise issues by developing algorithms aimed at filtering out as much noise as possible

• Developing more sophisticated channel status information mechanism

• Pattern recognition algorithms will need to be able to handle gaps with no information

13

Tracy Usher

Noise Run Event - Unfiltered

15

Commissioning run data - Run 2728 Conditions: 2μs shaping time, gain 14 mV/fc, 70 kV field

Drif

t Tim

e (ti

cks)

Drif

t Tim

e (ti

cks)

Drif

t Tim

e (ti

cks)

Wire Number

Example waveform from Collection plane

Collection Plane

Middle Induction Plane

First Induction Plane

Page 8: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

LArIAT• Reminded us

the importance of timing across different detectors….

LINING UP FRAGMENTS

2015/10/19 LARSOFT RECONSTRUCTION ASSESSMENT AND REQUIREMENTS WORKSHOP 13

Clock Time

Cloc

k re

set a

t beg

inni

ng o

f LAr

IAT

supe

rcyc

le

V1751 data V1740 data MWPC data

Apply clock corrections

Jen Raaf

RAW DATA STRUCTURE

2015/10/19 LARSOFT RECONSTRUCTION ASSESSMENT AND REQUIREMENTS WORKSHOP 15

(Divide “spill” block into multiple “events,” where each event has a single trigger )

Page 9: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Pandora• Impressive

performance…

• Don’t forget Pandora gives fully recoed topologies in PFParticle.

Pandora LAr TPC Reconstruction

Pandora Example Events!

24

BNB νμ CC RES μ, p, π0: Combined display!

3D neutrino interaction vertex

γ

p

μShower particle:

primary daughter of neutrino

Track particle: primary daughter of

neutrino

Track particle: primary daughter of

neutrino

Shower particle: primary daughter of

neutrino γ

Pandora LAr TPC Reconstruction

Pandora Output !

34

PFParticle

ClusterSpacePoint Track Vertex

Hit

(3D hit) (3D trajectory) (3D vertex position)

First layer:

Second layer:

ParentPFParticle

Daughter(s)PFParticle

Two layers of !ART associations!

Seed(3D vertex position

and direction)

Output to LArSoft: !

•  LArSoft output initially looks rather complex, but, once Showers have been added, should provide a comprehensive translation of results obtained in the Pandora Event Data Model.

•  Extremely important that we now get people to try/test this new PFParticle output, checking that all the information from Pandora is persisted correctly.

•  Help would be greatly appreciated to complete the LArSoft output by, i), producing Shower objects and, ii), discovering why the Kalman Filter vetoes many clean-looking Pandora Tracks.

Page 10: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Requirements

Page 11: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Organization • 4 x 4 Simultaneous sessions, each on one topic.

• Participants rotate through all topics.

• Roles assigned:

• Leader

• Scribe

• Note taker

• Document Editted live on Overleaf

Page 12: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

My Impression• The session allowed extremely useful brain storming…

• Very positive and cooperative environment across experiments.

• We need to understand the roles and responsibilities of experiments, LArSoft, and other resources.

• e.g. Understand the model of algorithm development in an experiment, passing ownership to LArSoft (?), and then supported for all experiments.

• Awareness of Analysis and User requirements was very encouraging (LArSoft vs LArLite).

• We have a huge number of: physics goals, tasks, required capabilities, requirements, use cases.

• The topic organization wasn’t necessarily ideal… nonetheless the WS was very effective.

• Rather difficult to overview the requirements…

• Attempting to organize now… Erica is restructuring the document…

• I’ll try to present an overview of the requirements, once I can wrap my head around how to organize them….

Page 13: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Thursday 29th October, 2015

06:55

Requirements for a LArTPC EcosystemLots of names here

Revision 0.1

Contents

1 Introduction 31.1 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Overarching Analysis strategies 62.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Monte Carlo interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3 Non-TPC, Non-Light-Collection Detectors . . . . . . . . . . . . . . . . . . . 72.4 Development tools ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . 72.5 Heterogenous work-flow environment or framework . . . . . . . . . . . . . 82.6 Detector Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.7 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.8 Purity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.9 Design studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.10 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.11 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.12 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.13 Dataset Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.14 Metadata Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Non-beam reconstruction and analysis 123.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 Use case lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.4 Cosmic Ray Identification and Removal . . . . . . . . . . . . . . . . . . . . 143.5 Removing Radon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.6 Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.8 Use Case Story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Beam reconstruction and analysis 154.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 General requirements that need restructuring . . . . . . . . . . . . . . . . 154.3 leave or move? restructuring needed . . . . . . . . . . . . . . . . . . . . . . 16

1

2 LArTPC Requirements (Rev. 0.1)

4.4 General requirements for data objects and filling them? . . . . . . . . . . 164.5 Hit finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.6 Find Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.7 Locate Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.8 Shower Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.9 PFParticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.10 Vertex finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.11 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.12 Distinguish and Identify Muons . . . . . . . . . . . . . . . . . . . . . . . . 194.13 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.14 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.15 Beam simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.16 Reducing flux systematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.17 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Human interactions, computing systems, software and interfaces 215.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.2 Use case lists? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.3 HPC + parallel’ization use case . . . . . . . . . . . . . . . . . . . . . . . . . 225.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225.5 Event-picker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.6 Preservation of Test Beam Experiment Data . . . . . . . . . . . . . . . . . 245.7 Documentation of shared components . . . . . . . . . . . . . . . . . . . . . 245.8 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Appendix A Glossary 25Appendix B LArIAT 29B.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Appendix C MicroBooNE 30C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30C.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Appendix D ICARUS 33D.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Appendix E SBND 33E.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Appendix F SBN 34F.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34F.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Appendix G ProtoDUNE 35G.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35G.2 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35G.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Appendix H WA105 37H.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Appendix I DUNE 38I.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38I.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Appendix J Lessons Learned 39J.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Starting document… new document on the way.

Page 14: Summary of “LArTPC Reconstruction Assessment and … · 2015-11-03 · ICARUS_2015 Slide# : 5 Qscan event display for the ICARUS eventsSelection of ν e events ICARUS_2015 Slide#

Next Steps• Currently working on the workshop report…

• Aim for end of November.

• Next step is very difficult:

• assess what requirements are already met.

• work out the details of how to meet the requirement

• establish a workplan…