Study of Resonance Crossing in FFAG

21
Study of Resonance Crossing in FFAG Masamitsu Aiba (KEK) Contents 1.Introduction 2.Crossing experiment at PoP FFAG 3.Crossing experiment at HIMAC synchrotron 4.Summary

description

Study of Resonance Crossing in FFAG. Contents Introduction Crossing experiment at PoP FFAG Crossing experiment at HIMAC synchrotron Summary. Masamitsu Aiba (KEK). Introduction. FFAG accelerator: For proton driver For muon acceleration, phase rotation Resonance crossing - PowerPoint PPT Presentation

Transcript of Study of Resonance Crossing in FFAG

Page 1: Study of Resonance Crossing  in FFAG

Study of Resonance Crossing in FFAG

Masamitsu Aiba (KEK)

Contents1. Introduction2. Crossing experiment at PoP FFAG3. Crossing experiment at HIMAC synchrotron4. Summary

Page 2: Study of Resonance Crossing  in FFAG

Introduction• FFAG accelerator:

– For proton driver– For muon acceleration, phase rotation

• Resonance crossing– In scaling FFAG: tune variation due to

imperfection of scaling – In non-scaling FFAG: tune variation in wide range

• Dynamics of resonance crossing is important.    Experimental study at PoP FFAG and HIMAC

Page 3: Study of Resonance Crossing  in FFAG

Crossing experiment at PoP FFAG

sector number 8 (DFD triplet)k value 2.5

kinetic energy 50-500keVfmagnetic field 0.14-0.32T(F)

0.04-0.13T(D)average radius 0.81-1.14mbetatron tune 2.22-2.16(Hor.)

1.26-1.23(Ver.)revolution freq. 0.61-1.40MHz

RF voltage 5kVpp

Parameter list

PoP FFAG: radial sector type scaling FFAG

Experiment of resonance crossing withvarious driving term and crossing speed

Page 4: Study of Resonance Crossing  in FFAG

Remodeling magnets

Crossing third order resonance during acceleration

0 50 100 150 200 250 300 350 400 450

2.20

2.25

2.30

2.35

2.40

3x=7 (

x=2.333)

hori

zont

al tu

ne

Beam Energy (keV)

After remodeling Before remodeling

4mm iron plates

Page 5: Study of Resonance Crossing  in FFAG

Driving term

0 45 90 135 180 225 270 315 360

-20

-10

0

10

20

⑧⑦⑥⑤④③②①

current error

current error

septum

COD with current error

CO

D (

mm

)

azimuthal angle (deg.)

)33()( 32233 DxDDxxODxO Feed Down:Driving term with COD

Controlling COD

Driving term can be varied and controlled.

Page 6: Study of Resonance Crossing  in FFAG

Beam measurementBeam scraping & intensity measurement

turn

intensity

Particle distribution in beam emittance was measuredbefore and after crossing.

Page 7: Study of Resonance Crossing  in FFAG

Fast crossing

0 250 500 750 1000 1250 15000.0

5.0x10- 4

1.0x10- 3

1.5x10- 3

2.0x10- 3

2.5x10- 3

3.0x10- 3

3.5x10- 3

4.0x10- 3

dI/dW

(

mm

-m

rad.

-1 )

emittance ( mm- mrad.)

BeforeCrossingAfter

Fast crossing: no clear signal of a damage due to crossing

110 130 150 (keV)

40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

current error -2%, speed1

Nor

. int

ensi

ty

r from 50keV (mm)

scrp. 868mm scrp. 888mm scrp. 908mm

Energy gain 1.6kV/turn = x 1.4×10-3

Current error –2%Scraping data

Particle distribution in beam emittance

Page 8: Study of Resonance Crossing  in FFAG

Slow crossing

80 100 120 140 160 1800.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

inte

nsity

(-)

r from 50keV (mm)

scraper 888mm scraper 908mm scraper 928mm scraper 948mm

Slow crossing: a part of beam is transported to large amplitude

0 1000 2000 3000 40000.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

2.5x10-3

3.0x10-3

3.5x10-3

dI/d

a (

mm

-mra

d.)

emittance (mm-mrad.)

Crossing After 130 150 170 190 (keV)

Energy gain 0.13kV/turn = x 1.2×10-4

Current error –2%Scraping data

Particle distribution in beam emittance

Page 9: Study of Resonance Crossing  in FFAG

“Particle trapping” modelReference: A.W.Chao and M.Month, NIM 121, P.129 (1974) “PARTICLE TRAPPING DURING PASSAGE THROUGH A HIGH-ORDER NONLINEAR RESONANCE”

Phase space topology during crossing third order resonance

p3

1Distance from resonance

This model explains the experimental result.

Assuming: nonlinear detuning (octupole) driving term (sextupole)

Page 10: Study of Resonance Crossing  in FFAG

Trapping efficiency

,43 eNL

0012 aBNL

2

1

03 aApe

)(2

0160

OdB

)(8

2

0

2

1

Sipp edA

3

2

1 4

eNL

pL 3

1

eL 23

:2

4

32

12

sA

)exp( 1

s

TA

P

1,1

,1,

1

11

if

ifs

Nonlinear detuning:

Driving term:

Linear tune shift:

Nonlinear tune shift:

Excitation width:

s: the beam emittance of island center

the total area of islands

the adiabatic parameter

The adiabatic parameter means a speed of islands moving during crossing.

Crossing speed:

:

Trapping efficiency for third order resonance

*Assuming >>1 to derivethe trapping efficiency

Page 11: Study of Resonance Crossing  in FFAG

Comparison of trapping efficiencies

500 600 700 800 900 1000 11000.0

0.2

0.4

0.6

0.8

1.0

error 2%, speed 0.13kV/turn, scraper 948mm

Nor

. int

egra

l (-)

num. of turn 0.0 0.1 0.2 0.30

5

10

15

20

25

30

35

trap

ping

eff

icie

ncy

(%)

energy gain (kV/turn)

current error theory: -2% theory: 0% theory: -3% exp.: -2% exp.: 0% exp.: -3% sim.: -2% sim.: 0% sim.: -3%

The experiment results are consistent to simulations.

Efficiency in experimentTrapping efficiencies

are about 3.

Page 12: Study of Resonance Crossing  in FFAG

Criterion to avoid trapping

2 3 4 5 6 7 8 9 10 110

5

10

15

20

25

30tr

appi

ng e

ffic

ienc

y (%

)

adiabatic parameter

current error -2% current error 0% current error -3%

Adiabatic parameter more than 7 will be harmless.

Page 13: Study of Resonance Crossing  in FFAG

Crossing experiment at HIMACFlat bottom operation parameter

circumference 129.6msuper period / cell 6/12

particle carbon 6+inj. energy 6MeV/u

operation point (3.69, 2.13)

Crossing: Varying quadrupole strengthDriving term:  SXFr*2 sextupole Nonlinear detuning: Second order effect of SXH sextupole

Crossing 3vx=11 in both directionObserving beam profile with Gas Sheet Monitor directly

SXFr

SXFr

SXH for all SPGas SheetMonitor

Page 14: Study of Resonance Crossing  in FFAG

Crossing in a direction of tune decreasing

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)-40 -30 -20 -10 0 10 20 30 40

0

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

x=3.668 x=3.662 x=3.661 x=3.660

x=3.658 x=3.652 x=3.647Crossing speed:

4.6*10-6

Nonlinear detuning:2.52m-1

Driving term:0.019m-1/2

Beam profiles during crossing

Page 15: Study of Resonance Crossing  in FFAG

Crossing in a direction of tune increasing

-40 -30 -20 -10 0 10 20 30 400.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

coun

t

x (mm)-40 -30 -20 -10 0 10 20 30 40

0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

coun

tx (mm)

-40 -30 -20 -10 0 10 20 30 400.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

coun

t

x (mm)

-40 -30 -20 -10 0 10 20 30 400.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

coun

t

x (mm)

x=3.654 x=3.657

x=3.676 x=3.711

Crossing speed:4.6*10-6

Nonlinear detuning:2.52m-1

Driving term:0.019m-1/2

Beam profiles during crossing

Page 16: Study of Resonance Crossing  in FFAG

Simulation – tune decreasing

-100 -50 0 50 100

-20-15-10-505

101520

x=3.647

x' (

mra

d.)

x (mm)

-60 -40 -20 0 20 40 600

100

200

300

400

500

x=3.660

Num

ber

of p

arti

cle

x (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-8-6-4-202468

x=3.668

x' (

mra

d.)

x (mm)-60 -40 -20 0 20 40 60

-15

-10

-5

0

5

10

15 x=3.660

x' (

mra

d.)

x (mm)

-60 -40 -20 0 20 40 600

100

200

300

400

500 x=3.668

Num

ber

of p

arti

cle

x (mm)-60 -40 -20 0 20 40 60

0

100

200

300

400

500 x=3.647

Num

ber

of p

arti

cle

x (mm)

Page 17: Study of Resonance Crossing  in FFAG

Simulation – tune increasing

-40 -20 0 20 40-8

-6

-4

-2

0

2

4

6

8 x=3.654

x' (

mra

d.)

x (mm)

-100 -50 0 50 100

-20-15-10-505

101520

x=3.705

x' (

mra

d.)

x (mm)

-60 -40 -20 0 20 40 600

100

200

300

400

x=3.654

Num

ber

of p

artic

le

x(mm)-60 -40 -20 0 20 40 600

100

200

300

400

x=3.705

Num

ber

of p

artic

le

x (mm)

Page 18: Study of Resonance Crossing  in FFAG

Difference due to crossing direction

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

-40 -30 -20 -10 0 10 20 30 400

1000

2000

3000

4000

5000

6000

7000

8000

coun

t

x (mm)

x=3.668 x=3.647

-40 -30 -20 -10 0 10 20 30 400.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

coun

t

x (mm)

x=3.654

-40 -30 -20 -10 0 10 20 30 400.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

coun

t

x (mm)

x=3.711

Tune decreasing

Tune increasing

The effect due to crossing depends upon crossing direction.

In one direction: “particle trapping”In other direction: “emittance growth”

Page 19: Study of Resonance Crossing  in FFAG

Crossing without sextupoles (1)

Crossing speed:8.5*10-6

Nonlinear detuning:0 m-1

Driving term:0 m-1/2

Beam profiles during crossing (tune decreasing)

“Particle trapping” occurred even when all magnets are linear elements.

Possible source for nonlinear components:allowed poles, fringing field …

-60 -40 -20 0 20 40 600

1000

2000

3000

4000

5000

6000

7000

8000

Cou

nt (

A.U

.)

x (mm)-60 -40 -20 0 20 40 60

0

1000

2000

3000

4000

5000

6000

7000

8000

Cou

nt (

A.U

.)

x (mm)

-60 -40 -20 0 20 40 600

1000

2000

3000

4000

5000

6000

7000

8000

Cou

nt (

A.U

.)

x (mm)

Page 20: Study of Resonance Crossing  in FFAG

Crossing without sextupoles (2)

In tune decreasing In tune increasing

Beam intensity during crossing

Beam loss due to crossing 3Nx=11

Crossing speed:5.5*10-6

Nonlinear detuning:0 m-1

Driving term:0 m-1/2

*Data acquired by Machida and Uesugi

Page 21: Study of Resonance Crossing  in FFAG

Summary

• Experiment at PoP FFAG (crossing 3x=7)– “Particle trapping” due to resonance crossing was obser

ved.– Trapping efficiency are understood qualitatively.– Adiabatic parameter more than 7 was harmless.

• Experiment at HIMAC (crossing 3x=11)– Difference due to crossing direction was clearly observ

ed.– Even sextupoles are not excited, the effect of crossing

was “particle trapping”.