Structural of Biomolecules using Radiation Ultraviolet...

29
Structural Analysis of Biomolecules using SynchrotronRadiation VacuumUltraviolet Circular Dichroism Spectroscopy Koichi Matsuo Hiroshima Synchrotron Radiation Center, Hiroshima University Annual Users’ Meeting and 20 th Anniversary of Operation, September 5 th , 2013, NSRRC

Transcript of Structural of Biomolecules using Radiation Ultraviolet...

Page 1: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Structural Analysis of Biomolecules using Synchrotron‐Radiation 

Vacuum‐Ultraviolet Circular Dichroism Spectroscopy

Koichi Matsuo

Hiroshima Synchrotron Radiation Center, Hiroshima University 

Annual Users’ Meeting and 20th Anniversary of Operation, September 5th, 2013, NSRRC 

Page 2: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

L‐Alanine

Circular dichroismCircular Dichroism (CD) is observed when certain material absorbs left‐ andright‐circular polarized light slightly differently. This is very sensitive to thestructure of chiral molecules.

Left circularly‐polarized light

Right circularly‐polarized light

=L−R

Page 3: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

190 200 210 220 230 240 250 260-60

-40

-20

0

20

40

60

80

Wavelength / nm

×

[ ]

10

-3 /

deg

cm

2 dm

ol -1

CD spectra of Poly‐L‐Lysine

Coil

‐helix

‐sheet

Polypeptide

Protein

Amino‐acid sequence

‐helix

‐sheetTurn

Circular dichroism of biomolecules

Peptide bond

Page 4: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Circular dichroism of biomolecules

Saccharide (sugar)

190 200 210 220 230 240‐20

‐16

‐12

‐8

‐4

0

4

 Chondroitin(CH) Chondroitin sulfate A(CS‐A) Chondroitin sulfate B(CS‐B) Chondroitin sulfate C(CS‐C)

Wavelength / nm 

[ ] X 10

‐3 / deg

 .  cm

2  . dmol

‐1

DNA

A form    B form    Z  form 

A

B

Z

Riazance and Johnson 1992, Biopolymers 32, 271‐276

Matsuo et al. Biosci. Biotechnol. Biochem. (2009) 73, 551

Sulfate group

Carboxyl group

Page 5: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Synchrotron‐radiation vacuum‐ultraviolet circular dichroism(VUVCD) Wavelength (nm)

120        140        150   200       250       300       320 

Far‐UVVacuum‐ultraviolet (VUV)

Synchrotron‐Radiation VUVCD spectrophotometer

Near‐UV

Conventional CD spectrophotometer

190nm

Amino acid in thin film

Uwe et al. Angew. Chem. Int. Ed. (2010) 49, 7799

Coil

-helix

-sheetPolypeptide in water

190nm160 180 200 220 240 260‐60‐40‐200

20406080

Wavelength / nm

 [ ] x  10 

‐3 / deg

 . cm

 2  .  dmol ‐1

Page 6: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

HiSOR

Hiroshima University

Science

Engineering Education

Letter

Page 7: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

VUVCD spectrophotometer

Chem. Lett. (2000) 29, 832

Page 8: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

SR PM

Ethylene Glycol

Sample chamber

Temperature control unitTop view of sample chamber

Anal. Sci. (2003) 19, 129

Temperature range from –30 to 70 oC

Page 9: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Assembled‐type optical cell

Anal. Sci. (2003) 19, 129

CaF2

O‐ring

Cylindrical Screw

Stainless steel container

Spacer: 100, 50, 25, 10, and 5 m No spacer: 1.4 ‐ 1.8 m

Page 10: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

160 170 180 190 200 210 220-8-6-4-202468

101214

[ ]×

10-3 /

deg・

cm2 ・

dmol

-1

Wavelength / nm

D‐Glucose

D‐Galactose

D‐Mannose

VUVCD spectra of five mono‐saccharides

D‐XyloseD‐Lyxose

Carbohydr. Res. (2004) 339, 591

n‐* transitions (hydroxy group and acetal bond)Conc.: 10%, Path length: 1.4m

Page 11: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

O‐5

‐anomer

C‐5

C‐6

C‐1

O‐6

C‐4

C‐1

‐anomer

O‐5

C‐5

C‐6

O‐6

C‐4

Gauche‐Gauche (GG) Gauche‐Trans (GT) Trans‐Gauche (TG)

Six conformers of D‐glucose in aqueous solution

‐GG, ‐GT, ‐TG, ‐GG, ‐GT, and ‐TG conformers

Three rotamers

Two anomers

Page 12: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

160 180 200 220 240‐6

‐4

‐2

0

2

4

160 180 200 220 240‐4

‐2

0

2

4

Experimental spectrum

[ ] X 10

 ‐3/deg . cm

2 . dm

ol‐1

Wavelength / nm

Theoretical spectrum

• L‐Alanine with nine water molecules  Fukuyama et al. (2005) J. Phys. Chem. A 109, 6928

• D‐Lactic acid with six water molecules       Fukuyama et al. (2011) Chirarity 23, E52

• Di‐ and tri‐Peptides  Šebek et al (2007) J. Phys. Chem. A 111, 2750 

• DNA  Nielsen et al (2009) J. Phys. Chem. B 113, 9614

Theoretical calculation of CD spectra of small biomolecule using a time‐dependent density functional theory (TDDFT)

n*

n*, *

VUVCD spectra of D‐lactic acidFour hydrated structures of D‐lactic acid

Water molecules

Page 13: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

160 170 180 190 200‐6‐4‐202468

[]

× 10‐3

 / deg

 

・  cm

2   

・ dmol

‐1

Wavelength / nm

VUVCD spectrum and chemical structure of methyl ‐D‐glucopyranoside (methyl ‐D‐Glc)

Methyl ‐D‐Glc is composed of ‐GT, ‐GG, ‐TG rotamers

‐type

J. Phys. Chem. A (2012) 116, 9996

Conc.: 10%, Path length: 1.4m

Relative population = ‐GT : ‐GG : ‐TG = 38 : 58 : 4

Page 14: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Initial structures of three rotamers of methyl ‐D‐Glc

C‐1C‐2

C‐3

C‐4 C‐5

C‐6

O‐1O‐2

O‐3

O‐4O‐5

O‐6

C‐7

‐GG‐GT (X‐ray crystal structure)

‐TG

HO‐3

HO‐4

HO‐6

HO‐2

= 60° = 60° = 180°

= O-5C-5C-6O-6

Page 15: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Initial structures

CD calculations

Optimizations

Schemes of CD calculations

TDDFT method at the CAM‐B3LYP/6‐311++G** level  (PCM)

DFT method  (Onsager model)at the CAM‐B3LYP/6‐311++G** level

‐GT, ‐GG, and ‐TG rotamers

VUVCD spectra of methyl ‐D‐glucopyranoside in water (Onsager model)

Methyl ‐D‐Glc

170 180 190 200 210‐40

‐20

0

20

40

[]

×10‐3

 / deg

・cm2

・dmol

‐1

Theoretical spectrum Experimental spectrum

Wavelength / nm

Page 16: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Red: Oxygen atomGreen: Carbon atom White: Hydrogen atom

MD simulation of methyl ‐D‐Glc in aqueous solution

MD simulationThe initial structures in a periodic box water molecules were simulatedfor 20‐ns under the AMBER/GLYCAM force field at 298 K and 1 atm.

Initial structures in water

‐GT, ‐GG, and ‐TG rotamers

+ Water bath =

TIP3P water molecules 

CD calculationsThe spectra of 40 structures extracted at 500‐ps intervals were calculated by TDDFT method at the CAM‐B3LYP/6‐311++G** level (PCM) and averaged

Page 17: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Hydrations of the ‐GT rotamer during the simulation

0 5 10 15 200

2

4

6

8

10

12

14

16 Total Hydroxyl group at C‐4 Ring oxygen (O‐5)

Num

ber o

f hydrated water m

olecules

Time / ns

C‐1C‐2

C‐3

C‐4 C‐5

C‐6

O‐1O‐2

O‐3

O‐4O‐5

O‐6

C‐7

‐GT 

HO‐3

HO‐4

HO‐2

Methoxy group

Hydroxy group

‐90‐60‐300

306090

120150180210240

Dihe

dral Angle / de

grees

 C‐7O‐1C‐1O‐5 HO‐4O‐4C‐4C‐3

0                  5                 10                 15               20Time / ns

The configuration of the methyl ‐Glc would fluctuate accompanying the change of hydration to reflect the VUVCD spectra.

J. Phys. Chem. A (2012) 116, 9996

Page 18: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Theoretical and experimental CD spectra of methyl ‐D‐Glc

160 170 180 190 200 210‐10

‐5

0

5

10

 Experimental spectrum Theoretical spectrum

Wavelength / nm

[]

×10‐3

 / deg

・cm2

・dmol

‐1

MD simulations

170 180 190 200 210‐40

‐20

0

20

40

[]

×10‐3

 / deg

・cm2

・dmol

‐1

Theoretical spectrum Experimental spectrum

Wavelength / nm

Optimizations

J. Phys. Chem. A (2012) 116, 9996

Page 19: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

160 170 180 190 200 210‐40

‐20

0

20

40 ‐GT ‐GG ‐TG

[]

×10‐3

 / deg

・cm2

・dmol

‐1

Wavelength / nm

Pairwise relationships between CD and configurations of the ‐GT, ‐GG, and ‐TG rotamers

Hydrogen Bond

The differences in hydrogen bonds should be responsible for the characteristic CD spectra of the ‐GT, ‐GG, and ‐TG rotamers. 

‐GG ‐GT

‐TG

HO‐6O‐5

HO‐6 O‐5

J. Phys. Chem. A (2012) 116, 9996

Page 20: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

1. VUVCD spectra are sensitive to the structural characteristics such as ‐ and ‐anomers of hydroxy group, and trans and gauche configurations of hydroxymethyl group. 

2. Theoretical calculations clarify the pairwise relationships between configurations and VUVCD of saccharides.

3. Combining VUVCD spectroscopy, MD, and TDDFT could provide important information about the conformations,  interactions, and  hydrations of saccharides

Summary in the VUVCD of saccharides

Page 21: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

VUVCD spectra of typical native proteins

160 180 200 220 240 260-40

-20

0

20

40

60

80

100

[]

×10

-3 /

deg

・ c

m2 ・

dm

ol-1

Wavelength / nm

Myoglobin (:76%)Concanavalin A 

(: 4%, :46%)

STI (:2%, :37%)

Lysozyme(:42%, :6%)

J. Biochem. (2004) 135, 405; J. Biochem. (2005) 138, 79

: ‐helix: ‐strand

Page 22: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Protein structure analysis by VUVCD

Proteins (2008) 73, 104

160 180 200 220 240 260-40-30-20-10

01020304050

[

]×10

-3 /

deg

・ c

m2 ・

dm

ol-1

Wavelength /nm

VUVCD VUVCD

Page 23: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Protein structure analysis using VUVCD Spectroscopy

X‐ray crystallography and NMR• 3D Structure at atomic resolution • Limited to crystallized or small protein

VUVCD Spectroscopy• Estimation of secondary‐structure contents• Available for any proteins • Useful for various solvent conditions 

VUVCD spectroscopy is becoming useful in the technique for structure analysis of protein

Page 24: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Several ‐helix segments

Speculated conformation of alcohol denatured proteins

VUVCD spectra of six proteins in TFE‐denatured state

0

10

20

30

40

50

60

70

80

90

100 -Helix -Strand Turn Unordered

CGNBGTrxLAHSA

%

Mb

(8) (29) (7) (6) (9) (12)

Secondary structures of six proteins at 50 % TFE concentration

0%

50%

0%

50%

Proteins (2012) 80, 281

VUVCD provides the structural characteristics of proteins at denatured states

0%

50%

0%

50%

0%

50%

0%

50%

0%

50%S

SS

S

Page 25: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

lysozyme

1SS, 0SS variants3SS variants 2SS variants

180 200 220 240-15

-10

-5

0

5

10

15

20

180 200 220 240 260180 200 220 240

Wild 2SS12 2SS13 2SS23 2SS34 0SS

[

]×10

-3 /

deg・

cm2 ・

dmol

-1 Wild

3SS1 3SS2 3SS3 3SS4 0SS

Wild 1SS1 1SS2 1SS3 1SS4 0SS

Wavelength / nm

VUVCD characterizes the roles of disulfide bridges in the structural formation of protein

Proteins (2009) 77, 191

A‐Helix B‐Helix C‐Helix D‐Helix

3SS

2SS

1SS

0SS

VUVCD spectra of thirteen disulfide‐deficient variants of lysozyme

Page 26: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

VUVCD gives new insights for the membrane‐induced conformations of 1‐Acid Glycoprotein (AGP)

Biochemistry (2009) 48, 9103

VUVCD spectra of AGP with and without bio‐membrane

160 180 200 220 240 260‐20

‐10

0

10

20

30

40

Membrane‐binding state 

Native state

Wavelength / nm 

 [

  ] ×

 10-

3  / deg ・ cm

2  ・ dmol

-1

Sequence of secondary structures of AGP

Native 

Membrane‐binding state

Speculated AGP conformations at native and membrane‐binding states

Page 27: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

VUVCD evaluates the teritiary structure from a homology modeling

State‐Helix ‐Strand

Turn (%) Unordered (%)Content (%)  Number Content (%)  Number

Native VUVCD 14.4                  3 37.7                10 19.3 28.8Modeler 11.5                  3 36.6                10 23.5 28.4

Secondary structure parameters from homology modeling

Secondary structure parameters from VUVCD spectroscopy

Comparison

Biochemistry (2009) 48, 9103

Page 28: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Summary in the VUVCD of proteins

1. VUVCD analysis can estimate the contents, numbers of segments, and sequences of secondary structures of proteins. 

2. VUVCD can be applied to the structural analysis of denatured proteins, disulfide deficient proteins, membrane‐binding proteins, and amyloid fibrils. 

Page 29: Structural of Biomolecules using Radiation Ultraviolet ...portal.nsrrc.org.tw/uao/Usermeeting/2013/speaker/... · 160 180 200 220 240 ‐6 ‐4 ‐2 0 2 4 160 180 200 220 240 ‐4

Summary

1. The VUVCD spectra are very sensitive to the conformations of saccharides and proteins in aqueous solution.

2. The VUVCD spectroscopy coupled with MD and TDDFT methods could provide important information about the conformation, interaction, and hydration of saccharides.

3. The VUVCD spectroscopy combined with bioinformatics technique has a great advantage for the structure analysis of not only native proteins but also non‐native proteins.

Further accumulations of VUVCD data and developments of VUVCD analysis  should open a new field in the structural biology.