Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14...

58
1 Sub-Sampling PLL Techniques Xiang Gao, Eric Klumperink* Bram Nauta* Marvell, Santa Clara, CA *University of Twente, Enschede, The Netherlands

Transcript of Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14...

Page 1: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

1

Sub-Sampling PLL Techniques

Xiang Gao, Eric Klumperink*

Bram Nauta*

Marvell, Santa Clara, CA

*University of Twente, Enschede, The Netherlands

Page 2: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

2

• Classical CP PLL and PLL FOM

• Sub-Sampling(SS) PLL

• SSPLL Power Reduction Techniques

• SSPLL Spur Reduction Techniques

• Recent SSPLL Development and Discussion

Outline

Page 3: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

3

The Need For High Performance PLL

16 Bits

14 Bits

12 Bits

10 Bits

10 100 1000

Signal frequency (MHz)

100

90

80

SN

R (

dB

)

70

60

50

- Radio transceivers

- Wireline and optical data links

- Analog to Digital converters

Low noise/jitter/power PLL applications

Aperture Jitter

Page 4: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

4

Classical PLL And Noise

- Loop noise low pass filtered, dominant in-band

÷N

PD/CP Ref Out VCO LF

PLL noise

fm

)(£ mf

Bandwidth fc

Loop noise

VCO noise

- VCO noise high pass filtered, dominates out-band

Page 5: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

5

- Define CP feedback gain as:

PD/CP usually major loop noise source in classical PLL

CP Noise

outCP

out

I

- Kd F(s) KVCO/s

1/N

+

in,CP

βCP

CP noise suppressed by (βCP)2, Large βCP desired

- Inside bandwidth, loop gain is large

Φn,out

2

,

band-inCP,2

£CP

niCPS

Page 6: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

6

Classical 3-state PFD/CP PLL

‘1’

D Q

rst

‘1’

Ref

Div

&

rst

D Q

IUP=ICP

IDN=ICP

÷N

Out VCO

Ref leads Ref lags Phase Locked

Div

Ref

iCP

VCO

iCP

Page 7: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

7

Classical CP Feedback Gain

2

13

CPstateCP

I

N, CP feedback gain

22

ICP

iCP

- ICP

VCO

- βCP reduced by N, thus CP noise amplified by N2

‘1’

D Q

rst

‘1’

Ref

Div

&

rst

D Q

IUP=ICP

IDN=ICP

÷N

Out VCO iCP

Page 8: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

8

Figure of Merit (FOM)

Figure of Merit (FOM) useful in comparing relative merits

and helping designers to approach fundamental limits

PLL performance involves more parameters: fref, fout,

loop bandwidth, in-band/out-band noise, jitter, power…

Widely used VCO FOM takes into account fundamental

tradeoff between various parameters

)mW1

P

f

flog(10)f(log10FOM VCO

2

VCO

2

mmVCO £

Page 9: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

9

PLL Loop FOM

Assuming all the fundamentally required power for loop

component (PD/CP, divider, ref buffer) is dynamic and

neglecting 1/f noise, [1] showed that:

[1] X. Gao, E. Klumperink, P. J. F. Geraedts and B. Nauta, “Jitter Analysis and a Benchmarking Figure-

of-Merit for Phase-Locked Loops,” IEEE Trans. Circuits Syst. II, vol. 56, no.2, pp. 117-121, Feb. 2009.

A FOM for PLL loop design is thus defined as:

- Independent on fref: larger fref reduces loop noise but also

increases dynamic power

loop

out

loop

ref

refbandinloopP

f

P

ffN

22

]1

)1

log[(10log10 2

,£mW

P

f

HzFOM

loop

out

bandinlooploop

Page 10: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

10

PLL FOM

In optimized PLL, Loop/VCO contributes equally to both

jitter and power, the minimum achievable jitter is [1]:

A PLL FOM is thus defined as:

20

2

2

min,, 1011

)1(

1VCOloop FOMFOM

PLL

PLLtP

mW

Hz

].1

)1

log[(10 2,

mW

P

sFOM PLLPLLt

PLL

.1

log102

VCOloop

PLL

FOMFOMFOM- or:

- Design quality (FOM) of the loop and VCO are equally important

in achieving good PLL FOM

Page 11: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

11

This PLL FOM has been widely adopted recently. The

FOM generally improves over the years. The SSPLLs

currently hold best FOM for both int-N and frac-N PLLs.

State-of-Art PLLs

Pavlovic

ISSCC11

Temporiti

JSSC04

Yao, JSSC13

Su RFIC10

Tasca

ISSCC’11

Park,

ISSCC12

Helal, JSSC09

Chang,VLSI09

Lee

JSSC09

Ravi

VLSI 10

Gupta

ISSCC06

Temporiti

JSSC10

-240dB

-250dB

FoM = -230dB

-220dB mW

P

sFOM t

1log10

1log20

Gao

ISSCC15

Yao, VLSI11

HsuehISSCC14

He ISSCC14

Park, VLSI11

Gao

JSSC09Gao

VLSI10

Gao

JSSC10

100

101

102

103

10-2

10-1

100

101

Power P (mW)

Jit

ter

Va

ria

nc

e σ

t2 (

ps

)2

Raczkowski

RFIC14

Markulic, ESSCIRC14

Chang

JSSC14

Ru

VLSI13

Siriburanon

ISSCC15

Chen

ISSCC15

Elkholy

JSSC15

Hsu, JSSC08

Int-N PLL

Int-N SSPLL

Frac-N PLL

Frac-N SSPLL

Lee

TCAS-II13

Chillara

ISSCC14

Gu

ISSCC06

Hsu

TCAS-I’15

Narayanan

ESSCIRC15

SSPLL

Page 12: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

12

• Classical CP PLL and PLL FOM

• Sub-Sampling(SS) PLL

• SSPLL Power Reduction Techniques

• SSPLL Spur Reduction Techniques

• Recent SSPLL Development and Discussion

Outline

Page 13: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

13

Sub-Sampling Phase Detector (SSPD)

• Ref too early • Ref too late

Sub-Sampling PD for Integer-N PLL

VCO

Ref

Vsam

• Phase Locked

VDC

VDC

- VCO sub-sampled by Ref without going through divider

- Phase/Timing error converted into voltage error

- High phase detection gain due to high VCO dv/dt

[2] X. Gao, E. Klumperink, M. Bohsali and B. Nauta, “A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated

and PD/CP Noise is not Multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no.12, pp. 3253-3263, Dec. 2009.

Page 14: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

14

Sampler

Vsam VCO

Ref

IUP=gmVsam

IDN=gmVDC VDC

iCP

AVCO gm

iCP

VCO

- AVCO gm

sin( )out m VCO VCOCP d m VCO

VCO VCO

I g AK g A

Sub-Sampling PD/CP (SSPD/CP)

• Voltage controlled CP • Ideal characteristic

Detection characteristic is fairly linear once in lock

locking point

There is no N factor !

Page 15: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

15

SSPLL And Modeling

- Sub-sampling process

No Divider but a virtual Multiplier

refVCOalias fNff

SSPD/CP VCO Ref Out LF

Φn,ref in,CP

N ∑

- Kd F(s) KVCO/s [Фout ] + [Фref ] +

dCP K

CP noise NOT multiplied by N !!

- Ref noise multiplied by N, same as in classical PLL

fref 2fref

……

N·fref

VCO Alias

Page 16: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

16

f

VCOfNff VCOIF /

PFD

)(0 DC

N Factor On CP Noise: Another Angle

- Divider: 1st down-converter, to low IF

- PFD: 2nd down-converter, to DC

- CP/LPF: Base Band (TIA/LPF)

PLL is a loop back transceiver: VCO transmits ‘signal’

(VCO noise), the Loop receive/process it and feed it back

to cancel/suppress the VCO noise

Divider as down-converter has 1/N attenuation and 20logN

noise figure, PFD/CP noise thus amplified by N2

Classical PLL is analogous to a superheterodyne receiver

Page 17: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

17

f

SSPD Aliasing

VCOf)(0 DC

Why no N Factor In SSPLL

SSPLL is analogous to a direct conversion receiver

SSPD down-converter has no attenuation but a gain of 1,

thus better NF and no amplification for PD/CP noise

Page 18: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

18

effgs

VCO

mCP

VCO

stateCP

SSPDCP

V

AN

gI

AN

,3,

,4

/24

SSPLL VS Classical PLL

SSPLL has much larger βCP, thus more CP

noise suppression

SSPLL CP noise greatly suppressed by large βCP

>>1

SSPLL ideally has no divider noise

e.g. 100020

40404

V

V

.

.

- Comparing βCP with 3-state PFD/CP assuming same ICP

Page 19: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

19

SSPD Noise

In-band Phase Noise due to SSPD

HzdBcMf

/1324.04010

1042

21

Csam as small as 10fF enough for

very low phase noise

2,

VCOrefsam

SSPDbandinAfC

kT

L

e.g.

Page 20: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

20

SSPLL Design Challenges

- May need Big Cap for stabilization

2

c

CP

fC

SSPD/CP has very Large βCP

SSPLL has no divider

N ∑ -

βCP KVCO/s [Фout ] [Фref ] R

C

- May lock to any integer N

- For given phase margin and KVCO:

Page 21: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

21

βCP and Filter Cap Area

- Once CP noise is negligible, further Larger βCP only

wastes chip area (Big Cap)

Other Loop noise

fm

βCP control is desired for full integration

2

c

CP

fC

optimum fc

)(£ mf

with 1000*βCP

CP noise with 100*βCP

Page 22: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

22

SSPD/CP with Gain Control

A proper choice of DRpul reduces Cap area while

still keeps CP noise negligible

pulmVCOCP DRgA

Ref

VCO Sampler

VDC

Iout

Sampler

Ref Pulser

VCO

VDC

Iout

• One T&H, pulser

reused as 2nd T&H • Need two T&H

pul

Page 23: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

23

Differential Sampling

VCO crossing (most linear point) is locking point

Sampler

Ref Pulser

Sampler

VCOP

VCON

VsamP

VsamN

Ref

VCOP

VCON

Cancels clock feed-through & charge injection

Page 24: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

24

Ref Out

Classical PLL with Dead Zone as FLL

Sampler VCO CP

Pulser

3-state

PFD

÷ N

CP DZ

SSPLL With Frequency Locking Loop

- During locking, ΔФ > DZ, FLL has large gain, brings loop to lock

- Close to locking, ΔФ < DZ, FLL has zero gain, not injecting noise

Core loop

- FLL can also be disabled after locking to save power

Page 25: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

25

With 50% Ref and Div duty ratio, Dead zone is (-π, +π)

Dead Zone Creator Example

‘1’

D Q

rst

D Q

rst

‘1’

Ref

Div

&

UP

DN

• Small phase error

Div

Ref

DN

FLL_DN

• Large phase error

D Q

D Q FLL_UP

FLL_DN

Ref

Div

Page 26: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

26

It Also Works Without Dead Zone

CPi

t

Tref

TVCO

Combined

SSPD/CP

PFD/CP

. . . . . .

Sampler VCO CP

Pulser

3-state

PFD

÷ N

CP

- FLL keeps running, more robust against disturbances

- Overall characteristic SSPD/CP and PFD/CP combined

- FLL PFD/CP injects noise but is attenuated by (βCP,SS+βCP,PFD)2

[3] C.-W. Hsu, K. Tripurari, S.-A. Yu and P. R. Kinget, “A Sub-Sampling-Assisted Phase-Frequency Detector for Low-Noise

PLLs With Robust Operation Under Supply Interference,” IEEE Trans. Circuits Syst. I, vol.62, no.1, pp.90-99, Jan. 2015.

Page 27: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

27

• Classical CP PLL and PLL FOM

• Sub-Sampling(SS) PLL

• SSPLL Power Reduction Techniques

• SSPLL Spur Reduction Techniques

• Recent SSPLL Development and Discussion

Outline

Page 28: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

28

VCO-Sampler Buffer

VCO buffer is power consuming, can we remove it?

Csam C L

Vsam

VCO Ref

VCO load and fVCO changes, BFSK effect causes spur

t

ωVCO

LC / 1

) ( / sam C C L + 1

])log[sin(C

CNDSP sam

ref

2

20

Page 29: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

29

Csam C L

VCO Ref

Direct Sampling with Dummy Sampler

Complementary switched dummy sampler

dummy sampler

Ref

Csam

t

ωVCO

) ( / sam C C L + 1

- Spur due to BFSK effect with mismatch

])log[sin(C

CANDSP

samC

ref

2

220

Page 30: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

30

Direct VCO Sampling Design Example

10f

Ref

Ref

Vsam+

dummy sampler

Csam 10f

10f

10f

Vsam- Vtune

Cap Array

XTAL

[4] X. Gao, E. Klumperink, G. Socci, M. Bohsali and B. Nauta, “A 2.2GHz Sub-Sampling PLL with 0.16psrms Jitter and -

125dBc/Hz In-band Phase Noise at 700μW Loop-Components Power,” IEEE Symposium on VLSI Circuits, pp. 139-140,

Jun. 2010.

55MHz

Page 31: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

31

CP Design

Due to superior CP noise suppression of SSPLL, a small

ICP of 30mA is enough to achieve very low phase noise

To

LF Vsam-,

dummy

Vsam+,

dummy

dummy CP

Vsam- Vsam+

V I

1.5nS

Page 32: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

32

Inverter Ref Buffer

- Short-circuit current could be >90% of inverter power

- Slow sine-wave input, N1 and P1 both on for long time

Vth,N1

N1

P1 Vth,P1

N1 onP1 on

Invout

Vsp,Inv

Invin

Invout

Invin

XTAL outputs sine-wave, SSPD needs square-wave Ref

- Big size for low Ref noise

With so little ICP and SSPD virtually consume no power,

simple Ref buffer become major loop power dissipater

Page 33: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

33

How to Reduce Short-Circuit Current?

Practical sampler: track-and-hold

VCO

Ref

Vsam

- Only the sampling edge (SE) is critical for noise

- The tracking edge (TE) can be noisy

Page 34: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

34

VGP

Vth,N1

VGP

Pulser

width Δt2

N1 on

Δt1

N1

P1

P1on

Δt2

Invout

Invin

Invout

Invin

Low Power Sine-to-Square Ref Buffer

- N1 and P1 on-time guaranteed non-overlapping

- Critical path for SE is kept clean and short

Short-circuit current eliminated

Δt1

Page 35: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

35

Low Power Ref Buffer Design Example

XO

VGP&

810/0.3

20/0.18Δt1

Δt2)./.

./.(

18001

18041

N1

P1

Inv1Invout Ref

- Delays are implemented with shunt-C inverters

- Transistors in critical path are sized big, others

are small to save power

- It draws 0.22mA (would be >2mA for simple inverter)

Page 36: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

36

Die Photograph

0.18 mm CMOS

Active Area: 0.2 mm2

VDD: 1.8 V

- Loop 0.4 mA

- VCO 1.0 mA

Power Consumption

24-pin LLP package VCO

50Ω buf. bias

CP

Loop

Filter FLL

PD

,bu

f.

F

L

L

0.4

mm

0.45 mm

pul.

VCO

buff. bias

Loop

Filter FLL

0.4

mm

0.45 mm

PD

/C

P

VCO

Loop

Filter

FLL

0.4

mm

0.5 mm

SSPD

/CP DL

L

VCO

PD/CP

Ref buf

Loop

Filter

FLL

0.4

mm

0.5 mm

Page 37: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

37

Measured Phase Noise

- In band noise -125.3dBc/Hz@200kHz

10k

-60

-80

-100

-120

-140

-160

-40

100k 1M 10M 100M

Ph

as

e N

ois

e (

dB

c/H

z)

Δf (Hz)

-125.3dBc/Hz @ 200kHz

- Rms jitter 0.16ps [10k, 100M]

- 2.2GHz output with 55MHz XTAL

Page 38: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

38

-62

-60

-58

-56

-54

0 5 10 15 20

Ref

Sp

ur

(dB

c)

Chip #

Measured Spur

Spur from 20 chips from spectrum analyzer

Worst sample -56dBc

Page 39: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

39

Pavlovic

ISSCC11

Temporiti

JSSC04

Yao, JSSC13

Su RFIC10

Tasca

ISSCC’11

Park,

ISSCC12

Helal, JSSC09

Chang,VLSI09

Lee

JSSC09

Ravi

VLSI 10

Gupta

ISSCC06

Temporiti

JSSC10

-240dB

-250dB

FoM = -230dB

-220dB mW

P

sFOM t

1log10

1log20

Gao

ISSCC15

Yao, VLSI11

HsuehISSCC14

He ISSCC14

Park, VLSI11

Gao

JSSC09Gao

VLSI10

Gao

JSSC10

100

101

102

103

10-2

10-1

100

101

Power P (mW)

Jit

ter

Va

ria

nc

e σ

t2 (

ps

)2

Raczkowski

RFIC14

Markulic, ESSCIRC14

Chang

JSSC14

Ru

VLSI13

Siriburanon

ISSCC15

Chen

ISSCC15

Elkholy

JSSC15

Hsu, JSSC08

Int-N PLL

Int-N SSPLL

Frac-N PLL

Frac-N SSPLL

Lee

TCAS-II13

Chillara

ISSCC14

Gu

ISSCC06

Hsu

TCAS-I’15

Narayanan

ESSCIRC15

All PLL need Ref buffer. “PLL Utopia”: only the Ref path

contributes to loop noise and power.

Both SSPLL and injection locked PLL can approach

“Utopia” and they hold the PLL FOM record

PLL Utopia

SSPLL

ILPLL

Page 40: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

40

SSPLL is more like a traditional PLL with a phase

detector and a feedback loop

- More robust bandwidth/loop-dynamic control

- Lower reference spur

SSPLL vs ILPLL

ILPLL can achieve larger filtering bandwidth for VCO noise

and can be beneficial e.g. when ring oscillator is used

Page 41: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

41

• Classical CP PLL and PLL FOM

• Sub-Sampling(SS) PLL

• SSPLL Power Reduction Techniques

• SSPLL Spur Reduction Techniques

• Recent SSPLL Development and Discussion

Outline

Page 42: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

42

Classical CP

Ref

IUP

IDN

iCP

iCP

iCP iUP

iDN

lock point if

mismatch

iUP

iDN

UP/DN constant amplitude, variable on-time

- Amplitude mismatch UP or DN on-time mismatch CP ripple

VCO Ref spur by CP ripple

Sensitive to mismatch, low spur high BW tradeoff

Div

VCO

0

UP

DN

-2π

2π ΔΦ

2 ) ( ,

ref

BW fref CP

f

f i ·

PFD

Page 43: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

43

Cascode transistors for high impedance, better matching

Classical Low Ripple CP Design

UP

DN DN

UP

Vdump + -

VLF

Current steering, UGB for Vdump=VLF to keep node voltages

Page 44: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

44

- Pulser is 2nd T&H and controls CP gain

UP/DN amplitude mismatch eliminated

Ref Pulser

VCO+

VCO-

Vsam+

Vsam-

iCP

gmVsam+

gmVsam-

iUP

iDN

CP in SSPLL

lock point if

mismatch

UP/DN constant on-time, variable amplitude

iCP iUP

iDN

- Amplitude mismatch UP/DN still same on-time no ripple

0

-π π

ΔΦ

Vsam+ - Vsam-

Page 45: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

45

Simple Low Ripple CP Design

Pul

Pul Pul

Pul

Vdump VLF

No amplitude mismatch, single transistor enough

Achieves Vdump=VLF without using UGB

- Steer to filter: IUP=IDN at Vd,UP=Vd,DN=VLF

- Steer to Cdump: IUP=IDN at Vd,UP=Vd,DN=Vdump

Cdump

Due to finite output impedance, Vdump=VLF

Vd,DN

Vd,UP

Page 46: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

46

Csam C L

VCO Ref

Complementary sampling helps but not enough

Dummy sampler

Ref

Csam

compensated

SSPD Also Induces Spur

2. Charge injection from switch to VCO

1. VCO load and fVCO changes, BFSK

3. Charge Sharing between Csam and VCO

All spur mechanisms doesn’t go through loop

filtering, so no spur/BW tradeoff

Page 47: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

47

VCO/Csam Charge Sharing

Δq depends on Tracking Edge (TE) timing, has sign

No charge sharing by aligning TE to VCO zero-crossing

• VVCO=VDC

zero CS

• VVCO>VDC

positive CS

• VVCO < VDC

negative CS

TE SE

VDC

0

Δq

ΔtTE TVCO

Page 48: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

48

Align Ref TE and VCO

Phase detector for Ref TE

- Use dummy sampler as it samples VCO with Ref TE

Ref TE tuning scheme

Ref

Δt Pulser2

- Critical SE path kept short and un-affected

- Separate gate control for TE/SE

XO TE SE

- No short circuit current if N/PMOS on time non-overlap

Page 49: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

49

Low Spur SSPLL Architecture

PLL

Frequency

Detection

÷ N

VCO SSPD/CP

Ref

Δt

XO

Ref SSPD/CP

DLL

Pulser2

1. BFSK

3. Charge sharing

2. Charge injection compensated by dummy

minimized by DLL tuning

VCO buffer can be used for even lower spur (power penalty)

Page 50: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

50

Die Photograph

0.18um CMOS

Active Area: 0.2mm2

VDD: 1.8V

- DLL <5%

- Whole PLL 2.1mA

Power Consumption

24-pin LLP package VCO

50Ω buf. bias

CP

Loop

Filter FLL

PD

,buf.

F

LL

0.4

mm

0.45 mm

pul.

VCO

buff. bias

Loop

Filter FLL

0.4

mm

0.45 mm

PD

/C

P

VCO

Loop

Filter

FLL

0.4

mm

0.5 mm

SSPD

/CP DL

L

[5] X. Gao, E. Klumperink, G. Socci, M. Bohsali and B. Nauta, “Spur Reduction Techniques for Phase-Locked Loops

Exploiting a Sub-Sampling Phase Detector,” IEEE J. Solid-State Circuits, vol. 45, no.9, pp. 1809-1821, Sept. 2010.

Page 51: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

51

Spur Statistics

Spur from 20 chips with a large fBW/fref =1/20

-88

-86

-84

-82

-80

-78

0 5 10 15 20

Re

f S

pu

r (d

Bc)

Sample #

Worst chip -80dBc

Best chip -85dBc

Page 52: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

52

• Classical CP PLL and PLL FOM

• Sub-Sampling(SS) PLL

• SSPLL Power Reduction Techniques

• SSPLL Spur Reduction Techniques

• Recent SSPLL Development and Discussion

Outline

Page 53: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

53

SSPLL Generalized

The sampled waveform does not need to be sine-wave but

any waveform, can also be applied to e.g. ring oscillators [7-

8]. Just the phase detection gain need to be generalized:

In more advanced process, SSPD can sample faster and

utilize steeper slopes, thus benefiting from scaling. SSPLLs

working at 10s-of-GHz have been demonstrated [9-10].

VCO

sam

VCO

samSSPD

f

SRV

2

Page 54: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

54

Sub-Sampling TDC

If we digitize the sampled voltage with an ADC , it will

effectively become a time-to-digital converter (TDC)

samSR

LSB ADCTDC

Vt

Sampler

Vsam VCO

Ref

ADC Digital

codes

pssGV

mV1.0

/10

1e.g.

- The resolution is nearly two orders of magnitude finer than gate

delay and is easily scalable.

- Can be used to implement digital SSPLLs [14-16]

Page 55: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

55

Extend SSPLL to Fractional-N

DTC based frac-N SSPLL [17-19]

- Use DTC to modulate Ref edges and realize frac-N

operation so SSPD only need to handle small phase error

- SSTDC digitizes entire waveform

SSTDC plus extensive digital calibration [16]

- Extensive digital calibration

linearizes the SSTDC over a

wide detection range

Page 56: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

56

Extend SSPLL to Fractional-N, Cont’d

DTC + Phase Interpolator frac-N SSPLL [26]

- The use of phase interpolator together with DTC relaxes

the DTC’s resolution and dynamic range requirement

- Achieved -246dB FOM, current record for frac-N PLLs

Page 57: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

57

References

1. X. Gao, E. Klumperink, P. J. F. Geraedts and B. Nauta, “Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-

Locked Loops,” IEEE Trans. Circuits Syst. II, vol. 56, no.2, pp. 117-121, Feb. 2009.

2. X. Gao, E. Klumperink, M. Bohsali and B. Nauta, “A Low Noise Sub-Sampling PLL in Which Divider Noise is

Eliminated and PD/CP Noise is not Multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no.12, pp. 3253-3263, Dec.

2009.

3. C.-W. Hsu, K. Tripurari, S.-A. Yu and P. R. Kinget, “A Sub-Sampling-Assisted Phase-Frequency Detector for Low-Noise

PLLs With Robust Operation Under Supply Interference,” IEEE Trans. Circuits Syst. I, vol.62, no.1, pp.90-99, Jan. 2015.

4. X. Gao, E. Klumperink, G. Socci, M. Bohsali and B. Nauta, “A 2.2GHz Sub-Sampling PLL with 0.16psrms Jitter and -

125dBc/Hz In-band Phase Noise at 700μW Loop-Components Power,” IEEE Symposium on VLSI Circuits, pp. 139-140,

Jun. 2010.

5. X. Gao, E. Klumperink, G. Socci, M. Bohsali and B. Nauta, “Spur Reduction Techniques for Phase-Locked Loops

Exploiting a Sub-Sampling Phase Detector,” IEEE J. Solid-State Circuits, vol. 45, no.9, pp. 1809-1821, Sept. 2010.

6. D. Cai, et. al., “A Dividerless PLL With Low Power and Low Reference Spur by Aperture-Phase Detector and Phase-to-

Analog Converter,” IEEE Trans. Circuits Syst. I, vol.60, no.1, pp.37-50, Jan. 2013.

7. S. D. Vamvakos, et. al., “A 8.125–15.625 Gb/s SerDes using a sub-sampling ring-oscillator phase-locked loop," IEEE

Custom Integrated Circuits Conference (CICC), paper 10.1, Sept. 2014.

8. K. Sogo, A. Toya and T. Kikkawa, “A ring-VCO-based sub-sampling PLL CMOS circuit with −119 dBc/Hz phase noise

and 0.73 ps jitter," IEEE European Solid State Circuits Conference (ESSCIRC), pp.253-256, Sept. 2012.

9. X. Yi, C. C. Boon, J. Sun, N. Huang and W. M. Lim, “A low phase noise 24/77 GHz dual-band sub-sampling PLL for

automotive radar applications in 65 nm CMOS technology,” IEEE Asian Solid-State Circuits Conference (A-SSCC),

pp.417-420, Nov. 2013.

10. T. Siriburanon, et. al., “A 60-GHz sub-sampling frequency synthesizer using sub-harmonic injection-locked quadrature

oscillators,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.105-108, Jun. 2014.

11. C.-F. Liang and K.-J. Hsiao, “An Injection-Locked Ring PLL with Self-Aligned Injection Window”, IEEE Int. Solid-State

Circuits Conference (ISSCC), pp.90-92, Feb. 2011.

12. I.-T. Lee, et. al., “A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing,” IEEE Int.

Solid-State Circuits Conference (ISSCC), pp.414-415, Feb. 2013.

13. X. Gao, “Low Jitter Low Power Phase Locked Loops Using Sub-Sampling,” PhD thesis, University of Twente, ISBN-978-

90-365-3022-4, 2010.

Page 58: Sub-Sampling PLL Techniques - IEEE · 2015-10-21 · 3 The Need For High Performance PLL 16 Bits 14 Bits 12 Bits 10 Bits 10 100 1000 Signal frequency (MHz) 100 90 (dB) 80 70 60 50

58

References Cont’d

14. T. Siriburanon, et. al., “A 2.2GHz −242dB-FOM 4.2mW ADC-PLL using digital sub-sampling architecture," IEEE Solid- State

Circuits Conference - (ISSCC), paper 25.2, Feb. 2015.

15. Z. Ru, P. Geraedts, E. Klumperink and B. Nauta, “A 12GHz 210fs 6mW Digital PLL with Sub-sampling Binary Phase Detector

and Voltage-Time Modulated DCO,” IEEE Symp. VLSI Circuits, pp. 194-195, June 2013.

16. Z.-Z. Chen, et. al., “Sub-sampling all-digital fractional-N frequency synthesizer with −111dBc/Hz in-band phase noise and an

FOM of −242dB,” IEEE Solid- State Circuits Conference - (ISSCC), paper 14.9, Feb. 2015.

17. K. Raczkowski, N. Markulic, B. Hershberg, J. Van Driessche, and J. Craninckx, “A 9.2–12.7 GHz wideband fractional-N

subsampling PLL sin 28nm CMOS with 280fs RMS jitter,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC),

pp.89-92, Jun. 2014.

18. W.-S. Chang, P,-C, Huang and T.-C. Lee, “A Fractional-N Divider-Less Phase-Locked Loop With a Subsampling Phase

Detector,” IEEE J. Solid-State Circuits, vol.49, no.12, pp.2964-2975, Dec. 2014.

19. N. Markulic, K. Raczkowski, P. Wambacq and J. Craninckx, “A 10-bit, 550-fs step Digital-to-Time Converter in 28nm

CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp.79-82, Sept. 2014.

20. S. Ikeda, S.-Y. Lee, H. Ito, N. Ishihara and K. Masu, “A 0.52-V 5.7-GHz low noise sub-sampling PLL with dynamic threshold

MOSFET,” IEEE Asian Solid-State Circuits Conference (A-SSCC), pp.365-368, Nov. 2014.

21. J. Liang, Z. Zhou, J. Han and D. G. Elliott, “A 6.0–13.5 GHz Alias-Locked Loop Frequency Synthesizer in 130 nm

CMOS,” IEEE Trans. Circuits Syst. I, vol.60, no.1, pp.108-115, Jan. 2013.

22. P. Kinget, “Integrated GHz voltage controlled oscillators,” Analog Circuit Design: (X)DSL and Other Communication Systems;

RF MOST Models; Integrated Filters and Oscillators, Kluwer, 1999, pp. 353-381.

23. C. S. Vaucher, Architectures for RF Frequency Synthesizers. Boston, MA: Kluwer, 2002.

24. I.-T. Lee, K.-H. Zeng and S.-I. Liu, “A 4.8-GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of -

252.5 dB,” IEEE Trans. Circuits Syst. II, vol.60, no.9, pp.547-551, Sept. 2013.

25. Z. Ru, C. Palattella, P. Geraedts, E. Klumperink and B. Nauta, “A High-Linearity Digital-to-Time Converter Technique:

Constant-Slope Charging”, IEEE J. Solid-State Circuits, vol.50, no.6, pp.1412-1423, Jun. 2015.

26. A. T. Narayanan, et. al., “A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator with a FoM of -246dB”, IEEE

European Solid State Circuits Conference (ESSCIRC), pp.380-383, Sept. 2015.