STS F - CORE

19
APPORTIONMENT OF IDB COSTS FOR TH ROUGH-DRAINAGE OF HIGHLAND WATER Duncan Reed Report to Grantham, & L indell and Farran Institute of Hydrology October 1988 F all t ` '39 CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive

Transcript of STS F - CORE

Page 1: STS F - CORE

••

••••••

••

• APPO RT IONMENT OF IDB COSTS

• FO R TH ROUGH -DRAIN AGE OF

HIGHLAND WATER•

•••

••

••

••

Duncan Reed

•Report to Grantham, & Lindell

and Farran•

Institute of HydrologyOctober 1988

F allt '̀39

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NERC Open Research Archive

Page 2: STS F - CORE

1. Context

Alan Gardner rang 20 September 1988 to discuss dispute between an IDB andAngl ian Water regarding the above. Grantham, Brundell and Farran are actingfor Ancholme ID S but believe that the problem will concern al l IDBs inAngl ian WA 's region.

2 IDB Method

The IDB method of apportioning costs is a simple one based on nominalrunoff rates from highland and lowland areas: 2.1 and 1.4 1/s/ha respectively.Their origin is probably Imperial values of 30 and 20 cusecs per 1000 acres.A typical pumping station capacity in the A nglian region is indeed about 1.41/s/ha (see Table 6.1 of IW EM manual on river engineering). Presumably thehigher nominal runof f rate for highland areas is based on accumulatedexperience of ID I3 engineers. However, a rationale for the 50% "mark-up" forrunoff from highland areas is not obvious and it is perhaps no surprise thatthe RWA should challenge this.

3. Anglian Water Method

Anglian Water propose that apport ionment of costs be based on nominalannual runoff rates of 0.0635 1/s/ha for highland and 0.0628 1/s/ha for lowland.These values der ive from mapped values of 1941-1970 Standard AverageAnnual Rainfall (SA A R) after allowance for evaporation and percolation:

Thus the "mark-up" for runoff from highland areas is a mere 1.4% in theAnglian Water method. Understandably, the IDB reject the Anglian Watermethod both because it is much less favourable to 1D 135 and because it refersonly to long-term average runoff rates.

4. Discussion

The IDB rightly argue that the design and maintenance of the drains and

Highland Lowland

Page 3: STS F - CORE

pumping stations relate to their abil ity to discharge fl ood events, (eg. asustained runoff rate of about 1.4 l/s/ha) rather than an average daily runoffrate of only 0.06 I/s/ha. The Anglian water method is therefore not consideredfurther. However, the I DB contention that fl ood runoff rates from highlandareas are systematically 50% higher than from lowland areas remains to beproven.

As an aside it might be said that a perfect method of cost allocation wouldrelate directly to the costs incurred: with the apportionment made at the levelof j ob time sheets and purchase orders. Presumably this is deemed toobureaucratic. Moreover it would still require a method of apport ionment in themajority of cases where a given job or equipment purchase does not relatesolely to one or other of the highland and lowland drainage functions.

5. Crit ique of the IDB Method

Apportionment based on purely nominal runoff rates has the merit of simpleaccounting but inevitably many weaknesses. Some that spring to mind are asfollows.

There is scope in some catchments to segregate highland and lowland water,and for some gravity discharge. The special costs and benefi ts of such practiceare not represented in the apportionment based on nominal runoff rates.

There is no explicit treatment of the design standards of diff erent drainagesystems nor of the benefi ts that they provide.

Some of the drainage systems are dominated by highland water (eg. ScawbyBeck); others are dominated by lowland water (eg. Waddingham Sth etc.). Ifthe fl ood runoff characteristics of highland catchments diff er so much fromthose of lowland catchments (as the 1DB method imputes), onc migh t expecttheir design and maintenance characteristics to diff er also.

The 1DB method does not identify those cases where extreme land usechanges beyond their remit (eg. urbanization) have led to increased costsand/or reduced standards of fl ood protection.

However, the chief crit icism of the 1DB method remains the unsupportedassumption of 50% higher fl ood runoff rates from highland areas. Some formof hydrological assessment may therefore be helpful.

6. A Method of Design Flood Estimation

The Flood Studies Report (FSR) rainfall-runoff method synthesises the fl oodfrequency relationship using a unit hydrograpM osses model coupled to standard"design inputs". These inputs ensure that, on average, design hydrographs

2

Page 4: STS F - CORE

synthesised by the un it hydrograph model have a peak fl ow of the requiredretu rn period.

A feature of the approach is its generality: parameter estimates can beobtained from mapped characterist ics of the catchment , such as stream lengthand soil type. However, where gauged fl ow data are available locally, it isrecommended that these be analysed to derive improved estimates of the keyparameters of the model (the un it hydrograph time -to-peak, Tp, and standardpercentage runoff , SPR).

The calculations are relat ively complex and time-consuming. Thus, in the trialanalysis that follows, full use has been made of the microFSR compu terpackage.

Present recommendations for fl ood synthesis on lowland pumped catchmentsare given in Chapter 6 of the IWE M manual on River Engineering practice .These are based on earlier analysis of the Newborough Fen catchme nt nearPeterborough . Thc one change to the standard FSR methodology is to replacethe cus tom ary triangular unit hydrograph by a flat-topped unit hydrograph,representing the slow but sustained response of a fl at , well-drained fenlandarea.

7. Example - Boygrift Pumped Catchment

Boygrift catchment in East Lincolnshire is one of three pumped catchmentstha t have been instrumented by the Institute of Hydrology in strategic researchfunded by MA FF. Boygrift is a 21.13 km 2 catchment, chosen for researchbecause of its mar ked highland component (7.41 km 2). When complete , theanalysis will provide a fu rthe r check on use of the FSR rainfall-runoff methodfor fl ood estimation on pumped catchments, and insight into the signifi canceof highland and lowland components of fl ood runoff.

Synthesis of the 10-year fl ood was chosen for trial purposes. Fou r sets ofcalculatio ns were carried ou t as follows:

LO-25: Lowland subcatchment, 25-hour stormHI-13: Highland subcatchment, 13-hour stormHI-25: Highland subcatchment, 25-hour stormLO-13: Lowland sucatchment, 13-hour storm.

Except where explicitly stated, all cases use the standard FSR rainfall-ru noffme thod , as updated in Flood Studies Supplementary Report No. 16.

Case LO-25 applies a 25-hour design storm to the lowland subcatchment. Thefl at-topped unit hydrograph shape recommended in the IWEM manual wasadopted, bu t with an equivalent time-to-peak of 15 hours rather than 24hours. [Th e character istic response of the Boygrift catchment is known to beswift er than at Newborough. Th is is, of course, par tly due to the highlandelement, bu t partly also to the typically shor ter drainage paths to the maindrain.] For a Tp value of 15 hours, application of the standard FS R equation

3

Page 5: STS F - CORE

9

• for design storm duration yields 0 =25 hours. The resultan t fl ood peak is 3.00cumecs or 2.19 1/ s/ha. A sununary of the ca lculations is given in Appendix I .

Case H1-13 applies a 13-hour design storm to the highland subcatchment. The• standard tr iangular un it hydrograph shape is used, bu t wit h an estimate Of Tp

derived fro m observed runoff response times (LA G=8.5 hours) rather than

• from catchment characteristics . Application of the standard FS R equation fordesign sto rm duration gives 0 =13 hours. The resultant flood peak is 2.78

• cumecs or 33 5 1/s/ha. Th e calculat ions are su mmarized in Appendix 2.

• It is unreasonable simply to compare these design ru noff rate s. Th is is becausethe combined drainage system (as it exists) has to accomm odate runoff from

• both lowland an d highland sou rces. The above design runoff rates stem fromsignificantly diff erent design storms tha t could not coexist in a real fl ood

• event. N o further flood estimates were therefore made (Appendices 3 and 4) :one applying a 13-hour design storm to the lowlan d subcatchment, the other

• applying a 25-hour design sto rm to the highlan d subcatchment. The lat tercond ition is the appropriate choice, giving a higher combined hydrograph. The

• four sets of flood estimates are summarized in Table 1.

•TABL E I 10-year peak fl ows and runoff rates

Highland Lowland Highlan d Lowland •

• (cumecs) (1/s/ha)

0

1.892.19

•When the peak fl ows are expressed in units of 1/s/ha, it is seen tha t, for the

• 25-hour design storm, the 10-year flood runoff rate from the highlandsubca tchment is 61% highe r than that from the lowland subcatchment.

•Because of the storage characteristics of the main drain, the maximum 6-hou r

• runoff rate may be a more relevant sta tistic (than the instantaneous peakvalue) in determining the engineering design. Such values are shown in T ab le

• 2.

•TA BLE 2 10-year maxim um 6-hour mean fl ows and runoff rates

Highland Lowland Highland Lowland• (cumecs) (1/s/ha)

•13-hour storm 2 59 25 8 3.50 188

• 25-hour sto rm 2.50 2.98 3.37 2.17

•4

Page 6: STS F - CORE

The 10-year 6-hour miudmum runoff rates from the highland and lowlandsubcatchrnents are seen to be 3.37 and 2.17 I/s/ha respectively. These areappreciably higher than the nominal runoff rates of 2.1 and 1.4 1/s/ha cited inSection 2. However, the ratio of highland to lowland runoff rates (3.3712.17 =1.55) is in close agreement with the ratio assumed in the 1D B method (2.111.4= 1.5).

The highland response (to the 25-year design storm) peaks some eight hoursbefore the lowland response peaks. Some of this diff erence will be negated bythe time taken for the highland contribution to travel the length of the maindrain. Delaying the highland response hydrograph by a nominal 3 hours beforeadding the lowland response hydrograph yields a 10-year peak fl ow of :

2.59 + 2.89 = 5.48 cumecs

and a 10-year maximum 6-hour mean fl ow of 5.36 cumecs. This estimate canbe compared with the nominal installed capacity of 3.5 cumecs.

The above fl ood estimates appear to be rather high when coinpared to theregional experience that design values of 1.4 and 2.1 1/s/ha can comfortablyaccommodate at least the 10-year event. This discrepancy is disappointing butnot altogether surprising: fl ood estimates based on rainfall statistics coupled togeneralized (but relatively simple) models of catchment response can beexpected to be relatively inaccurate.

However, the above assessment p7ovides no evidence that the IDB method's"50% mark-up" for highland areas is unreasonable; indeed, the ratio of 1.55derived is embarrassingly close to 1.50.

8. Summary

A hydrological assessment of highland and lowland fl ood runoff rates has beencarried out for the Boygrift pumped catchment. The assessment is based largelyon published recommendations, namely: the FSR rainfall -runoff method, asupdated by Flood Studies Supplementary Report No. 16, and the modifi ed unithydrograph shape recommended for lowland catchments in the 1VVEM RiverEngineering manual. Some account has been taken of the characteristicresponse times noted in experimental monitoring of the Boygrift catchment.

There is no evidence from the hydrological assessment that the IDB method's"50% mark-up" for fl ood runoff from highland areas is unreasonable.

9. Qualifications

The above hydrological assessment is not beyond criticism. It is possible thatthe Boygrift catchment is atypical of pumped catchments, either in the

5

Page 7: STS F - CORE

• Ancholme ID B or in the A WA region in general. A lso, it is possible that

•sl ight ly diff erent defi nitions have been used for highl and and lowland areas.

•Th e assessment could be strengthened by the analysis of fl ow data for gaugedcatchments in the region: either by a comprehensive analysis of fl ood event

•data or through the simpler mechanism of analysing daily mean fl ows (torefi ne estimates of SPR using the basefl ow index, BP ).

• The derivation of fl ow duration curves (indicating the proportion of days on

•which a given dai ly mean fl ow rate is exceeded) might also be usefu l incharacterizing the difference between highland and lowland catchments in

•Eastern England, if suitable gauged records are available or can be derivedfrom pump-run data.

•• 10. Recommendation for Further Research•• A more direct approach would be to examine long-term records of maximum

•1-day pumped quant ities for land drainage pumping stations in the region,some of which are already held by the Insti tu te of Hydrology. The IWEM

•manual of river engineering design practice reports results for pumpedcatchments in the South Holland Board's area. Additional research would seek

•to quantify the extent to which actual flood runoff rates from largely lowlandpumped catchments diff er from those of largely highland pumped catchments.

• One technique would be to correlate the observed annual maximum 1-day

•runoff depth, ROBAR, wi th a highland/lowland index, HI GH LAND, defi ned asthe fraction of the catchment from which through-drainage of highland water

•is received. This would seek to establish a regression model such as:

•ROBA R = a + b HIGHLA ND

Or

•ROBA R = c ( 1 + HIGHLA ND)d .

•While the percentage variance explained by such a regression might berelatively modest, it might nevertheless provide a useful and easily implemented

• refinement of the IDB method. Note that, with ROBA R in 1/s/ha, the IDBmethod corresponds to:

• ROBA R = 1.4 (1 - HIGHLAND) + 2.1 HIGHLA ND

•= 1.4 + 0.7 HIGHLAND= 1.4 (1 + 0.5 HIGH LAND)

•The factor (1 + HIGHLA ND )d would replace the (1 t 0.5•HI GH LA ND)

•implicit in the current method. The scaling factor for highland areas wouldthen be 2d rather than the present 1.5 .

• The approach is not without difficulty. The analysis would have to excludethose catchments where gravity discharge of highland water is possible but is

• ungauged. A lso, pumps and ' drains are subject to deterioration, maintenance

•6

Page 8: STS F - CORE

and renovation ; the changing performance of the drainage system will berefl ected in non-sta tionarity in the time se ries of annual maximum 1-daypumped volumes.

However , runoff estimates based on actual pumped quantities are to bepreferred to generalized methods that rety on catchment characte rist ics andrainfall-runoff modelling. It is the refore strongly recommended that a de ta iledstudy of fl ood runoff rates be made by reference to pumping records in theregion .

1) WR/vw6.10.88

7

Page 9: STS F - CORE

•_

•• APPEKS Di X I

•0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

U K DE S IG N F LO O D E S T IM A T IO N M IC RO -F S R D EM ONS T RA T IO N

' S um m a r y o f e s t im at e us in g F lo od St ud ie s Re po rt r a in fa ll-r u n o f f m e th o d0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

dh D e s'c r ipt io n : 1,116 W ra n df c o m po n en t o f B o y gr ift pum pe d c a tc hme n tI wP r in te d o n 2 9 - 9 - 19 8 8 a t 1 1. 10 R un Re fe re n ce - B O YL C

•d'E s t im a t io n o f T - ye a r f lo o dmr_

' In c lud e s T p s c a lin g fa c to r I. 00

• De s ign st o r m d ur a t io n

•• De s ign s t o r m d e pt h

Ak D e s ign C W I

le P e r c e n ta ge r un o f f

'25 .0 h o ur s

• U s in g r a in fa l l s ta t is t ic s fo r E n g la r0 a nd W a le s

' Re t ur n pe r io d fo r d e s ign f lo o d : 10 .0 ye ar s

A i r e q u ir e s r a in r e t ur n pe r io d 17 .0 y e ar s

mrM 5 - 25 .0 h o ur7 M 5 -2 d a y : 0 .90 6 mm .

a M S -a z . 0 h o u r 42 .6 m m .11,M T /M 5 1.32

AhM 17 .0 -2 5 .0 h o ur 5 6 .4 mm . (po int )w A RF 0 .q 7

M 17 .0 -2 5 .0 h o ur 5 4 .8 m m . (are a )

5 4 .7 7 m m .

9 1.6 1

3 7 .3 1 %

ci

(U H o pt io n

(D ur o pt ion

(P o pt io n : 1

(P ro f i le o pt io n : 4

(C W 1 o pt io n : 1

(P R o p t io n : 1

Ah Re s p o n se h y d r o gr a ph pe a k . 2 .8 9 c ume c s

W B as e f lo w •. 0 . 1 1 c um e c s (Bas e f lo w o pt io n :

' D e s ign h y d r o gr a ph pe a k •. 3 .0 0 c um e c s= = = = == =

4 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * .e m ic ro -F S R - In st it ute o f H yd ro lo gy

Page 10: STS F - CORE

* * * * ** ** ** ** * * * ** ** * ** * * * ** * *** ** ** * * ** * * * * * ** * * *** * * **** * * * ** * * ** * ** * *** * * * * * * *

• V. D E S IG N F L O OD E S T IM A T IO N M IC RO -F S R D E M ONS T RA T IO N

', T im e Ser ie s d at a fr o m e s t im at e us in g F lo o d S t ud ie s Re port r a in fa l l-r un o ff m e t h od

* * * * * ** * * * ** * ** * * ** * * ** * * ** ** **** ** * * ** * ** * * ** * * ** * * * **** * * * * ** * * ** ** * *** * * ** * * *

•D e sc r ipt io n : Lo w la n d c o m po ne n t o f B o y gr ift pum ped c a tchme n t

',P r in t ed o n 2 9 - 9 - 19 8 8 at 11. 10 R un Re fe r e nce - B O YLC

T im e

(h o ur s )

(- -To t a l

(m m )

Ra in fa l l

P ro f i le

V.

-- )

N e t

(m m )

U n itH y d r o gr a ph

c um e c s /c m %pe r 10 0 s g km

(-- - - F lo w

B ase f lo w Re s po n se

(c um e c s ) (c um e c s )

--- - >

T o t a l

(c um e c s )

• 1 1.0 0 0 .7 1.2 O . 2 1.4 0 0. So 0 . 1 1 0 .00 O . 1 1

2 .0 0 0 .7 I . O . 2 2 .8 0 1. 01 0 . 1 1 O . 0 1 O . 12

• 34

3 .0 0

4 .0 0

0 .8

1.0

1.. 5,

1.8

O . 3

O . 4

4 .3 0

5 . '70

I. 5 5

2 .05

0 . 1 1

0 . IIO . 0 30 .0 5

O . 14O . 16

• - 5 .0 0 1. 0 1.8 0 .4 7 . 10 2 .5 6 O . 1 1 0 .0 8 O . 19

6 6 .0 0 1. 1 2 . 0 0 .4 8 .5 0 3 .06 O . 1 1 O . IL 0 .2 3

• 77 .0 0 1.6 2 .9 O . 6 9 .9 0 3 .56 0 . 1 1 0 . 17 O . 2 3

B 8 .0 0 2 .0 3 .6 O . 7 10 .6 0 3 .8 2 O . 1 1 0 .2 3 0 . 3 4

•• 9 9 .0 0 2 .6 4 •7 1.0 10 ..70 3 .85 O . 1 1 0 .3 1 0 .4 2

10 10 .0 0 3 .7 6 .8 1.4 10 .6 0 3 .82 O . 1 1 O . 40 O . 5 1

•1 1. 1 1.0 0 4 .6 8 .4 1.7 10 .7 0 3 .8 5 O . 1 1 0 .5 3 0 .6 4

12 12 .0 0 5 .0 9 . 1 1.9 10 .6 0 7 .82 0 . 1 1 O . 6 8 O . 7 9

•13 13 .0 0 5 .5 10 .0 2 .0 10 . 70 3 .8 5 O . I I 0 .8 6 0 .9 7

14 14 .0 0 5 .0 9 . I 1.9 10 . 6 0 3 .82 0 . 1 1 I. 0 8 1. 19

•15 15 .0 0 4 .6 8 .4 1.7 10 . 70 3 .85 00 . 1 1 1.3 1 1.4 2

16 16 .0 0 3 .7 6 .3 1.4 10 . 6 0 3 .82 O . 1 1 1.5 5 1. '6 6

41, 17 17 .0 0 2 .6 4 .7 1.0 10 .70 3 .8 3 0 . 1 1 1.7 9 1.9 0

18 18 .0 0 2 .0 3 .6 O . 7 10 .6 0 3 .82 O . 1 1 2 .0 1 2 . 12

•19 13 .0 0 1.6 2 . 9 0 .6 10 . 70 3 .8 5 O . 1 1 2 .2 1 2 .3 2

2 0 2 0 .0 0 1. 1 2 .0 0 .4 10 .6 0 3 .82 0 . 1 1 2 .3 8 2 .4 9

•.2 1 2 1.0 0 1.0 1.8 0 .4 10 . 70 3 .85 0 . 1 1 2 .5 2 2 .6 3

,...._. 2 2 .0 0 1. 0 1.8 0 .4 10 . 6 0 3 .82 O . 11 2 .6 3 a . 74

•2 3 2 3 .0 0 O . 8 1.5 O . 3 10 .3 0 3 .7 1 0 . 11 2 . 7 1 2 .8 2

2 4 2 4 .0 0 0 .7 1.2 O . 2 9 .6 0 3 .46 O . 11 2 .7 8 2 .8 9

•2 5 2 5 .0 0 0 .7 1.2 0 .2 8 .9 0 3 .20 0 . 1 I 2 .8 3 2 .9 4

26 2 6 .0 0 8 .2 0 2 .95 O . 1 1 2 .8 6 2 .9 7

4, 2 7 2 7 .0 0 7 .40 2 .6 6 O . 1 1 2 . B B 2 . '39

2 8 2 8 .0 0 6 . 7 0 2 .4 1 O . 1 1 2 .8 9 3 .0 0

• 2.9 2 9 .0 0 6 .0 0 2 . 16 O . 1 1 2 .8 9 3 .0 0

3 0 3 0 .0 0 5 .3 0 1.9 1 O . 1 1 2.. 8 7 2 .9 8

•3 1 3 1. 0 0 4 .6 0 1.6 6 O . 1 1 2 .8 5 2 .9 6

3 2

• 3332 .0 0

3 3 .0 0

3 .9 0

3 .2 0

1.4 0

1. 15

O . 1 10 . 1 1

2 .8 0

2 .7 4

2 .9 1

2 .8 5

3 4 34 .0 0 2 . 5 0 O . 9 0 O . 1 1 2 .6 6 2 .7 7

• 3 5 3 5 .00 1. B O•

6 5 O . I I 2 .5 6 2 .6 7

3 6 36 .0 0 1. 10 0 . 40 O . 1 1 2 .4 4 2 .5 5

• 3 7 3 7 .00 O . 40 0 . 14 O . 1 1. 2 .30 2 .4 1

3 8 3 8 . OCI O . 1 1 2 . 15 2 .2 6

•3 9 39 .0 0 O . 1 1 1.9 9 2 . 10

4 0 4 0 .0 0 O . 1 1 1.8 3 1.9 4

41, 4 1 4 1.00 O . 1 1 1.6 6 1. 7 7

4 2 42 . 0 0 O . 1 1 1. 4 9 1.6 0

e A ..: 4 3 .0 0 10 0 . 1 1 1.3 2 1.4 3

4 4 4 4 .00 O . 1 1 1. 16 1. 2 7

Page 11: STS F - CORE

•••• APPENsb n

•+ * * * * * ** * * * * * * * * ** * * *** * * * * * ** * * * * ** * ** ** * ** * ** * * ** * * * ** ** ** * * * ** ** ** * ** ** * * * * **

• U K D E S IG N F L O O D ES T IM A T IO N M IC RO -F S R D EM ONS T RA T ION

', S um m a r y o f e s t im a te us in g F lo o d S t ud ie s Re por t r a in f a l l-r un o f f me t h od* * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4

•D e s c r ipt io n : H i gh ia nd ,c o m po ne nt o f B o y gr ift p um ped c a tc hm e n t

', P r in t e d o n 2 9 - 9 - 198 8 a t 5 .5 5 R un Re fer e n ce - B O Y H I

40E s t im a t io n o f T-y e ar f lo o d

ID(U H o pt io n : 1)

"' U n it h y d ro gr a ph t im e to pea k 7 . 5 h o ur s ( TP o p t io n : 3 )

D a t a in te r va l

"' In c lud e s Tp sc a lin g fac to r 1. 00

', D e s ign s t o rm d ur at io n

• -Tr 0_,-.{.3 0t .

13 .0 ho ur s (D ur o pt io n : 1)

=======0 **** ***** *********************************** ********** **** ********* ************•

m ic r o - F S R - In st it ute o f H yd r o lo gy

• h o tA- S h 3sr ne\

•L A(.7 % -5 4,4-i . ( k-cat n 3 0-1 2c)• a spi b-

"' U s in g r a in fa l l s ta t is t ic s fo r E n g la nd an d W a le s

Re t ur n pe r io d for d e s ign f lo o d : 10 .0 ye a r s

r e q u ire s r a in r et urn pe r io d 17 .0 y e ar s

O M 5 - 13 .0 h o ur /M 5 -2d ay 0 .77 3 mm .

M 5 - 13 .0 h o ur 38 . 7 m m .

• M T /M 5 1.24m 17 .0 - 13 .0 h o ur 5 1.6 mm . (po in t )

• A RF 0 .97M 17 .0 - 13 .0 h o ur : Z0 . 1 m m . (a r e a )

•D e s ig n s tc -mil d e pth 50 .05 mm .

D e s ign C W I : 10 4 .69

', P e r c e n ta ge r un o f f : 3 1.2 4 %

•Re s po n se h yd r o gra ph pe a k 2 .6 7 c ume c s

41, B a s e f lot;, 0 . 11 c um e c s

" ' D e s ign h yd ro gr aph pe a k 2 .78 c um e c s

CP o pt io n

(P r o f i le o pt io n

(C W I o p t io n(P R o pt io n

CBa se f l _w o p t io n

:::

:

4

1

1

1

Page 12: STS F - CORE

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4

• U K D E S IG N FL O O D ES T IM A T ION M IC RO -F S R D EM O NST RA T IO N

Se r i e s d at a fr o m e s t im a te us in g F lo o d St ud i e s Re port r a in fa l l- r un o f f met h o c* * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4

D e sc r ipt io n : H igh la nd c o m po ne nt o f Bo y cir ift p um ped c atchm e n t

O p r in te d o n 2 9 - 9 - 19 8 8 a t 5 .5 5 R un Re fe re n ce - 8 O YH 1

• T im e (-- Ra in fa l 1 - - ) U n i t (-- -- F low --- - >

T o t a l P r o f i le Ne t H y d r o g r a p h B ase f lo w R e s p o n s e T o t a l

• (h o ur s ) ( M M ) V. (m m ) c um e c s /cm % (cume c s ) (c um e c s ) (c um e c s )

pe r 10 0 sq km

0

• I 1.0 0 1.2 2 .3 O . 4 3 .9 0 1.40 0 . 1 1 0 .0 1 0 . 12

-z• 2 .0 0 1.6 3 . 1 0 .5 7 .8 0 2 .8 1 0 . 1 1 O . 0 3 O . 14

• 3 3 .0 0 1.8 3 .6 0 .6 1 1.7 0 4 .2 1 0 . 1 1 0 .0 8 O . 18

4 4 . 00 2 .9 5 .7 0 .9 15 .6 0 5 .62 0 . 1 1 0 . 14 0 .2 5

• 5 5 .0 0 5 . 1 10 . 1 1.6 19 .5 0 7 .02 O . 1 1 0 .25 0 .3 6

e 6 . 00 7.9 15 .8 2 .5 2 3 .4 0 8 .42 0 . 1 1 0 . 44 0 .5 5

• 7 7 .0 0 9 .3 18 .6 2 .9 2 7 .3 0 9 .83 0 . 11 0 .7 1 0 .8 2

8 8 .0 0 7 .9 15 .8 2 .5 28 .0 4 10 .09 O . 1 1 1.04 1. 15

• 9 9 .0 0 5.1 10 . 1 1.6 2 5 .4 7 9 . 17 0 . 1 1 1.3 9 1.5 0

10 10 .0 0 2 .9 5 .7 0 .9 22 . 9 0 8 .24 0 . 1 1 1.75 1.8 6

• 1 1 1 1.0 0 1.8 3 .6 0 .6 2 0 .3 4 7 .32 0 . 1 1 2 .09 2 .2 0

12 12 .0 0 1.6 3 . 1 0 .5 17 .7 7 6 .40 0 . 1 1 2 . 38 2 .4 9

• 13 13 .0 0 1.2 2 .3 0 .4 15 .2 1 5 .4 7 0 . 1 1 2 .5 9 2 .7 0

14 14 .0 0 12 .6 4 4 .55 O . 1 1 2 .6 7 2 .7 8

• 15 15 .0 0 10 .0 7 3 .63 0 . 1 1 2 .6 2 2 . 7 3

16 16 .0 0 7 .5 1 2 .70 0 . 1 1 2 .4 7 2 .5 8

• 17 17 .0 0 4 .9 4 1.78 0 . 11 2 .2 6 2 .3 7

18 18 .0 0 2 .3 8 O . 86 0 . 1 1 2 .0 2 2 . 13

• 1'3 19 .0 0 O . 1 1 1. 75 1.8 6

2 0 2 0 . 0 0 O . 1 1 . 1.4 7 1. 5 8

• 2 1 2 1.0 0 0 . 1 1 1. 19 1.302 2 2 2 .0 0 0 . 1 1 0 . 9 2 1.0 3

• 2 3 2 3 .0 0 O . 1 1 0 .6 7 0 . 78

2 4 2 4 .0 0 0 . 1 1 0 .4 5 0 .5 6

• 25 2 5 .0 0 0 . 1 1 0 .2 8 0 .3 9

2 6 2 6 .0 0 0 . 1 1 O . 16 0 .2 7

0 2 7 2 7 .0 0 O . 1 1 0 . 0 9 0 . 2 0

2 8 2 8 .0 0 0 . 1 1 0 .0 5 0 . 16

• 2 9 2 9 .0 0 0 . 1 1 0 .0 2 O . 13

3 0 3 0 .0 0 0 . 1 1 0 .0 1 0 . 1 1

0 . ***************** ************************ ****** *****************, * ************im ic r o -P S R - I n st it u te o f Hyd r o lo gy

Page 13: STS F - CORE

••• Pvi)PEINs-1)11:"A•• * * * * ** * * * ** * *** * ** * * ** * * ** * * ** ** * ** * * ** ** * * * ** * * * ** * * * **** * * * * ** * * * * * *** ** * * * ** *

• U K D E S IG N F L O O D E ST IM A T IO N M IC RO - F S R D E M ONST RA T IO N

S um m ar y o f e st im a te us in g F loo d S t ud ie s Re po rt r a in fa l l-r un o f f m e t h o d* * ** * ** * * *** * *** * * ** * * * * * ** * ** ** * ** * * ** * * * * * * * * * * ** * * * **** * * * * * ** ** * * **** * * * * * **

•D e s c r ipt io n : il1i !g h-17j h d2 c o m po ne nt o f Bo y gr ift p um ped c a tchm e n t

"' P r in t ed o n 2 9 - 9 - 19 8 8 a t 1 1.20 R un Re fe r e n ce - B O YH I

•E s t im a t io n o f T- y e ar f lo o d

"'U n it h yd r o g r a ph t im e tc. pe a k

D a t a in te r v a l

In c lud e s Tp sc a lin g fac t or

D e s ign s to r m d ur at io n

7 .5 h o ur s

1.00 ho ur s

1.0 0

: •2 5 :0 h o ur s

(UH o pt io n

(TP o pt io n

(D ur o pt io n : 1)

4, * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * •

m ic r o -F S R - In st it ute o f H y dr o lo gy

13

"' U s in g r a in fa ll s t a t is t ic s fo r E n g la nd a n d W a le s

Re t ur n pe r io d fo r d e s ign f lo od : 4 0 .0 y e ar s

r eq u ir e s r a in re t ur n pe r iod . 17 .0 y e ar s

• M .r-J- 2 5 .0 h o ur /M5 - 2 d ay 0 .9 0 6 m m .

M 5 -2 5 .0 h o ur 45 .3 M M .

0 M T /M 5 1.32

M 17 .0 -2 5 .0 ho ur 5 9 .7 m m . (p o in t )

"I A RF 0 .98

M 17 .0 -2 5 .0 ho ur 58 .3 m m . (a re a )

•D e s ign st or m de pth 5 8 .26 him .

• D e s ign C W I : 10 4 .6 9

P e rc e n ta ge r uno ff : 3 2 .4 1

Re s po ns e hy d r o gr a ph pe a k 2 .5 0 c ume c s

o B a s e f lo w 0 . 1 1 c um e c s

41.•

Page 14: STS F - CORE

•4 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

U K D E S IG N F L OOD E S T IM A T IO N M IC RO -F S R DEM O NST RA T IO N•A k T im e S e r ie s d at a fr o m e s t im a t e us in g F loo d S t ud ie s Re port r a i n fa 1 1-r u no ff m e t h oc11. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

D e sc r ipt io n : H igh la nd c om po n en t o f B o y gr i ft pum pe d c atchm e n t

e r in te d o n 2 9 - 9 - 19 8 8 a t 1 1.2 0 R un Re fe r e nce - B O Y H I

• T im e (-- Ra i n fa l 1 - - ) U n it (-- -- F low ---->To ta ) Pr o f i le Ne t Hyd r o gr a ph B ase f lo w Re s po n s e T o t a l

(h o ur s ) (mm ) V. (m m ) c um e c s /c m V. (c um e c s ) (c um e c s ) (c um e c s )ID pe r 10 0 sq km

• 11.00 O . 7 1.2 0 .2 3 .9 0 1.40 0 . 11 O . 0 1 0 . 12

2 .0 0 0 .7 1.2 0.2 7 .8 0 2 .8 1 0 . 1 1 0.02 0 . 133 .00 0 .9 1.5 0 .3 1 1.7 0 4 .2 1 0 . 1 1 0 . 04 0 . 15

• 4 4 .0 0 1.0 1.8 0 .3 15 .6 0 5 .62 0 . 1 1 0 .0 7 O . 18

5 .00 1.0 1.0 O . 3 19 .5 0 7 .02 0 . 1 1 0 . 1 1 O . 2 2

• E. 6 .0 0 1.2 2 .0 0 . 4 2 3 .4 0 8 .42 0 . 1 1 0 . 16 O . 2 7

7 7 .0 0 1.7 2 .9 0 .5 2 7 .3 0 9 .8 3 0 . 1 1 - 0 .2 3 0 .3 4

• 8 8 .00 2 . 1 3 .6 0 .7 2 8 .04 10 .09 0 . 11 0 .3 1 O . 4 2

9 9 .0 0 2 . 7 4.7 0 .9 2 5 .4 7 9 . 17 0 . 1 1 0 .4 1 0 .5 2

• 10 10 .00 4 .0 6 .8 1.3 2 2 .9 0 8 .2 4 O . 1 1 0 .5 3 O . 6 4

•1 1 1 1. 0 0 4 .9 8 .4 1.6 2 0 .3 4 0 . 1 1 O . 6 9 0 . 7 9

11, 12 12 .00 5 .3 9 . 1 1.7 17 .7 7 6 . 40 0 . 1 1 0 .8 7 0 .9 8

•13 13 .00 5 .8 10 .0 1.9 15 .2 1 5 .47 0 . 11 1. 10 I. 2 0

OP 14 14 .0 0 5 .3 9 . 1 1.7 12 .6 4 4 .55 0 . 1 1 1.35 1.4 5

•15 15 .0 0 4 .9 8 .4 1.6 10 .0 7 3 .6 3 O . 1 1 1.6 1 1.7 2

W 16 16 .00 4 .0 E.. 8 1.3 7 .5 1 2 .70 O . 1 1 1.8 8 1.9 9

•1 7 17 .0 0 2 .7 4 .7 0 .9 4 .9 4 1. 7E1 O . 1 1 2 . 12 2 .2 3

ill 18 18 .00 2 . 1 .3.6 0 .7 2 .38 0 .85 0 . 1 1 2 .3 1 2 .4 2

a 19 19 .0 0 1.7 2 .9 0 .5 0 . 1 1 2 .4 4 2 .5 5

M P 2 0 2 0 .00 1.2 2 .0 0 .4 0 . 1 1 2 .5 0 2 .6 1

2 1 2 1.0 0 1.0 1.8 O . 3 O . 1 1 2 .49 2 .5 9

O 2 2 2 2 .00 1.0 1.8 O . 3 ( . 1 1 2 .4 1 2 . 5 2

m. 2 3 2 3 .0 0 0 .9 1.5 0 .3 O . 1 1 2 .28 2 . 38

11, 2 4 2 4 .00 O . '7 1.2 0 . 2 O . 1 1 2 . 10 . 2 . 2 1

2 5 2 5 .0 0 0 .7 1.2 0 .2 0 . I I 1.9 1 2 .0 2

• 2 6 26 .00 0 . 11 1.6 9 1.6 0

•2 7 2 7 .0 0 0 . 1 1 1.4 7 1.5 8

glir 2 8 2 8 .0 0 0 . 1 1 1.2 5 1. 36

•2 9 29 .0 0 O . 1 1 1.0 3 1. 14

W 3 0 3 0 . 0 0 O . 1 1 0.8 3 O . 9 4

a 3 1 3 1.0 0 0 . 1 1 O . 6 6 O . 76

1.0 3 2 3 2 .00 O . 1 1 0 .5 0 0 .6 1

•3 3 3 3 .0 0 O . 11 O . 38 O . 48

W -::4 3 4 .0 0 O . 1 1 O . 2 8 O . 3 9

i l k ' 1“ - 1 35 .0 0 O . 1 1 O . 2 1 O .3 1• 3 6 36 .0 0 O . 1 1 O . 15 0 .2 6

•3 7 3 7 .0 0 CI. 1 1 O . 1 1 0 . 2 1

111 3 8 38 . 00 O . 1 1 O . 0 7 O . 18

a 3 9 39 .0 0 O . 1 1 O . 0 5 O . 15MP 4 0 4 0 . 0 0 O . 1 1 O . 0 3 0 . 13

a 4 1 4 1.00 o . 11 O. 0 1 O . 1211/ 4 2 4 2 . 0 0 O . 1 1 O . 00 O . 1 1

4 -•

Page 15: STS F - CORE

10 •

• PoPPID.s1>TY

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4

iluk DE S IG N F L O O D E S T IM A T IO N M IC RO - FS R DE M O NST RA T IO N

Ak S um m a r y o f e s t im at e us in g F lo o d St ud ie s Re po r t r a in fa ll-r un o f f m et h o dw * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4

• D e s c r ipt io n : g crigi c o m po n e n t o f B o y gr ift p um pe d c at chm e n t• P r in te d o n 29 - 9 - 19 8 8 a t 11. 15 R un Re fe re n ce - 8 0 Y LC

* E s t im a t io n o f T -y e ar f lo o d

•* Inc lud e s T p s c a l in g fa c to r 1.0 0

* D e s ign st o r m d ura t io n .13 .0 ho ur s

v• U s in g r a in fa l l s t a t is t ic s fo r E n g la n d an d W a le s

••••••••• 15

(UH o p t io n

(D u r o pt io n

A h * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4

W m ic r o -F S R - In st it u te o f Hy d ro lo gy

Page 16: STS F - CORE

i.•

********************************************************************************9 1JK D E S I G N FL O O D E S T I M A T I ON M I C Rb -FS R D E M ON ST RA T IO N

411T ime S er i e s d at a fr o m e s t im a t e us in g F lo o d S t ud ie s Re port r a in f a 1 1- r un o ff m e t ho d

* * * * * *** * ** * * ** * * * ** * ** * * ** * * *** * ** * * * ** * * * *** * * *** * * ***** * * * * * * ** * * * **** * * * * * * *

•D e sc r ipt io n : Lo w lan d c o m po n e nt o f B o y gr ift pum ped c a tchm e n t

" 'P r in t ed o n 2 9 - 9 - 19 8 8 a t 11. 15 R un Re fe r e nce - B O Y L O

T im e

(h o ur s )41

0

• 12

• 34

0 u6• 78

0 910

Ah 11

Iiir 1 2

AI 13w 14

Ah 15

w 16

Ah 17

w 18

Ah 19mr 2 0

2 1

A s 2 3w 2 4

Ah 2 5

w 2 6,

AI 2 7w 2 8

A i 2 9I I. 30

Mk 3 1Iiir 3 2

0 3 33 4

dil 3 5141. 3 6

Ah 37

w 38

Ah 3 9

w 4 0

Ah 4 1

w 42

Ah 4 3w 4 4

(-- Ra in fa l 1 -- > U n it <-- -- F lo w - -- - >

To t a l P ro f i le N e t H yd r o gr a ph B a se f low Re s pon s e T o t a l

(ram ) % <ram ) c um e c s /cm % (c um e c s ) (c um e c s ) (c um e c s >

1.00 1. 1 2 .3 0 .4

pe r 10 0 s q

1.40

km

0 .50 0 . 1 1 O . 0 1 O . 12

2 . 0 0 1.5; 3 . 1 0 .5 2 .8 0 1.0 1 O . 1 1 ( ' . 0 3 0 . 14

3 .0 0 1.7 3 .6 0 .6 4 .3 C) 1.55 0 . 1 1 0 .0 6 O . 1.7

4 .0 0 2 . 7. 5 .7 1.0 5 .70 2 .05 0 . 1 1 0 . 10 0 .2 1

5 .0 0 4 .7 1C). 1 1.7 7 . 10 2 .56 O . 1 1 0 . 19 0 .3 0

6 .0 0 7 .4 15 .6 2 .7 8 .5 0 3 . 06 Ct. 11 C). 32 O . 4 3

7 .0 0 8 .7 18 .6 3 .2 5 .9 0 3 .36 0 . 1 1 0 .5 2 0 .6 3

8 .00 7 .4 15 .8 2 .7 1C). 6 0 3 .82 O . 11 0 .76 0 . 8 7

9 .0 0 4 .7 10 . 1 1.7 10 . 70 3 .85 0 . 1 1 1.0 3 1 . 14

10 .0 0 5 .7 1.0 10 .6 0 3 .82 0 . 1 1 1.3 1 1.4 2

1 1. 0 0 I . 7 3 .6 0 .6 10 .7 0 3 .65 0 . 11 1.5 8 1.6 9

1 2 . 0 0 1..5 3 . 1 IC) . 5 10 .6 0 3 .82 0 . 1 1 1.8 3 1.9 4

13 .0 0 1. 1 L . 3 O . 4 10 . 7 C) 3 .35 O . 11 2 .0 5 2 . 16

14 .0 0 10 .6 0 3 .82 0 . 1 1 2 .2 2 2 . 3 3

15 .0 0 10 .70 3 .85 •0 . I I 2 . 33 2 . 4 4

16 .0 0 10 . 6 0 3 .82 O . I I 2 .4 0 2 .5 .1

17.0 0 10 ..70 3 .85 0 . 1 1 2 .44 2 .5 5

18 .0 0 1C). 6 C) 3 .82 0 . 1 1 2 .4 6 2 .5 7

19 .0 0 10 .70 3 .85 0 . 1 1 2 .4 7 2 .5 8

20 .0 0 10 .6 0 3 .82 0 . 11 2 .4 6 2 .5 9

2 1.0 0 10 .70 3 .85 0 . 1 1 2 . 48 2 .5 9

2 2 . 0 0 10 .6 0 3 .82 0 . 1 1 2 . 48 2 .5 9

2 3 .0 0 10 .3 0 3 .7 1 0 . 1 1 2 .4 7 2 .5 8

2 4 .0 0 9 .6 0 3 .46 0 . 1 1 2 .4 7 2 .5 8

2 5 .0 0 8 .9 0 3 .20 0 . 1 1 2 .4 6 2 .5 7

2 6 .0 0 8 .2 0 2 .95 O . 1 1 2 .4 4 2 .5 5

27 .0 0 7 .40 2 .66 0 . 1 1 2 .4 0 2 .5 1

2 8 .0 0 6 .7 0 2 .4 1 0 . 11 2 .3 5 2 . 4 6

29 .0 0 S . C C) 2 . 16 0 . 1 1 2 . 2 7 2 .3 8

30 .0 0 5 . 30 1.9 1 0 . 11 2 . 16 2 .2 7

3 1.0 0 4 . S C) 1.66 O . 1 1 2 .0 2 2 . 13

32 .0 0 3 .9 0 1.40 0 . 1 1 1.8 8 1.9 9

S3 .0 0 3 .2 0 1. 15 O . 1 1 1. 72 1.8 3

34 .0 0 2 .5 0 C). 90 0 . 1 1 1.5 6 1.6 7

35 .0 0 1.8 0 0 .65 O . 1 1 .1.4 0 1.3 1

36 .0 0 1. 10 0 .40 O . 1 1 1.2 3 I. 3 4

3 7 .0 0 O . 4 0 C). II 1.0 7 1. 18

38 .0 0

.0 . 14O . 11 0 .9 1 1. 0 2

39 .0 0 0 . 1 1 0 . 75 0 .8 6

40 .0 0 O . II 0 .6 0 O . 7 1

4 1.0 0 0 . 1 1 0 . 46 0 .5 7

4 2 . 0 0 O . 1 1 C). 3 2 0 .4 3

43 .0 0 16 O . 1 1 C). 2 1 O . 2,2

4 4 .0 0 C). 1 1 O . 13 0 . °4

Page 17: STS F - CORE

da* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

OK DE S IGN FL O O D E S T IM A T IO N M IC RO -F S R D E M ONS T R A T IO N,..* * * * ** * ** * ** * ** *** * * * * * ** * ** * * * * ** ** * *** ** * *** * * * * ** * * **** * * ** * * *** * * * *** * * * * ** *11,amp e s c r ipt io n : ¶_pwi -i W1 c om po ne n t o f Bo y gr ift pum p e d c a tchm e n t .

P r in t e d o n 29 - 9- 1988 a t 5 .2 5 R un Re fe re nce - B O YL O

40.C a t c hiM en t7W h Y f aCt.e i t i-C-S4

11,* * * * * * * * * * M * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A

• m ic r o -F S R - In st it ut e • f H yd ro lo gy

Page 18: STS F - CORE

•fro•

• . **** ** * ** * * * * * * * * * * * * * + * or * * * * * * * * t * * * * * * * * * * * * . * * * * * * * * * * * * * * * * * * * * * * * *

O E D E S : U N F L UOL E S I- I NA L I ON • - H I c l i ;:; -•E S F). DE MON'S T RA T I ON** * ** * **•* * * * * * r ÷ .1.- * * * * * * * . * * * * * * * * * * *

r i p t 1 0 4' 1 : H i gh 1 a n d L•Drsip o ne n l y r'r r U p rr rap rri c c( tr Ine rw P r' n t e d C r L 9 - 9 -- 19 /1,9 : i t 5 . L O k u n He t: e n c t BOY H

a l C a t c h rne n t C h a r a c t e r i st i c s

0 A r e a 7.4 1 s q . Km . .jo i 1

• L e n g tri - I . CIO r hi . S s il

b l...p e - i • 0 0 co. / km . S o i la S P A R : / 10 M M . S o i i

w 115 -L D 5 0 .0 low . S o l i

a J e n k in s o n ' s r : 0 .4 0w U r b a n : 0 .0 0

a G ;tici b Li i - 1 . 0 4i to. RSM D

w :itror r ci - I .O t, i u ric, i.. io rrE, / s q . kro.

a L a k e - 1.0 0

m m

w E M P a h o ur -•i. 0 0 m m . - BF 1 : - i. 0 0• E M P 2 4 h o u r : --1.0 0 nn i. L AG B . 5 0 h r

A h * * * * * * * k * * * * K- 4 * * * * * * * M * * * * * * 0- * * * * * * * r . * 4 1 4 k

W i c r c — F S k los t t ut e c t H yciro ls gy

0 * * * * * P * * * * * * * * * * * * * * * * * *

Page 19: STS F - CORE

Reference

10I I (t ) d t -S T:s

• F 1%11 L--/

•CA_ ca.Q S A.Nc LAI c- ‘ )‘r-

• C-s -cs_v.kl e-c,or, & t-c-c-a c\ . T v ;‘

•c &cr.. \ .) \ t sj 'Se t ( ) c ar t ‘ år . , C.Nn

•2 . c . 9 42ck Ck. Cc \ S )cl ) A )

• c (-\\te ..,•-cl e ck '<t > \f\ .4,-1•

C e L S: :• •\ - -f r .--1/1 r e -C 4.--? 0 0 : -)e • ••-•%e :

N.\ %i e •\--v._e

•01i t \ " .o i r - t t \ -c > c_Lck,

•'S 1/4-j k /0.9NC ' e st .; \ -Aca ss ‘ M a ( e

•• ç ccfl czes \te \-0 t-e _3 ;:s\-u - ehn r b

• a \ Ca Li

• T k ct v c I SN r.L. ‘s

• p ç ç ç fr d1/4. a ls.0 csi ç fl xe eno ly.e .„-\ k .

"v\c3,.s . (N) Ct, kN e-Q.ANIN)

• k k t ) ci Ck F -s ::€F->z b Itt . S CIANkci..zzA

• 1/4A 1 o _x- c ),-3 \ CC c\ \N -& uNif-7(Ni

• ‘e ct -sc :6 c-c\ cx cNeFs-0-s c5L-?•v -c-b,-c\, ) . \-1/4 t ona

• (s A c ke rc 41

• CO DE 18-78

• C eT 6 t e t•-i W