Study on the Bonding Process of Wedges and Ultrasonic Wire ...

16
Journal of China Institute of Technology Vol.36-2007.6 181 楔形銲嘴與 楔形銲嘴與 楔形銲嘴與 楔形銲嘴與超音波 超音波 超音波 超音波銲線接過程之研究 銲線接過程之研究 銲線接過程之研究 銲線接過程之研究 Study on the Bonding Process of Wedges and Ultrasonic Wire Bonding 吳祥 戴志明 Yu-Shiang Wu Zhi-Ming Tai 中華技術學院機械工程學系暨機電研究所 積體電路封裝為整個導體產業後段製程,然而封裝的型式樣化,相對 的製程精準度要求也越來越高。封裝製程中超音波銲線楔形接,是將 IC 部電路連接的一種互相連繫技術,並能供電能輸入和訊號溝通的能。影響 接的品質與靠性,於選擇適的製程參數來銲線接,此利化學蝕刻 法,來觀察銲線接變化與界面的特性,實驗發現銲線的接界面會形成橢圓 形狀,此形狀跟超音波的率增有密切關係,而對整個接界面來講,增 超音波率時,實際接位置是從圓周部中發展,而基板的接處面 積隨之增,相對接強度也會增。 關鍵 關鍵 關鍵 關鍵:超音波楔形接、超音波的率、接界面、接強度 ABSTRACT Integrated circuit packaging is a backend process of semiconductor industry. Due to the modeling diversification of assembly, process accuracy is required to higher quality. Ultrasonic wedge bonding is one of the most important interconnection techniques for IC dies inner circuits with the outer world for the power and signal transportation. There is a significant effect of the bonding parameters to the joint quality and reliability. Therefore, the chemical etching method observes the bond configuration and interface characteristics. It is found that the bond interface form the oval-shaped with the increase of the ultrasonic power relation, furthermore, the actual joining position develop from the bond peripheral to the central, and to the whole bond interface. The bond area is increased in the substrate, and the bond strength will be increased relatively.

Transcript of Study on the Bonding Process of Wedges and Ultrasonic Wire ...

<4D6963726F736F667420576F7264202D2033362D31342E20B7A4A7CEBE5ABC4CBB50B657ADB5AA69BE5ABD75B1B5A658B94CB57BA4A7ACE32E646F63>181

Wire Bonding

ABSTRACT
Integrated circuit packaging is a backend process of semiconductor industry. Due to
the modeling diversification of assembly, process accuracy is required to higher quality.
Ultrasonic wedge bonding is one of the most important interconnection techniques for
IC dies inner circuits with the outer world for the power and signal transportation. There
is a significant effect of the bonding parameters to the joint quality and reliability.
Therefore, the chemical etching method observes the bond configuration and interface
characteristics. It is found that the bond interface form the oval-shaped with the increase
of the ultrasonic power relation, furthermore, the actual joining position develop from
the bond peripheral to the central, and to the whole bond interface. The bond area is
increased in the substrate, and the bond strength will be increased relatively.

182


(Tape automated bondingTAB)(Flip chipFC)
[1]
(Pad)
bondingT/S)
(Ball grid arrayBGA)

(Pull tester)
(60KHz 110KHz)
Li [4] Al-Ni
Cheung[5]
200

(Heel)
183



PCB PCB

60KHz(Wire feed angle) 30 o ()
(Al+Si 1)(WC2130-2025-L)() 99.99
(Cermet2130-2020-L-CC-CG BKCER)()
31.75µm

PCB


184
F ( F1 )
( F2 )(Neck)
(Tail consistency)(BR)

20mw 70mw 5.2gf
0.9 PCB
110mw
PCB
() 110mw
SEM110mw
185
170mw()
5gf 1.8
(~) 110mw

((f))
()
σe < σy
X
X2 X3
σe1 σe2
X2 X1

7.2gf 35ms
95gf 110mw 5.3gf


[1] T.S. Saraswati, T. Sritharan, C.I. Pang, Y.H. Chew, C.D. Breach, F. Wulff, S.G.
Mhaisalkar, C.C. Wong, “The effects of Ca and Pd dopants on gold bonding wire
and gold rod,” Thin Solid Films 462–463 (2004) 351–356.
[2] J. Onuki, M. Koizumi, I. Ishikawa, “Effect of Frequency and Surface Cleanliness
of Al-Si Electrode on Ultrasonic Bonding Characteristics of Thick Al Wire
Bonding,” Materials Transactions JIM 37 (1996) 1492–1496.
[3] T.Y. Lin, K.L. Davison, W.S. Leong, Simon Chua, Y.F. Yao, J.S. Pan, J.W. Chai,
K.C. Toh, W.C. Tjiu, “Surface topographical characterization of silver-plated
film on the wedge bondability of leaded IC packages,” Microelectronics
Reliability 43 (2003) 803-809.
[4] M.Li, H. Ji, C. Wang, H.S. Bang, H.S. Bang, “Interdiffusion of Al-Ni system
enhanced by ultrasonic vibration at ambient temperature,” Ultrasonics 45 (2006)
61–65.
[5] Y.M. Cheung, S.W. Or, and Stephen Ching, “Low temperature gold wire
bonding,” IEEE/CPMT Electronics Manufacturing Technology Symposium (1999)
196-202
[6] V. H. Winchell, H. M. Berg, “Enhancing Ultrasonic Bond Development,” IEEE
Transactions on Components Hybrids Manufacturing Technology CHMT-1
(1978) 211–218.
[7] H. Ji, M. Li, C. Wang, H. S. Bang, H. S. Bang, “Comparison of interface
evolution of ultrasonic aluminum and gold wire wedge bonds during thermal
aging,” Materials Science and Engineering A 447 (2007) 111–118.
Journal of China Institute of Technology Vol.36-2007.6
187
[8] T.R Daniel, N. DeePak, G. David, S. Dongkai, “Evaluation of wire bonding
performance, process conditions, and metallurgical integrity of chip on board wire
bonds,” Microelectronics Reliability 45 (2005) 379-390.
[9] Y.H. Tian, I. Lum, S.J. Won, S.H. Park, J.P. Jung, M. Mayer, Y. Zhou,
“Experimental study of ultrasonic wedge bonding with copper wire,” IEEE
Electronic Packaging Technology (2005) 389-393.
[10] Y. Ding, J.K. Kim, P. Tong, “Numerical analysis of ultrasonic wire bonding:
Effects of bonding parameters on contact pressure and frictional energy,”
Mechanics of Materials 38 (2006) 11–24.
[11] Y. Takahashi, M. Inoue, “Numerical study of wire bonding-analysis of interfacial
deformation between wire and pad,” Journal of Electronic Packaging 124 (2002)
27–36.
[12] H. Ji, M. Li, C. Wang, J. Guan, H. S. Bang, “Evolution of the bond interface
during ultrasonic Al-Si wire wedge bonding process,” Journal of Materials
Processing Technology 182 (2007) 202-206.
[13] Wire Bonding Tools, Gaiser Tool Company manual, Volume 11.

188
300~500
150~250

Bonding time
Ultrasonic power
Bonding force

Bonding time
Ultrasonic power
Bonding force
189
191
Def orm




Journal of China Institute of Technology Vol.36-2007.6
193
80 100
120 140
160 180
P u l l t e s t ( g f )
Defo rmatio
Journal of China Institute of Technology Vol.36-2007.6
195





( 19ms 90gf
(a)70mw (b)90 mw (c)110 mw (d)130 mw (e)150 mw (f)170 mw)
(a) (b)
(c) (d)
(e) (f)
( 35ms 95gf
(a)90mw (b)110 mw (c)130 mw (d)150 mw (e)170 mw (f)200 mw)
(a) (b)