Summary Dynamics & Control

26
Dynamics & Control of Mechanical Systems [4DB00] Summary Wouter Kuijpers February 13, 2014 This document gives an overview of the theory of Dynamics & Control of Mechanical Systems [4DB00]. Contents I Control Systems  2 1 Laplace T ransfo rmation  2 1.1 System Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 The Laplace Tran sfo rm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Sig nal s in the Laplac e do main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 F requently Used Syste ms’  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Block Diagrams  7 3 Bode Diagrams  8 4 Con trol ler Des ign  10 4.1 Comple x Plane: Po les and Zeroes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Stabil it y Criteria of Routh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Stabil it y Criteria of Nyquist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.4 Ma rg ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.5 Loo p Shaping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.6 Des ign for Pe rfo rma nce  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.7 Limits to Pe rfo rmance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 II Lagra ngian Mechanics  15 III Appendix  20 5 Detailed Lagrangian Mechanics  20 1

Transcript of Summary Dynamics & Control

Page 1: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 1/26

Dynamics & Control of Mechanical Systems [4DB00] Summary

Wouter Kuijpers

February 13, 2014

This document gives an overview of the theory of Dynamics & Control of Mechanical Systems[4DB00].

Contents

I Control Systems   2

1 Laplace Transformation   21.1 System Example   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 The Laplace Transform   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Signals in the Laplace domain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Frequently Used Systems’   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Block Diagrams   7

3 Bode Diagrams   8

4 Controller Design   104.1 Complex Plane: Poles and Zeroes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104.2 Stability Criteria of Routh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114.3 Stability Criteria of Nyquist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114.4 Margins   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.5 Loop Shaping   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.6 Design for Performance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.7 Limits to Performance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II Lagrangian Mechanics   15

III Appendix   20

5 Detailed Lagrangian Mechanics   20

1

Page 2: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 2/26

Part I

Control Systems

1 Laplace Transformation

1.1 System Example

Suppose we monitor a   Water Tank’s   height  h  (See Figure  1), when it is filled by  ϕin  and waterleaves through  ϕout. The flow of water leaving the  Water Tank   is restricted by  R; the tank has asurface of  Ah  and a volume  V  . This system can be described using a differential equation, for thiswe monitor the content of buffers:

∆V   = Ahh =  ϕin − ϕout

Figure 1: A Water Tank.

Furthermore with knowledge of Physics we can rewrite  ϕout  to:

Ah

˙h =  ϕin −

  1

R h(t)

h =  1

Ah

ϕin −   1

Rh(t)

h =  1

Ahϕin −   1

AhRh(t)

We now have captured the behavior of the   Water Tank   in aDifferential Equation. But what can we do with it? We can seehow the system reacts to several different inputs  ϕin, or how thesystem reacts differently when a system parameter is changed. Buthow do we solve this  Differential Equation; there exist two ways

to do this:

Numerical:   Calculating the content of the buffer at verysmall intervals of time. This can be easily done using MATLABSimulink; see Figure 2  where the differential equation above is implemented   1:

Figure 2: A MATLAB Simulink simuation in which the differential equation is implemented.

1hdot =  h

2

Page 3: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 3/26

Analytically:   One example of a Analytic approach is solving the Differential Equation. No-tice that we can rewrite the Differential Equation to:

h =  ah(t) + bϕin(t)   a = −   1

AhR, b =

  1

Ah

To find the Homogeneous Solution of this differential equation we set the  ϕin(t) = 0, h(0) to h0.This means that we observe the behavior when no input is applied;  Homogeneous Solution. ThisHomogeneous Solution or  Natural Response  describes how the system dissipates or acquiresenergy. An example of a  Natural Response  is a systems’ response under a starting position notequal to 0. The form or nature of this response is dependent only on the system, not on the input.So in our search for the  Homogeneous Solution we have the following equation:

h(t) = ah(t)

Which has the following solution:

h(t) = h0eλt

→ h(t) = λh0eλt so a =  λ  =

−  1

AhR

The solution of this differential equation states that the  h  will have a   e-power  behavior, which isreferred to as   First-Order Behavior. The larger  λ  the faster the system responds, the faster itis in  Steady-State.   λ  =  a  =   1

AhR; which states that the system becomes faster when  R  and  Ah

become smaller.

With the expression above we can also make a statement about the  Stability   of a system. Wehave derived the following formula for  h:

h(t) = λh0eλt

This is the  Homogeneous Solution  or  Natural Response  of the system. For this a system tobe stable the  Natural Response eventually has to approach zero. This means that at some pointh(t) = 0. This states that eλt should approach a constant value at  t →∞, this implies that  λ < 0.A system is  Stable  when  λ < 0.

1.2 The Laplace Transform

In the previous subsection we have looked at a system and we have observed a Numerical Methodto find the solution. Also we have derived a  Analytic Solution this included solving a differentialequation. Solving more difficult differential equations is hard and time-consuming.

Therefore we introduce the Laplace Transform, which is a mathematical transformation whichallows function represented in the time domain to be represented with the  Laplace operator. The

Laplace Transform of a function represented in the time domain  x(t) is given by:

L{x(t)} = X (s) =

  ∞0

x(t)e−stdt

But why would we use another operator to make life even more difficult? Now we enter thederivative of the function above:

L{x(t)} =

  ∞0

dy

dx(t)e−stdt

3

Page 4: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 4/26

After integration by parts we get the following expression:

L{x(t)} = sX (s)− x(0)

The expression on the right is in the Laplace domain, this shows that differentiating a function inthe time domain results in a multiplication in the Laplace domain.

In the previous example we have already transferred a differential equation from the time domainto the Laplace domain. Suppose we have a Mass-Spring-Damper system suspended from a roof.The input to this system is the roof. This results in the following differential equation:

my =  c(u−  y) + k(u− y)

my + cy + ky  =  cu + ku

Now we take the Laplace transform of both sides of the equation:

L{my + cy + ky} = L{cu + ku}

As the Laplace transform is a  Linear Operation  we can also write:

L{my}+ L{cy}+ L{ky} = L{cu}+ L{ku}

Y (s)

ms2 + cs + k

 =  U (s) (cs + k)

The equation above describes the relation between the input of the system  U (s) and the output:Y (s). The  Transfer Function,  H (s), also describes this relation in a way that it can be used inBlock Diagrams:

H (s) = Y (s)

U (s) =

  cs + k

ms2 + cs + k

Note that H (s) is complex number, as s is a complex number. This complex number has a Modulus

and a  Phase  this means that the system may affect the Amplitude (Modulus) and/or the Phaseof the input signal; which results in the output signal.

General Definition Laplace Transformation   Suppose the following differential equationis transformed to the Laplace domain:

any(n)(t) + an−1y(n−1)(t) + . . . + a0y(t) = bmu(m)(t) + bm−1u(m−1)(t) + . . . + b0u(t)

This a Linear Differential Equation because it does not contain: addition of a constant, squares,product of signals or other functions. To transfer this   Linear Differential Equation   to theLaplace domain we assume for a moment that the start condition is 0.

ans(n) + an−1s(n−1) + . . . + a0

Y (s) =

bms(m) + bm−1s(m−1) + . . . + b0

U (s)

To use the behavior described by this differential equation in a Block Diagram we use the followingformula:

Y (s) = H (s)U (s)   with H (s) =  ans(n) + an−1s(n−1) + . . . + a0

bms(m) + bm−1s(m−1) + . . . + b0

4

Page 5: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 5/26

1.3 Signals in the Laplace domain

In the previous subsection the concept of the Laplace transformation was discussed. With thistransformation it is possible to transform differential equation to equation in the Laplace domain,which are easier to solve. This however also requires writing the signals in the Laplace domain,U (s) in the last example is the  Laplace Transform  of the input.

The following equation can be used to represent multiple signals by adjusting parameters:

u(t) = u(t) cos(ωt)   , with u =  ueλt , with λ < 0

u(t) = ueλt cos(ωt)

With Euler’s Formula   2 we can rewrite this equation to:

u(t) = ueλt cos(ωt) = ueλtRe

e jωt

 =  Re

ueλte jωt

 =  Re

uest

  , with s =  λ + jω

With this we can make four different signals:

1.   Constant Value:   If  s  = 0 + 0 j   the signal’s Exponential Contribution is 0 and there is nooscillation. Hence  u   is a Constant Value.

2.   Exponential Signal:   If  s  =  a +0 j only the Exponential Part remains, there is no oscillation.Hence ueλt is what remains: a Exponential Signal.

3.   Oscillating Signal:   If  s  = 0 + bj  only the Oscillating Part remains, there is no ExponentialSignal. Hence  ue jωt is what remains: a Oscillating Signal.

4.  Out-damping Signal:   A combination of the two above signals is the Exponentially Out-damping Signal.

With Oscillating Signals it is possible to find the   Frequency Response Function  of a system.

This is done with Oscillating Signals (λ = 0):

est = eλte jωt = e jωt = cos(ωt) + j sin(ωt)

For Oscillating Signals  s  =  j ω, this can be substituted in the Transfer Function of the system wefind the  Frequency Response Function:

H ( jω) =  an( jω)(n) + an−1( jω)(n−1) + . . . + a0

bm( jω)(m) + bm−1( jω)(m−1) + . . . + b0

Note that the above transfer function still is a complex number; it has a Modulus and Phase. Incase of a Transfer Function this Modulus will be referred to as the Amplification. Calculating, and

plotting the Amplification and Phase of the Transfer Function at different values for  ω  will resultin a Bode Plot.

2eix = cos(x) +  i sin(x)

5

Page 6: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 6/26

1.4 Frequently Used Systems’

In this section we will develop the Laplace domain representatives of some frequently used systems:

1.   Integrator:  y =  K u(t)  L−→ sY (s) = K U (s) → H (s) =   K 

s

2.   Differentiator:   y(t) = K  u(t)   L−→ Y (s) = K sU (s) → H (s) = K s

3.  First Order System:   τ 0 y(t) + y0 = K u(t)  L−→ (τ 0s + 1)Y (s) = K U (s) → H (s) =   K 

τ 0s+1

4.  Second Order System:   y(t) + 2βωn y(t) + ω2ny(t) = K ω2

nu(t)  L−→ s2 + 2βωns + ω2

n

Y (s) =

Kω2nU (s) → H (s) =

  Kω2n

s2 + 2βωns + ω2n

In the equation for the Second Order System   ωn   represents the   Resonance Frequency   of thesystem. The  β   represents the  Relative Damping   of the system. We will now observe an ex-ample in which these parameters will be determined. Suppose a standard Seconds Order Systemimplemented with a Mass, Spring and Damper:

mx + cx + Kx  =  K ∗ F (t)  L−→ ms2 + cs + k

X (s) = K ∗ F (s)

H (s) =  K 

ms2 + cs + k  =

K m

s2 +   cm

s +   km

The general equation for a Second Order System:

H (s) =  Kω2

n

s2 + 2βωns + ω2n

ω

2

n =

  k

m → ωn =  k

m

2βωn = 2β 

  k

m =

  c

m → β  =

 1

2

c

m

 m

k  =

 1

2

c√ km

6

Page 7: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 7/26

2 Block Diagrams

In Section 1.2  the concept of the  Transfer Function was presented. An input signal  X (s) can bemultiplied by a systems behavior (H (s))to yield the output signal  Y (s):

Y (s) = X (s)H (s)

This allows us to draw block diagrams as presented in Figure  3.   With the  Transfer Functions

Figure 3: A block diagram in which a disturbance is included.

of the used blocks given in the  s-domain it is easy to find the  Transfer Function  of the  TotalSystem. The system in Figure 3 can also be displayed as a single block with input  r  and outputx. Because  r  will be the input to this block, we neglect  F d   for a moment. The derivation of theTransfer Function for this Total System Block starts at the output:

x = (F  + 0)H  = F H  = eC H  = (r − x)CH  → x =  rCH − xCH 

x + xCH  = rCH  → x(1 + CH ) = rCH  → H tot(s) = x(s)

r(s)  =

  HC 

1 + CH 

With this approach we can also research the Sensitivity of the Error with respect to the reference;again start at the (desired) output:

e =  r − x =  r − (F  + 0)H  = r − eCH  → e =  r − eCH 

e + eCH  = r → S (s) = e(s)

r(s) =

  1

1 + CH 

We can also find the   Influence  of the  Disturbance  on the Error signal, for this case we assumer = 0:

e = 0− x = −(F  + F d)H  = −eCH − F dH  → e = −eCH − F dH 

e + eCH  = −F dH  → e(1 + CH ) = −F dH  → P (s) = F d(s)

e(s)  =

  −H 

1 + CH 

In similar way we can find the equations completely describing  e  and x in this block diagram:

e =  1

1 + HC  ∗ r +

  −H 

1 + HC  ∗ F d

x =  HC 

1 + HC  ∗ r +

  H 

1 + HC  ∗ F d

In  Control Systems   we aim for   High Gain Feedback   if we increase   C   we will see that   e  =0 ∗ r + 0 ∗ F d  = 0 and  x  = 1 ∗ r + 0 ∗ F d  =  r, these are the results we would like to yield whencontrolling a system.

7

Page 8: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 8/26

3 Bode Diagrams

It was already elaborated that  Transfer Functions  are complex numbers, complex numbers havea   Modulus   and a   Phase. The   Frequency Response Function   depicts the   Modulus   andthe  Phase  of the system as a function of the frequency of the input signal. For this   FrequencyResponse Function we use an pure sine as input  s  =  jω. The Modulus (M (ω)) and Argument(α(ω)) can be calculated with:

H ( jω) =  T 1T 2N 1N 2

|H ( jω)| = M (ω) =  |T 1( jω)||T 2( jω)||N 1( jω)||N 2( jω)|   |T 1( jω)| =

 Re(T 1)2 + Im(T 1)2

ΛH ( jω) = α(ω) = ΛT 1 + ΛT 2 − ΛN 1 − ΛN 2   ΛT 1 = arctan

Im(T 1)

Re(T 1)

Bode Diagrams  can be easily made with the help of MATLAB, but here we will present a man-ual derivation of the Bode Diagram. We will focus on determining the  Asymptotes  of the BodeDiagram. We will observe one frequency lower- and one larger than the  Cutoff-Frequency. At

the  Cutoff-Frequency   the Imaginary Part and the Real Part are equally of magnitude. Someexample derivations are given below.

Usually  Bode Diagrams  have a logarithmic scale  x-axis or  ω-axis. Note that the values on thisaxis are   ω   and not log(ω). The values on the  Modulus-diagrams’   y-axis, |H ( jω)|-axis, are inDecibels  [dB]. To transfer  A  to its value on the  Decibel-scale we use:

X [dB] = 20 ∗10 log(A)

The following formula is easier to solve; note however that the  Decibel-value is still  X .

A   1 10 108 0.001 2 0.5√ 

2   12

√ 2

X    0 20 160   −60 6   −6 3   −3

First-Order System

H (s) =  1

τ s + 1 → H ( jω) =

  1

 jωτ  + 1

ω   |H ( jω)|   20 ∗ log(|H ( jω)|)   arg(H ( jω)

ωτ   1 →ω 

  1

τ 

√ 12√ 

02+12  =   1

1  = 1 20

∗log(1) = 0   arg(1) = 0◦

ωτ   1 →ω    1

τ 

√ 12√ 

(ωτ )2+02  =   1

ωτ 

20 ∗ log  1ωτ 

 =

−20 ∗ log(τ )− 20 ∗ log(ω)Slope −20dB   for  ω    1

τ 

arg(   1 jωτ 

) = − jωτ 

  = −90◦

ωτ  = 1 →ω =   1

τ 

11+1  =   1√ 

2 =   1

2

√ 2 20 ∗ log(12

√ 2) = 1

  arg(   11+1 j ) =

− arctan (1/1) = −45◦

8

Page 9: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 9/26

Integrator

H (s) = 1

s → H ( jω) =

  1

 jω

ω   |H ( jω)|   20 ∗ log(|H ( jω)|)   arg(H ( jω)

ω  1√ 12√ (ω)2

  =   1ω

20 ∗ log1ω

 = −20 ∗ log(ω)

Slope −20dB   for  ω  1  arg(   1

 jω) = −1

ω  = −90◦

ω = 1√ 12√ 12

  =   11  = 1 20 ∗ log(1) = 0   arg(1) = 0◦

Double Integrator

H (s) =  1

s2 → H ( jω) =

  1

( jω)2

ω   |H ( jω)|   20 ∗ log(|H ( jω)|)   arg(H ( jω)

ω  1√ 12√ 

((ω)2)2  =   1

ω2

20∗log  1ω2

 = −40∗log(ω)

Slope −40dB   for  ω  1  arg(   1

( jω)2 ) = −1ω2   = −180◦

ω = 1√ 12

(√ 12)2

  =   11  = 1 20 ∗ log(1) = 0   arg(1) = 0◦

Proportional-Differential (PD) Controller

H (s) = ds + k → H ( jω) = djω  + k

ω   |H ( jω)|   20 ∗ log(|H ( jω)|)   arg(H ( jω)

dω  k →ω    k

d

√ k2 = k   20 ∗ log(k)   arg(k) = 0◦

dω  k →ω

   k

d  (dω)2 = dω

20 ∗ log(dω) =log(d) + 1 ∗ log(ω) Slope

+20dB   for  ω 

  k

d

arg(dωj) = 90◦

dω =  k →ω =   k

d

 d k

d

2+ k2 =

√ 2k2 =

k√ 

2  20 ∗ log(k

√ 2)

  arg(kj  + k) =arg(k( j + 1)) = 45◦

9

Page 10: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 10/26

4 Controller Design

4.1 Complex Plane: Poles and Zeroes

In Section 1.2 we derived a general Laplace domain equation for an  n-order differential equation:

H (s) =   ans

(n)

+ an−1s

(n

−1)

+ . . . + a0bms(m) + bm−1s(m−1) + . . . + b0

In the above equation both numerator and denominator are polynomials in  s, polynomials can alsobe written in ”root-form”:

H (s) =  ans(n) + an−1s(n−1) + . . . + a0

bms(m) + bm−1s(m−1) + . . . + b0= K 

(s− z1)(s − z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)  = K 

i=1...m(s − zi)i=1...n(s− pi)

The  Zeros of a  Transfer Function  are given by the roots of numerator:

N (s) = 0 →   lims→zi

H (s) = 0 → zi  for i = 1, . . . , m

The  Poles  of a  Transfer Function  are given by the roots of denominator:

D(s) = 0 →   lims→ pi

H (s) = ∞→  pi  for i = 1, . . . , n

The poles determine if a system is stable or not. A  System   is  Stable  when the response to animpulse fades . A  System   is  Instable   when the response to an impulse grows without bounds.The relation between  Poles of a system and the  Stability  of a system is:

1.   Re( pi) <  0 for every pole of the system, then the system is  Stable.

2.   Re( pi) >  0 for one of the poles of the system, then the system is  Instable.

3.   Re( pi)≤

0 for every pole of the system, then the system is  Neutral Stable.

Figure 4: A standard Control Diagram.

We don’t want any of the external signals to translate into the output signal in an instable way.The   System   in Figure   4   shows the 3 common external signals: input (r), disturbance (w) andnoise (v). The  Closed-Loop Transfer Function:

Y (s) =  C (s)G(s)

1 + C (s)G(s)R(s)+

  G(s)

1 + C (s)G(s)W (s)−   C (s)G(s)

1 + C (s)G(s)V (s) = T (s)R(s)+S (s)G(s)W (s)−T (s)V (s

In which   T (s) is the   Complementary Sensitivity   and   S (s) the  Sensitivity. From this wecan observe that  T (s) and the product  S (s)G(s) both should be stable. In this case the product

10

Page 11: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 11/26

C (s)G(s) which is called the   Open-Loop Transfer Function   (L) may not turn −1: otherwisewe are dividing by 0. In other words, the poles have to lie in the LH-plane. So the roots of theequation:

1 + C (s)G(s) = 1 + L(s) = 0

have to lie in the LH-plane.

4.2 Stability Criteria of Routh

In the previous part we saw that the  Stability  of a system is determined by the position of thepoles in the pole-zero map. But sometimes a  Systems Characteristic Equation is given in theform:

ansn + an−1sn−1 + . . . + a1s + a0 = 0

With the  Stability Criteria of Routh  we can state if the system is  Stable  without finding thepoles first. For this method first divide the entire equation by  an:

sn + an−1sn−1 + . . . + a1s + a0 = 0

For the system to be  Stable:

1. All coefficients have to be positive (> 0)

2.   3rd order:   a1a2 − a0 >  0

3.   4th order:   a1a2a3 − a0a23 − a2

1 >  0

4.   5th order:   a3a4 − a2  >  0 and (a3a4 − a2)(a1a2 − a0a3)(a1a4 − a1)2 > 0

4.3 Stability Criteria of Nyquist

A  Polar Figure  or  Nyquist Plot  shows the Transfer Function of  L(s) along the horizontal  Real Axis  and along the vertical  Imaginary Axis. Normally only the curve  L(s =  jω) = L( jω  = 0) isshown, because it can be determined from a  Bode Diagram or from an  Frequency Response-measurement. The points along the curve can be calculated using:

|L( jω)| = 

Re[L( jω)]2 + Im[L( jω)]2 and argL( jω) = atan

Im[L( jω)]

Re[L( jω)]

A   Closed Loop System   is stable when the −1-point is at the left of the Polar Figure of theOpen Loop System L( jω), when this curve is observed in the direction of  Increasing Frequen-cies. A Closed Loop System is  Unstable when the −1-point is at the right of the Polar Figureof the  Open Loop System L( jω).

Note:   the Stability Criterium of Nyquist does not state whether the Open Loop Systemis stable. If the Transfer Function is measured through measurement it has to be stable, otherwisethe  Stability Criteria of Routh has to be used.

11

Page 12: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 12/26

4.4 Margins

In the previous sections stability was explained, but this was done with the assumption that wehave a very accurate description of the system. But some inaccuracies in this approach might becaused by:

1. Assumptions in high frequency behavior.

2. Linearization of Non-Linear behavior.

3. Inaccuracies in the system itself.

These inaccuracies can cause instability if the system does not have enough margin. In other words:the Polar curve has to lie far enough from the −1-point. The margin to this −1-point is describedby three margins:

1.   Gain Margin:   the factor with which the gain of the system can be increased before thesystem becomes instable.

(a)   Common Values:   GM >   2.

2.   Phase Margin:   the angle with which the phase-lag of the system can be increased beforethe system becomes instable.

(a)   Common Values:   30 deg   < P M <   60deg.

3.   Modulus Margin:   is the radius of the smallest circles with center −1, which touches thepolar figure.

(a)   Common Values:   M M >   0.5.

(b) The  Modulus Margin  can also be written as:

1M M 

  =   1min|(1 + L( jω)|  = max|   1

(1 + L( jω)| = max|S ( jω)|

(c) This means that   M M >   0.5 corresponds with a maximum value of   <   6dB   in theSensitivity Plot.

(d) Using the Modulus Margin  both the  Gain Margin  and  Phase Margin  are alreadyadhered to. A   Modulus Margin   >   0.5 can only occur at a   Stable   system withGM >   2 and  P M > 30 deg.

12

Page 13: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 13/26

4.5 Loop Shaping

The design of a controller C (s) for a given system G(s) is focused mainly on Stability. Afterwardsthe focus is on decreasing the Sensitivity  S (s) over an as large as possible area, this decreases theerror for any given reference but also more noise compression and more robust.

The following procedure describes  Loop Shaping:

•  Observe the Bode plot of the system which has to be controlled  G( jω).

•   From the requirements it should be clear what the   Cross-Over Frequency   should be. If an decrease in phase lag is required to meet the  Phase Margin-requirement, use one of thetwo following tools:

Filter Transfer Function Use Breakpoint Other Instructions

PD-Controller

  K  (1 + τ ds)  Decrease Phase

Lag

1

τ dAdvice:   τ d  =

  1

2πωc

Lead-Filter   K τ 1s + 1

τ 2s + 1Decrease Phase

Lag

1

τ 1,

  1

τ 2

For Lead-Filteroperation  τ 1 > τ 2

Advice:  1

τ 1=

 ωc

3  and

1

τ 2= 3ωc

•  Now that we have made sure that we do not have to much  Phase Lag  we increase the gainof the controller until: |C ( jω)G( jω)| = 1.

•  If unwanted effects at high frequencies are present, the following filters can be used to suppressthese effects:

Filter Transfer Function Use Breakpoint Other Instructions

1st-orderLow-Pass

1

τ s + 1Passes

Low-Frequencies

1

τ 

Notchτ 21 s2 + 2βτ 1s + 1

τ 22 s2 + 2βτ 2s + 1Remove

Frequencies

1

τ 1,

  1

τ 1,

  1

τ 2,

  1

τ 2

τ 1 =  τ 2β 1 < β 2 ≤ 1

Depth =  β 1/β 2

InverseNotch

τ 21 s2 + 2βτ 1s + 1

τ 22 s2 + 2βτ 2s + 1Amplify

Frequencies

1

τ 1,

  1

τ 1,

  1

τ 2,

  1

τ 2

τ 1 =  τ 2β 2 < β 1 ≤ 1

Height =  β 1/β 2

•   Is less  Sensitivity  S ( jω) required at low frequencies, use some additional  I -action:

Filter Transfer Function Use Breakpoint Other Instructions

PI-Controller

1

1 +   1τ is

Low-FrequencyGain

1

τ i

1

τ i≤  ωc

5

•  Always make sure to check if  |S ( jω)| < 6dB

13

Page 14: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 14/26

4.6 Design for Performance

In Figure  4   a typical control system is displayed. When designing for performance we want theTracking Error and the Influence of Disturbances to be as low as possible. The Error of thesystem is described by:

E (s) = S (s)R(s)

−S (s)G(s)W (s)

In which the Reference R(s) and Disturbance W (s) are included. Because G(s) is a given plantwe can only adjust S (s). Many requirements can be translated to a specific Sensitivity at a certainfrequency. An example:

The Reference  R(s)  which is a sine-signal with amplitude  1[mm]  and frequency  100[Hz]  may not 

influence the Error  E (s)  by more than  1[µm] In this case we can specify the  Amplification  of signals at a specific frequency:

1

1000 = −60dB at   100[Hz]

This is a direct requirement to the  Sensitivity  S (s), with this requirement we can make a guess

for an appropriate  Cross-Over Frequency. At low frequencies |L( jω)| 1 so:

|S ( jω)| =  1

|1 + L( jω)| ≈  1

|L( jω)|This means that if the system has a −2 slope at low frequencies in transfer function  H (s) it willhave a slope of +2 for low frequencies in transfer function   S (s). With one point on the   S (s)-function and the slope of the  S (s) we can calculate at which frequency this  S (s)-function crossesthe 0dB-line. So at which frequency we have to place the   Cross-Over Frequency   in order tomeet the suppression of the  Reference R(s) in the  Error  E (s).

4.7 Limits to Performance

To make sure the   Reference   R(s) and   Disturbance   W (s) do not influence the   Error   E (s),we want the Sensitivity  S (s) to be as low as possible. The ideal case would be to have the entireSensitivity S (s) beneath 0dB this is however not possible due to the Bode Sensitivity Integral.This is however only valid for a  System with at least 2  Poles more than Zero’s. This means thatthe  Bode Sensitivity Integral  applies on a system with  n Zero’s and  m  Poles, if and only if:

n− m ≥ 2

The  Bode Sensitivity Integral  itself is described by:

  ∞

0

ln |S ( jω)|dω = 0

Ideally a system has a   Relative Grade  of 1 which means that that  m = n − 1. In this case thesystem approaches the point (0, 0) with a phase lag of  −90 deg.

14

Page 15: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 15/26

Part II

Lagrangian Mechanics

This part of the document describes Lagrange’s Method for finding the Equations of Motion for aDynamical System. In this main part 3 sheets show the used work flow:

1.  Equations of Motion

2.   Linearization

3.  Mechanical Vibrations of Undamped Systems

4.  Mechanical Vibrations of Damped Systems

In the Appendix a detailed derivation of Lagrange’s equations of motion can be found.

15

Page 16: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 16/26

Page 17: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 17/26

Page 18: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 18/26

Page 19: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 19/26

Page 20: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 20/26

Part III

Appendix

5 Detailed Lagrangian Mechanics

The drawback of Newton’s approach to Mechanical Analysis is that it considers the individualcomponents of a system separately, thus necessitating the calculation of interacting forces. TheLagrange approach to Mechanical Analysis is different in that it considers the system as a wholerather than its individual components.

Cartesian Coordinates   The  Motion  of a Mechanical System and its individual parts aredescribed with respect to an   Inertial Frame. The   Inertial Frame   is defined with axes  x1,  x2

and  x3. Suppose a Mechanical System with n p  discrete mass particles  mi   (i  = 1, 2, . . . , n p. If wewould express the motion of this system by means of   Cartesian Coordinates x1i, x2i  and x3i  foreach particle mi  we would need 3n p  coordinates to describe the total Mechanical System. Howeverthese Cartesian Coordinates are not independent due to connections between the mass particles.

Generalized Coordinates   In general, the Mechanical System can be described by   n   in-dependent parameters   q 1, q 2, . . . , q  n   which are called   Generalized Coordinates. The numberDegrees of Freedom  of this Mechanical System is   n, it is equal to the minimum number of independent coordinates that are required to describe the systems position uniquely. Because of the connections between the masses   n ≤   3n p   The   Generalized Coordinates   may not alwayshave a physical meaning nor will they be unique. This means that it is possible to describe theMechanical Systems motion with more sets of  Generalized Coordinates, note however that thenumber of  Degrees of Freedom is unique. A Coordinate Transformation is used to transformGeneralized Coordinates to  Cartesian Coordinates, the latter ones will be a function of the

Generalized Coordinates:

x1i =  x1i (q 1, q 2, . . . , q  n)

x2i =  x2i (q 1, q 2, . . . , q  n)

x3i =  x3i (q 1, q 2, . . . , q  n)

i = 1, 2, . . . , n p

The  Generalized Coordinates will be stored in a column matrix  q , also shortly called column  q .

q  =

q 1q 2...

q 4

The position of a mass particle  mi  can be described by means of the  Radius Vector −→ri , which isindependent of the Coordinate System (Cartesian, Cylindrical, Polar,. . . ). If we wish to quantifythe motion in a specific  Coordinate System  ri   is used. So for the earlier introduced  CartesianCoordinate System:

ri =

x1i

x2i

x3i

20

Page 21: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 21/26

Both the  Column  ri  and  Radius Vector −→ri  are functions of  q :

ri  =  ri

  and   −→ri   = −→ri

Prescribed Coordinates   Sofar a Mechanical Systems position was completely expressed incolumn   q . However some systems also depend on one or more geometrical parameters that are

known   Explicit Functions   of time. These Explicit Functions of time are called   PrescribedCoordinates. Which are denoted:

s(t) =

s1(t)

s2(t)...

sm(t)

So the motion of a Mechanical System with   Prescribed Coordinates   (s(t)) depends on bothGeneralized Coordinates (q ) and  Prescribed Coordinates. We can now write:

ri  =  ri

q, s(t)

  and   −→ri   = −→ri

q, s(t)

Differentiation with respect to a Column Matrix   In order to create a compact formu-

lation of the   Equations of Motion, it appears to be useful to define an abbreviating notationfor the   Derivatives  of columns and vectors with respect to a   Column Matrix. Consider theColumn Matrix Function  f (q, t) of dimension  m. This type of vectors have already been usedto describe the position of a mass with respect to a  Cartesian Coordinate System. The PartialDerivative  of this  Column Matrix  f  to the column  q  and scalar  t is defined as:

f ,g

 =∂f 

∂q   =

f 1,q1f 1,q2

. . . f  1,qn

f 2,q1f 2,q2

. . . f  2,qn...

  ...  . . .

  ...

f m,q1f m,q2

. . . f  m,qn

with f i,qj=

 ∂f i∂q i

f ,t

 =∂f 

∂t  =

f 1,t

f 2,t

...

f m,t

with f i,t =

  ∂f i∂t1

The  Position  of a mass in a Mechanical System with   no   Prescribed Coordinates  can bedefined by  r =  r(q ). The derivative of position yields velocity so:

r =  v  =  r ,q  q 

In  Vector Form  this can be written as:

−→r   = −→v   = −→r   ,q  q  = q T −→r   ,q

The  Position  of a mass in a Mechanical System with  Prescribed Coordinates   can be definedby r =  r(q, t). The derivative of position yields velocity so:

r =  v  =  r,t+ + r,q  q 

In  Vector Form  this can be written as:

−→r   = −→v   = −→r   ,t + −→r   ,q  q  = −→r   ,t + q T −→r   ,q

21

Page 22: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 22/26

Virtual Displacements   Consider a Mechanical System and let −→r   i  be the position vector of mass particle mi  of the system with respect to the  Inertial Cartesian Coordinate System. Wethen freeze the system, if  mi  was moving it is not moving anymore. We then change −→r   i  by δ −→r   i,this  δ −→r   i   is called the   Virtual Displacement, the  Virtual Position −→r   vis now defined as:

−→r   v  =

−→r   + δ 

−→r

The following requirements are imposed on   Virtual Displacements:

•  They are taken on a  Fixed  point in time.

•  They must be consistent with  Geometric or Kinematic Constraints  of the system.

•  They should be  Arbitrary Small.

Virtual Displacements  can also be applied to  Generalized Coordinates:

−→q   v  = −→q   + δ −→q 

The  Virtual Displacement  of the  Position Vector  δ −→r  can then be calculated by:

δ −→r   = −→r   ,q   δq  =  q T −→r   ,q

Virtual Work   Consider a mass particle mi of a mechanical system and let −→r   i be the position

vector of  mi  relative to the origin O  of an inertial frame. If −→F  ti  is the total Resulting Force acting

upon mi  then from Newton’s Second Law:

F  = ma   −→   F  − mx = 0   −→   −→F  ti − mi

 −→r   i = 0

If we introduce a Virtual Displacement δ −→r   i(t) the system will still be in Equilibrium the above

equation still holds. The  Virtual Work  performed over the  Virtual Displacement  δ −→r   i:

δW i =−→

F  ti −mi −→r   i

· δ −→r   i = 0

This will still be equal to 0 because the system is still in  Equilibrium. The   Virtual Work   forthe entire system is negligible:

δW   =

npi=1

δW i =

npi=1

−→F  ti −mi

 −→r   i

· δ −→r   i = 0

The Total Resulting Force−→F  ti  is consists of  Applied Forces

−→F  appl

i   and Constraint Forces−→F  constr

i

  , so that:

−→F  ti  =

−→F   appl

i   +−→F  constr

i

Constraint Forces result from Geometric or  Kinematic Constraints in the motion of anypart or particle of the system and are of a   Reactive Nature. For example: forces that confinethe motion of a system to a given path or the  Internal Forces  in a rigid body.

Applied Forces  are all forces except  Constraint Forces. For example: gravitational forces,aerodynamic lift and drag, magnetic forces.

22

Page 23: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 23/26

δW   =

npi=1

−→F   appl

i   · δ −→r   i +

npi=1

−→F  constr

i   · δ −→r   i −np

i=1

−→F  ti − mi

 −→r   i · δ −→r   i = 0

For now we assume that the  Work  of the  Constraint Forces   through virtual displacementsare compatible with the kinematic system constrains is zero:

δW constr =

npi=1

−→F  constr

i   · δ −→r   i  = 0

If this is the case we can reduce the main expression to:

δW   =

npi=1

δW i  =

npi=1

−→F  appl

i   − mi −→r   i

· δ −→r   i = 0

Generalized Forces  The  Virtual Work  of applied forces −→

F  appli   is given by:

δW appl =

npi=1

−→F  appli   · δ −→r   i  = 0

Our goal is to describe the motion of the system by means of the  Generalized Coordinatesq , therefore we express the above equation in terms of  q  and  δ q :

δW appl =

  npi=1

−→F  appl

i   · −→r   ,q

δq  =  δq T 

  npi=1

−→r   ,q

T  · −→F  appli

 =  δq T Q =  QT δq  ;   Q =

npi=1

−→r   ,q

T ·−→F   appli

Q  denotes the  Column Matrix  of   Generalized Forces, related to the virtual changes  δq  of the  Generalized Coordinates  q . In matrix notation:

Q =

npi=1

r,q

T  · F appli

Applied Moments   In practice it regularly happens that the resulting action of some of theapplied forces is (at least partially) equivalent to the action of so-called  Applied Moments being

exerted at some or more distinct points of the system.   Applied Moments  are denoted by −→M appl

which is defined as, use a standard  Cartesian Coordinate System:

−→M appl = M appl−→e  3  =  Arm × Force

Note that with a standard   Cartesian Coordinate System,   Applied Moments   rotatingCounter-Clock-Wise are defined as positive, this also follows from the cross-product. The VirtualWork  of both the  Applied Forces  and   Applied Moments  is defined as:

δW appl =

nF i=1

δ −→r   i · −→F   appli   +

nM  j=1

δ −→θ  j · −→M appl

 j

As −→

θ   j  can be considered an explicit function of the  Generalized Coordinates q  and time  t:

23

Page 24: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 24/26

−→θ  j  =

−→θ  j

q, t   →   −→

θ  j,q   δq  =  q T −→

θ  j,q

Combining this knowledge in the formula for the   Virtual Work   of   Applied Forces   andApplied Moments:

δW appl = δq T 

nF i=1

−→r   i,q

T  · −→F  appli   +

nM  j=1

−→θ  j,q

T  · −→M appli

And the part between [ ] contains the definition for  Generalized Forces   which include a

combination of both  Applied Forces  and   Applied Moments:

Q =

nF i=1

ri,q

T  · F appli   +

nM  j=1

θ j,q

T  ·M appli

Internal Energy   Both the −→

F   appli   and

 −→M appl

i   can be split up into  External-  and  Internal

Forces and Moments.

F appli   = F ex

i   + F ini

M appl j   = M ex

 j   + M in j

Qappl

 j  = Qex

 j  + Qin

 j  ;   with :

Qex =

nF i=1

ri,q

T  · F exi   +

nM  j=1

θ j,q

T  ·M exi   and Qin =

nF i=1

ri,q

T  · F ini   +

nM  j=1

θ j,q

T  ·M ini

Generalized Internal Forces  are defined to depend only on the  Generalized Coordinates  q and not on the  Generalized Velocities  q :

Qin = Qin(q )

Note that damping forces and friction forces depend on q   these are   External Forces. Otherexamples of  External Forces are: gravitational forces, aerodynamic lift and drag, magnetic forces.The   Generalized Internal Forces  can always be related to a state quantity  U in(q ) as follows:

Qin = −

∂U in

∂q 

= −

U in,q

For the  Virtual Work  by  Interal Forces we can write:

δW in = δq T Qin = −δq T 

U in,q

= −U in,q δq  = −δU in(q )

With this knowledge we can rewrite the  Virtual Work  of the  Applied Forces:

δW appl = δW ex + δW in = δq T Qex − δU in

24

Page 25: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 25/26

Potential Energy   Now we will split up the  Generalized External Forces   into  Conser-vative Generalized External Forces and  Non-conservative Generalized External Forces:

Qex = Qcons + Qnc

Note that all Generalized Internal Forces are Conservative. The Conservative Generalized

External Forces  can be derived from a   Potential Energy   function  V ex(q ), which depends onthe  Generalized Coordinates  only:

Qcons = −

∂V ex

∂q 

= −

V ex,q

With this knowledge we can rewrite the  Virtual Work  of the  Applied Forces:

δW appl = δq T Qnc − δV ex − δU in

We define the  Total Potential Energy Function  of the Mechanical System is defined:

V (q ) = U in(q ) + V ex(q )

So again we can rewrite the  Virtual Work  of the  Applied Forces:

δW appl = δq T Qnc − V (q ) =

Qnc− V ,q

δq 

Kinetic Energy   In the next section we will show that in describing a systems motion theKinetic Energy of the system is required. The Kinetic Energy of our system mechanical systemby definition has the form:

T   = 1

2

np

i=1

mi −→r   i

· −→r   i =  T 0 + T 1 + T 2 =  T 0 + mT q  +

 1

2

 q T M q 

T 0  is the term which represents the   Transport Kinetic Energy  of the system. It is the onlyterm remaining if q  = 0.

T 0 =  T 0(q, t) = 1

2

npi=1

mi−→r   i,t · −→r   i,t =

 1

2

npi=1

miri,t · ri,t

T 1   is the term which represents the   Mutual Kinetic Energy   of the system. It occurs incombination with the Transport Kinetic Energy   if  Prescribed Motion   is present.

T 1 =  T 1(q,  q, t) = mT q   →

  mT  q, t =np

i=1

mi

−→r   i,t

·  ˙

−→r   i,q =

np

i=1

mirT i,t

·ri,q

T 2   is the  Square Kinetic Energy  if no drivers are active in the system:

T 2  =  T 2(q, q, t) = 1

2 q T M q    →   M 

 =

npi=1

mi

−→r   i,q

T  · −→r   i,q =

npi=1

mi

ri,q

T  · ri,q

M   is called the   Mass Matrix  of the system. The  Mass Matrix   is  Symmetric:   M T  = M .

25

Page 26: Summary Dynamics & Control

8/10/2019 Summary Dynamics & Control

http://slidepdf.com/reader/full/summary-dynamics-control 26/26

Lagrange’s Equations of Motion   Using some extra derivations we can find the followingexpressions:

δW inert =

− d

dt

T ,q

+ T ,q

δq 

δW   = δW appl+δW inert = Qnc− V ,q δq +−d

dtT ,q+ T ,q δq  =

−  d

dtT ,q− T ,q + V ,q

− QncT  δq 

This expression has to be equal to 0, so with some rearrangements we yield  Lagrange’s Equa-tions of Motion:

d

dt

T ,q

− T ,q + V ,q =

QncT 

Equilibrium Position   An   Equilibrium Position   is used to linearize  Lagranges Equa-tions of Motion. For this  Equilibrium Position   the following applies:

q (t) = q 0

 =  constant =  time independent

q (t) = q (0) = 0; q (t) = q (0) = 0;

Because the above rules apply and the solution has to be time independent we can write LagrangesEquation of Motion  as:

−T 0,q + V q

= 0

Because T 0   is the  Transport Kinetic Energy  this term will be zero when no drivers exist in thesystem.

V q

= 0

This means that when the derivative of the   Potential Energy   is zero a   Equilibrium Positionhas been found. To find out if this is a   Stable Position we need to find the   Stiffness Matrix:

K 0 =

V ,q

T  , q 

q0

A   Stable Position   is found when  K 0   is positive definite. This means that k11   and  k22   are bothlarger than zero and the determinant is also larger then zero.