Structural Mechanics - MIT 2002

download Structural Mechanics - MIT 2002

If you can't read please download the document

Transcript of Structural Mechanics - MIT 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    1/531

    MIT - 16.20 Fall, 2002

    Unit 1

    Introduction and Design Overview

    Paul A. Lagace, Ph.D.Professor of Aeronautics & Astronautics

    and Engineering Systems

    Paul A. Lagace 2001

  • 7/27/2019 Structural Mechanics - MIT 2002

    2/531

    MIT - 16.20 Fall, 2002

    Need to study structural mechanics to design properly toprevent failure

    There is no doubt that any of the disciplines of Aeronautics andAstronautics can contribute to an accident

    -engine failure-etc.

    But, the vast majority of non-human induced accidents is due to structural(material) failure (ultimately).

    Purpose of 16.20: Provide you with the tools to properlyDesign Aerospace Structures to assure structural integrity

    (i.e., it doesnt fail)Note, 16.20 mainly oriented in past to aircraft structures because that iswhere the main experience lies. We will try to generalize and showexamples for space structures.

    Paul A. Lagace 2001 Unit 1 - p. 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    3/531

    MIT - 16.20 Fall, 2002

    Aeronautics and Astronautics deal with three major categories of

    structures:1. Aircraft (atmospheric vehicles)2. Launch vehicles3. Space structures (partially a civil engineering task?)

    (Note: Transatmospheric vehicles can becombinations of 1 and 2the Shuttle is!)

    IMPORTANT: Many of the design considerations for these

    three categories are different, but the same techniques andconcepts are used to analyze the structures (basically)

    In fact, except for special design considerations, the techniques used for

    all structures are basically the same:

    Paul A. Lagace 2001 Unit 1 - p. 3

  • 7/27/2019 Structural Mechanics - MIT 2002

    4/531

    MIT - 16.20 Fall, 2002

    Possible considerationsStructure type

    BuildingsShipsCarsSpace stationsAirplanes

    The difference is often in the degree of refinement of the structuralanalysis (generally more refined in A & A!)

    We will teach basic techniques and concepts and usespecific examples. But, the technique may apply to anotherstructural type as well.

    Example: (aircraft to space station)Fuselage --> space station living habitat (pressurized cylinders)

    Paul A. Lagace 2001 Unit 1 - p. 4

  • 7/27/2019 Structural Mechanics - MIT 2002

    5/531

    MIT - 16.20 Fall, 2002

    Overview of Structural Design Process(Review from U.E.)

    Purpose: Assure structural integrity while minimizing cost

    In aerospace structures, cost often means weight.Why?

    Saving a pound of weight means more- payload (extra passengers, more satellites)

    - fuel (longer distance, longer duration via extendedstation keeping)

    Amount industries (civilian) are willing to pay to save a pound of weight:Satellites $10,000 - $20,000 (w/o servicing)Transport Aircraft $100 - $200General Aircraft $25

    Automobile

    $0.00Paul A. Lagace 2001 Unit 1 - p. 5

  • 7/27/2019 Structural Mechanics - MIT 2002

    6/531

    MIT - 16.20 Fall, 2002

    Sometimes willing to pay for performance

    (military, FWCpolar orbit)Factors in determining cost

    Material cost Waste amount Manufacturing Subassembly/assembly Durability and maintenance Useful life

    An engineer must consider all these. In 16.20 we will focus onstructural integrity and methods to assess such.

    Definition of structural integrity :

    Capability of a structure to carry out the operation for which it wasdesigned.

    Paul A. Lagace 2001 Unit 1 - p. 6

  • 7/27/2019 Structural Mechanics - MIT 2002

    7/531

    MIT - 16.20 Fall, 2002

    Many aspects

    Required loads Required deformations Corrosion resistance (e.g., no penetration on

    pressure vessels)

    Many aspects to failure (we will discuss later)

    Paul A. Lagace 2001 Unit 1 - p. 7

  • 7/27/2019 Structural Mechanics - MIT 2002

    8/531

    MIT - 16.20 Fall, 2002

    Design Process

    5. Determine capability of structure to carry loads(of box 2) subject to design restrictions (of box 1)

    4.

    3.

    size components

    2. environment to which structure is subjected

    1.

    2

    1

    Manufacturing & Maintenanceconsidered throughout

    Determine internal stresses and deflections

    Layout structural arrangement, select materials,

    Determine applied loads and operating

    Design restrictions/specifications

    Paul A. Lagace 2001 Unit 1 - p. 8

  • 7/27/2019 Structural Mechanics - MIT 2002

    9/531

    MIT - 16.20 Fall, 2002

    Iterative loops

    Big loop 2 : May find there is no way to attain what was asked for

    Loop 1 : Go through this all the time. Get more and more

    specific on design each time- Use more refined techniques each time- Iterate to get most efficient structure

    #1 usually given from above

    #2 tells us what we need to considerin 16.20

    Learn to do #4 and #5 Use knowledge attained in 16.20 and by doing

    #4 a number of times to think about #3

    Current use of IPTscustomers involved

    Paul A. Lagace 2001 Unit 1 - p. 9

  • 7/27/2019 Structural Mechanics - MIT 2002

    10/531

    MIT - 16.20 Fall, 2002

    Unit 2

    Loads and Design ConsiderationsReadings:

    Rivello (Ch. 1)Cutler book (at leisure)G 7.1

    Paul A. Lagace, Ph.D.Professor of Aeronautics & Astronautics

    and Engineering Systems

    Paul A. Lagace 2001

  • 7/27/2019 Structural Mechanics - MIT 2002

    11/531

    MIT - 16.20 Fall, 2002

    Sources of Stresses and Strains

    Depends on type of structure

    Aircraft Launch Vehicles Space Structures

    General Other Considerations

    Paul A. Lagace 2001 Unit 2 - p. 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    12/531

    MIT - 16.20 Fall, 2002

    Can generally divide these into: Normal operational effects (regular use) Environmental effects (internal stresses, material property

    degradation) Isolated effects (lightning, impact)

    In a (large company) Design group does general management Loads group determines operating conditions This is passed on to stress group that analyzes stresses and

    deformations Materials group provides material ultimates, etc. Need to understand each part

    NOTE:

    New approach in companies: IPT (IntegratedProduct Teams)

    DBT (Design Build Teams) - people from eachbranch including manufacturing and marketing

    even more important to understandvarious factors

    Paul A. Lagace 2001 Unit 2 - p. 3

  • 7/27/2019 Structural Mechanics - MIT 2002

    13/531

    MIT - 16.20 Fall, 2002

    Factors, Margins, etc.

    Two important definitions for static considerations

    Limit Load/Stress/Condition: Maximum load/stress/condition wherestructure shows no permanent deformation.

    Ultimate Load/Stress/Condition: Maximum load/stress/conditionwhere structure does not fail.

    Definition is key; often defined asbreak (i.e., carry no more load)

    Operationally, the limit load is the maximum load the structure is expectedto see

    The ultimate load provides a factor of safety for unknownsUltimate Factor of Safety (U.F.S.) = Ultimate Load

    Limit LoadThis is a design value

    Paul A. Lagace 2001 Unit 2 - p. 4

  • 7/27/2019 Structural Mechanics - MIT 2002

    14/531

    MIT - 16.20 Fall, 2002

    F.O.S. is also a Factor of Ignorance

    This accounts for

    probability & statistics

    (also in material allowances)U.F.S. = 1.5 for Aircraft

    1.25 for Spacecraft (unmanned)

    Design is usually conservative and an additional Margin of Safety(M.O.S.) is used/results

    Limit MOS = Tested Limit X - Limit XLimit X

    Ultimate MOS = Tested Ultimate X - Ultimate XUltimate X

    An MOS is an experimental reality.Paul A. Lagace 2001 Unit 2 - p. 5

  • 7/27/2019 Structural Mechanics - MIT 2002

    15/531

    MIT - 16.20 Fall, 2002

    Try to minimize M.O.S.

    - Too conservative

    too heavy- Not conservative enough plane falls out of sky (thingshave flown with negative M.O.S.)

    So, begin with operational envelope, the way the structure will be used Aircraft --> v-n diagram Spacecraft, etc.

    Then add special conditions (gusts, etc.)

    Also need to account for Environmental effects

    - change in material properties- causes stresses and strains

    Special conditions- Lightning

    - Impact- etc.

    Paul A. Lagace 2001 Unit 2 - p. 6

  • 7/27/2019 Structural Mechanics - MIT 2002

    16/531

    MIT - 16.20 Fall, 2002

    Fatigue (cyclic loading)

    - Effect on material properties- Damage growth

    Example

    A fighter aircraft has a gross take-off weight of 30,000 lbs. In a test of onewing, the wing fails at a total loading of 243,000 lbs. What is the marginof safety?

    Definition of M.O.S. = Tested Ultimate - UltimateUltimate

    We know: Tested Ultimate = 243,000 lbs.

    (for one wing)How do we get the Design Ultimate?

    Design Ultimate = Design Limit x Factor of Safety

    For aircraft, F.O.S. = 1.5

    Paul A. Lagace 2001 Unit 2 - p. 7

  • 7/27/2019 Structural Mechanics - MIT 2002

    17/531

    MIT - 16.20 Fall, 2002

    How do we get the Design Limit?Use the v-n diagramFrom U.E., max n for fighter = 9 = limit n

    (Note: n for level flight = 1 loading for level flight = weight)

    Design Limit = nlimit

    x weight= 9 x 30,000 lbs. = 270,000 lbs.

    But , each wing carries 1/2 of this

    Design limit load for one wing = 135,000 lbs.

    Design ultimate load for one wing = 202,500 lbs.

    Finally, M.O.S. = 243,000 lbs. - 202,500 lbs.202,500 lbs.

    = 40,500 lbs. = 0.2 = M.O.S202,500 lbs.+ 20% margin

    Paul A. Lagace 2001 Unit 2 - p. 8

  • 7/27/2019 Structural Mechanics - MIT 2002

    18/531

    MIT - 16.20 Fall, 2002

    What is failure?

    It depends on use..may be deflection based (CTE example).may be fracture.may be buckling

    .

    .

    .

    Overall, you must consider:Static Stresses

    - Fracture- Yielding

    - BucklingDeflections- Clearances- Flutter- Vibration- Tolerances (e.g., C. T. E.)

    Paul A. Lagace 2001 Unit 2 - p. 9

  • 7/27/2019 Structural Mechanics - MIT 2002

    19/531

    MIT - 16.20 Fall, 2002

    Life- Damage accumulation- Fatigue

    For aircraft, design guidelines provided by FAA F.A.R.s (Federal AviationRegulations)

    Part 23 Part 25 Part 27 Part 29

    Aircraft Aircraft HelicopterUnder Above

    14,000 lbs. 14,000 lbs.

    USAF guidelines (e.g., Damage Tolerance Regulations)

    Paul A. Lagace 2001 Unit 2 - p. 10

  • 7/27/2019 Structural Mechanics - MIT 2002

    20/531

    MIT - 16.20 Fall, 2002

    Unit 3(Review of) Language of

    Stress/Strain AnalysisReadings:

    B, M, P A.2, A.3, A.6Rivello 2.1, 2.2T & G Ch. 1 (especially 1.7)

    Paul A. Lagace, Ph.D.Professor of Aeronautics & Astronautics

    and Engineering Systems

    Paul A. Lagace 2001

  • 7/27/2019 Structural Mechanics - MIT 2002

    21/531

    MIT - 16.20 Fall, 2002

    Recall the definition of stress: = stress = intensity of internal force at a point

    Figure 3.1 Representation of cross-section of a general body

    Fn

    F s

    F Stress = lim A

    A 0

    There are two types of stress: n (F n) 1. Normal (or extensional): act normal to the plane of the

    element s (F s) 2. Shear: act in-plane of element

    Sometimes delineated as

    Paul A. Lagace 2001 Unit 3 - p. 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    22/531

    MIT - 16.20 Fall, 2002

    And recall the definition of strain: = strain = percentage deformation of an infinitesimal element

    Figure 3.2 Representation of 1-Dimensional Extension of a body

    L = lim L

    L 0

    Again, there are two types of strain:n 1. Normal (or extensional): elongation of elements 2. Shear: angular change of element

    Sometimes delineated as

    Figure 3.3 Illustration of Shear Deformation

    shear

    deformation!Paul A. Lagace 2001 Unit 3 - p. 3

  • 7/27/2019 Structural Mechanics - MIT 2002

    23/531

    MIT - 16.20 Fall, 2002

    Since stress and strain have components in several directions, we need anotation to represent these (as you learnt initially in Unified)

    Several possible Tensor (indicial) notation Contracted notation will review here Engineering notation and give examples Matrix notation in recitation

    IMPORTANT: Regardless of thenotation, the equations and conceptshave the same meaning learn, be comfortable with, be able to

    use all notations

    Tensor (or Summation) Notation Easy to write complicated formulae Easy to mathematically manipulate Elegant, rigorous Use for derivations or to succinctly express a set of equations or a long

    equationPaul A. Lagace 2001 Unit 3 - p. 4

  • 7/27/2019 Structural Mechanics - MIT 2002

    24/531

    MIT - 16.20 Fall, 2002

    Example: xi = fij y j

    Rules for subscripts NOTE: index subscript Latin subscripts (m, n, p, q, ) take on the values 1, 2, 3 (3-D)

    Greek subscripts ( , , ) take on the values 1, 2 (2-D)

    When subscripts are repeated on one side of the equationwithin one term, they are called dummy indices and are to besummed on

    Thus:3

    fij y j = fij y j j=1

    But fij y j + g i ... do not sum on i !

    Subscripts which appear only once on the left side of the equationwithin one term are called free indices and represent a separateequation

    Paul A. Lagace 2001 Unit 3 - p. 5

  • 7/27/2019 Structural Mechanics - MIT 2002

    25/531

    MIT - 16.20 Fall, 2002

    Thus:

    xi = .. x1 = ..x2 = ..x3 = ..

    Key Concept: The letters used forindices have no inherent meaning inand of themselves

    Thus: x i = fij y j

    is the same as: xr = frs y s or x j=

    f y i ji

    Now apply these concepts for stress/strain analysis:

    1. Coordinate System

    Generally deal with right-handed rectangular Cartesian: y m

    Paul A. Lagace 2001 Unit 3 - p. 6

  • 7/27/2019 Structural Mechanics - MIT 2002

    26/531

    MIT - 16.20 Fall, 2002

    Figure 3.4 Right-handed rectangular Cartesian coordinate systemy

    3 , z

    y2, y

    Compare notations y1 , x

    zy3

    yy2

    xy1

    EngineeringTensor

    Note: Normally this is so, but always checkdefinitions in any article, book, report, etc. Keyissue is self-consistency, not consistency with aworldwide standard (an official one does not

    exist!)Paul A. Lagace 2001 Unit 3 - p. 7

  • 7/27/2019 Structural Mechanics - MIT 2002

    27/531

    MIT - 16.20 Fall, 2002

    2. Deformations/Displacements (3)

    Figure 3.5 p(y 1, y 2, y 3),small p

    (deformed position)P(Y 1, Y2, Y3)

    Capital P(original position)

    um = p(y m) - P(y m)

    --> Compare notations

    Tensor Engineering Direction inEngineering

    u 1 u xu 2 v y

    u 3 w z

    Paul A. Lagace 2001 Unit 3 - p. 8

  • 7/27/2019 Structural Mechanics - MIT 2002

    28/531

    MIT - 16.20 Fall, 2002

    3. Components of Stress (6)

    mn Stress Tensor 2 subscripts 2nd order tensor6 independent components

    Extensional

    11 22 33

    Note: stress tensor is symmetricmn = nm

    Shear

    12 = 21 23 = 32 13 = 31

    due to equilibrium (moment) considerations

    Meaning of subscripts: mnstress acts in n-direction

    stress acts on facewith normal vector inthe m-direction

    Paul A. Lagace 2001 Unit 3 - p. 9

  • 7/27/2019 Structural Mechanics - MIT 2002

    29/531

    MIT - 16.20 Fall, 2002

    Figure 3.6 Differential element in rectangular system

    NOTE: If face has a negative normal,positive stress is in negative direction

    --> Compare notations

    = yz sometimes= xz used for= xy shear stresses

    Tensor Engineering 11 x 22 y

    33 z 23 yz 13 xz 12 xy

    Paul A. Lagace 2001 Unit 3 - p. 10

    MIT 16 20 ll

  • 7/27/2019 Structural Mechanics - MIT 2002

    30/531

    MIT - 16.20 Fall, 2002

    4. Components of Strain (6)

    mn Strain Tensor2 subscripts 2nd order tensor

    6 independent components

    Extensional Shear112233

    12 = 2123 = 3213 = 31

    NOTE (again): strain tensor is symmetricmn = nm

    due to geometrical considerations(from Unified)

    Paul A. Lagace 2001 Unit 3 - p. 11

    MIT 16 20 F ll 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    31/531

    MIT - 16.20 Fall, 2002

    Meaning of subscripts not like stress

    mn m = n extension along mm n rotation in m-n plane

    BIG DIFFERENCE for strain tensor:

    There is a difference in the shear components ofstrain between tensor and engineering (unlikefor stress).

    Figure 3.7 Representation of shearing of a 2-D element

    angularchange

    Paul A. Lagace 2001 Unit 3 - p. 12

    MIT - 16 20 Fall 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    32/531

    MIT 16.20 Fall, 2002

    --> total angular change = 12 = 12 + 21 = 2 12(recall that 12 and 21 are the same due to

    geometrical considerations)But , engineering shear strain is the total

    angle: 12 = xy = xy--> Compare notations

    = yz sometimes= xz used for= xy shear strains

    Thus, factor of 2 will pop upWhen we consider the equations of elasticity, the2 comes out naturally.

    (But, remember this physical explanation)

    Tensor Engineering11 x22 y

    33 z223 = yz213 = xz2

    12=

    xy

    Paul A. Lagace 2001 Unit 3 - p. 13

    MIT - 16.20 Fall 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    33/531

    MIT 16.20 Fall, 2002

    CAUTION When dealing with shear strains, must know if they aretensorial or engineeringDO NOT ASSUME!

    5. Body Forces (3)fi internal forces act along axes

    (resolve them in this manner -- can always dothat)

    --> Compare notations

    fzf3

    fyf2

    fxf1

    EngineeringTensor

    Paul A. Lagace 2001 Unit 3 - p. 14

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    34/531

    ,

    6. Elasticity Tensor (? will go over later)

    Emnpq relates stress and strain(we will go over in detail, recall introduction in Unified)

    Other Notations

    Engineering Notation One of two most commonly used Requires writing out all equations (no shorthand) Easier to see all components when written out fully

    Contracted Notation Other of two most commonly used Requires less writing

    Often used with composites (reduces four subscripts onelasticity term to two) Meaning of subscripts not as physical Requires writing out all equations generally (there is contracted

    shorthand)

    Paul A. Lagace 2001 Unit 3 - p. 15

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    35/531

    1

    4

    3

    2

    5

    6

    --> subscript changesTensor Engineering Contracted

    11 x22 y

    33 z

    23, 32 yz13, 31 xz

    12, 21 xy

    --> Meaning of 4, 5, 6 in contracted notation Shear component Represents axis (x n) about which

    shear rotation takes place via:

    m = 3 + nmor xn m

    Figure 3.8 Example:Rotation about y 3

    Paul A. Lagace 2001 Unit 3 - p. 16

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    36/531

    Matrix notation

    Super shorthand Easy way to represent system of equations Especially adaptable with indicial notation Very useful in manipulating equations (derivations, etc.)

    Example: xi

    = Aij

    y j

    x = A y~ ~ ~ ~ matrix (as underscore)

    tildex1 A11 A12 A13 y1 x2 = A21 A22 A23 y2 x3 A31 A32 A33 y3

    (will see a little of this mainly in 16.21)

    KEY: Must be able to use various notations. Dont rely on

    notation, understand concept that is represented.Paul A. Lagace 2001 Unit 3 - p. 17

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    37/531

    Unit 4Equations of ElasticityReadings:R 2.3, 2.6, 2.8T & G 84, 85B, M, P 5.1-5.5, 5.8, 5.9

    7.1-7.96.1-6.3, 6.5-6.7

    Jones (as background on composites)

    Paul A. Lagace, Ph.D.Professor of Aeronautics & Astronautics

    and Engineering Systems

    Paul A. Lagace 2001

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    38/531

    Lets first review a bit from Unified, saw that there are 3 basic considerations in elasticity:

    1. Equilibrium2. Strain - Displacement3. Stress - Strain Relations (Constitutive Relations)

    Consider each:1. Equilibrium (3)

    F i = 0, Mi = 0

    Free body diagrams Applying these to an infinitesimal element

    yields 3 equilibrium equationsFigure 4.1 Representation of general infinitesimal

    element

    Paul A. Lagace 2001 Unit 4 - p. 2

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    39/531

    11 + 21 + 31 + f1 = 0 (4-1)y1 y2 y312 + 22 + 32 + f2 = 0 (4-2)y1 y2 y313 + 23 + 33 + f3 = 0 (4-3)y1 y2 y3

    + mnm

    nyf 0=

    2. Strain - Displacement (6)

    Based on geometric considerations

    Linear considerations ( I.e., small strains only -- we will talk aboutlarge strains later )(and infinitesimal displacements only)

    Paul A. Lagace 2001 Unit 4 - p. 3

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    40/531

    11 = u1 (4-4)y1

    22 = u2 (4-5)y2

    33 = u3

    (4-6)y3

    21 = 12 = 1 u1 + u2 2 y2 y1

    31 = 13 = 1 u1 + u3 2 y3 y1

    32 = 23 = 1 u

    2 + u3

    2 y3 y2

    (4-7)

    (4-8)

    (4-9)

    1 um + unmn = 2 yn ym

    Paul A. Lagace 2001 Unit 4 - p. 4

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    41/531

    3. Stress - Strain (6)

    mn = Emnpq pqwell come back to this

    Lets review the 4th important concept:

    Static DeterminanceThere are there possibilities (as noted in U.E.)

    a. A structure is not sufficiently restrained(fewer reactions than d.o.f.)

    degrees offreedom

    DYNAMICSb. Structure is exactly (or simply) restrained

    (# of reactions = # of d.o.f.) STATICS (statically

    determinate)Implication: can calculate stresses via

    equilibrium ( as done in Unified )Paul A. Lagace 2001 Unit 4 - p. 5

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    42/531

    c. Structure is overrestrained(# reactions > # of d.o.f.)

    STATICALLYINDETERMINATE

    must solve for reactionssimultaneously with stresses, strains, etc.

    in this case, you must employ the stress-strain equations

    --> Overall, this yields for elasticity:

    15 unknowns and 15 equations6 strains = mn 3 equilibrium ( )6 stresses = mn 6 strain-displacements ( )3 displacements = u m 6 stress-strain ( - )

    IMPORTANT POINT:The first two sets of equations are universal (independent of thematerial) as they depend on geometry (strain-displacement) andequilibrium (equilibrium). Only the stress-strain equations are

    dependent on the material.Paul A. Lagace 2001 Unit 4 - p. 6

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    43/531

    One other point: Are all these equations/unknowns independent? NO

    Why? --> Relations between the strains and displacements (due togeometrical considerations result in the Strain Compatibility Equations(as you saw in Unified)

    General form is:

    2nk + 2m l 2n l

    2mk = 0y y l yk y yk y lm yn m yn

    This results in 6 strain-compatibility (in 3-D).

    What a mess!!!What do these really tell us???

    The strains must be compatible, they cannot be prescribed inan arbitrary fashion.

    Lets consider an example:

    Step 1: consider how shear strain ( 12) is related to displacement:

    1 u1 u2

    + 12 = 2 y2 y1

    Paul A. Lagace 2001 Unit 4 - p. 7

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    44/531

    Note that deformations (u m) must be continuoussingle-valued functions for continuity. (or itdoesnt make physical sense!)

    Step 2: Now consider the case where there are gradients in the strainfield

    12 0, 12 0y1 y2This is the most general case and most likely in a generalstructure

    Take derivatives on both sides:212 1

    3u1 3u2

    = 2 + 2y y2 2

    y y2 y y2

    1 1 1

    Step 3: rearrange slightly and recall other strain-displacementequations

    u1 = 1 ,u2 2= y1 y2

    Paul A. Lagace 2001 Unit 4 - p. 8

    MIT - 16.20 Fall, 2002

    2 2 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    45/531

    212 1

    211 + 222

    = 2y y2 2 y2 y1

    21

    So, the gradients in strain are related in certain ways sincethey are all related to the 3 displacements.

    Same for other 5 cases

    Lets now go back and spend time with the

    Stress-Strain Relations and the ElasticityTensor

    In Unified, you saw particular examples of this, but we now want togeneralize it to encompass all cases.

    The basic relation between force and displacement (recall 8.01) is HookesLaw:

    F = kxspring constant (linear case)

    Paul A. Lagace 2001 Unit 4 - p. 9

    MIT - 16.20 Fall, 2002

    If thi i t d d t th th di i l d li d

  • 7/27/2019 Structural Mechanics - MIT 2002

    46/531

    If this is extended to the three-dimensional case and applied overinfinitesimal areas and lengths, we get the relation between stress and

    strain known as:Generalized Hookes law:

    mn = Emnpq pq

    where E mnpq is the elasticity tensor

    How many components does this appear to have?m, n, p, q = 1, 2, 3

    3 x 3 x 3 x 3 = 81 componentsBut there are several symmetries:

    1. Since mn = nm (energy considerations)

    E mnpq = E nmpq(symmetry in switching first two

    indices)2. Since pq = qp (geometrical considerations)

    E mnpq = E mnqpPaul A. Lagace 2001 Unit 4 - p. 10

  • 7/27/2019 Structural Mechanics - MIT 2002

    47/531

    MIT - 16.20 Fall, 2002

    R l i 21 i d d f h l i i

  • 7/27/2019 Structural Mechanics - MIT 2002

    48/531

    Results in 21 independent components of the elasticity tensor Along diagonal (6) Upper right half of matrix (15)

    [dont worry about 2s]

    Also note : 2s come out automaticallydont put them in ~For example: 12 = E 1212 12 + E 1221 21

    = 2E 1212 12

    These E mnpq can be placed into 3 groups: Extensional strains to extensional stresses

    E1111

    E1122

    E 2222 E1133E 3333 E 2233

    e.g., 11 = E 1122 22 Shear strains to shear stresses

    E1212 E1213E1313 E1323E 2323 E 2312

    Paul A. Lagace 2001 Unit 4 - p. 12

    MIT - 16.20 Fall, 2002

    e g = 2E

  • 7/27/2019 Structural Mechanics - MIT 2002

    49/531

    e.g., 12 2E 1223 23 Coupling term: extensional strains to shear stress or

    shear strains to extensional stressesE1112 E2212 E3312E1113 E2213 E 3313E

    1123E

    2223E

    3323e.g., 12 = E 1211 11

    11 = 2E 1123 23

    A material which behaves in this

    manner is fully anisotropicHowever, there are currently no useful engineering materials whichhave 21 different and independent components of E mnpq

    The type of material (with regard to elastic behavior) dictates the numberof independent components of E mnpq :

    Paul A. Lagace 2001 Unit 4 - p. 13

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    50/531

    2Isotropic

    3Cubic

    5Transversely Isotropic*

    6Tetragonal

    9Orthotropic

    13Monoclinic

    21Anisotropic

    # of IndependentComponents of E mnpq

    Material Type

    UsefulEngineering

    Materials

    CompositeLaminates

    Basic

    CompositePly

    Metals(on average)

    Good Reference: BMP, Ch. 7*not in BMP

    For orthotropic materials (which is as complicated as we usually get),there are no coupling terms in the principal axes of the material

    Paul A. Lagace 2001 Unit 4 - p. 14

    MIT - 16.20 Fall, 2002

    When you apply an extensional stress no shear strains arise

  • 7/27/2019 Structural Mechanics - MIT 2002

    51/531

    When you apply an extensional stress, no shear strains arisee.g., E 1112 = 0

    (total of 9 terms are now zero) When you apply a shear stress, no extensional strains arise

    (some terms become zero as forprevious condition)

    Shear strains (stresses) in one plane do not cause shear strains(stresses) in another plane

    ( E 1223 , E 1213 , E 1323 = 0)

    With these additional terms zero, we end up with 9 independentcomponents:

    (21 - 9 - 3 = 9)

    and the equations are:

    Paul A. Lagace 2001 Unit 4 - p. 15

    MIT - 16.20 Fall, 2002

    11 E1111 E1122 E1133 0 0 0 11

  • 7/27/2019 Structural Mechanics - MIT 2002

    52/531

    13

    11 E1111 E1122 E1133 0 0 0 11 E1122 E 2222 E 2233 0 0 0

    22

    22

    33 E1133 E 2233 E 3333 0 0 0 33 = 23

    0 0 0 2E 2323 0 0 23 13 0 0 0 0 2E 1313 0 13

    12

    0 0 0 0 0 2E 1212 12 For other cases, no more terms become zero, but the terms are notIndependent.

    For example, for isotropic materials: E1111 = E 2222 = E 3333 E1122 = E 1133 = E 2233 E2323 = E 1313 = E 1212 And there is one other equation relating E 1111 , E 1122 and E 2323

    2 independent components of E mnpq(well see this more when we do engineering constants)

    Paul A. Lagace 2001 Unit 4 - p. 16

    MIT - 16.20 Fall, 2002

    Why then do we bother with anisotropy?

  • 7/27/2019 Structural Mechanics - MIT 2002

    53/531

    Why, then, do we bother with anisotropy?Two reasons:

    1. Someday, we may have useful fully anisotropic materials(certain crystals now behave that way) Also, 40-50 years ago,people only worried about isotropy

    2. It may not always be convenient to describe a structure (i.e.,write the governing equations) along the principal material axes.

    How else?Loading axes

    ExamplesFigure 4-2

    wing

    rocket case fuselage

    Paul A. Lagace 2001 Unit 4 - p. 17

    MIT - 16.20 Fall, 2002

    In these other axis systems, the material may have more elastic

  • 7/27/2019 Structural Mechanics - MIT 2002

    54/531

    In these other axis systems, the material may have more elasticcomponents. But it really doesnt.

    (you cant create elastic components just by describing a material ina different axis system, the inherent properties of the material stay thesame).

    Figure 4-3 Example: Unidirectional composite (transversely isotropic)

    No shear / extension coupling Shears with regard to loadingaxis but still no inherentshear/extension coupling

    In order to describe full behavior, need to doTRANSFORMATIONS

    (well review this/expand on it later)

    Paul A. Lagace 2001 Unit 4 - p. 18

    MIT - 16.20 Fall, 2002

    --> It is often useful to consider the relationship between

  • 7/27/2019 Structural Mechanics - MIT 2002

    55/531

    pstress and strain (opposite way). For this we use

    COMPLIANCE

    mn = S mnpq pqwhere: S mnpq = compliance tensor

    Paul A. Lagace 2001 Unit 4 - p. 19

  • 7/27/2019 Structural Mechanics - MIT 2002

    56/531

    MIT - 16.20 Fall, 2002

    Meaning of each:

  • 7/27/2019 Structural Mechanics - MIT 2002

    57/531

    Elasticity term E mnpq : amount of stress ( mn ) related to thedeformation/strain ( pq )

    Compliance term S mnpq : amount of strain ( mn ) the stress ( pq )causes

    These are useful in defining/ determining the engineering constants

    All of this presentation on elasticity (and what you had inUnified ) is based on assumptions which limit their

    applicability:

    which we will review / introduce / expand on in the next lecture.

    CAUTION

    Small strain Small displacement / infinitesimal (linear) strain

    Fortunately, most engineering structures are such that these assumptionscause negligible error.

    Paul A. Lagace 2001 Unit 4 - p. 21

    MIT - 16.20 Fall, 2002

    However, there are cases where this is not true:

  • 7/27/2019 Structural Mechanics - MIT 2002

    58/531

    Manufacturing (important to be able to convince)

    Compliant materials Structural examples: dirigibles,

    So lets explore:

    Large strain and the formal definition of strainWhat we defined before are the physical manifestation of strain /

    deformation Relative elongation Angular rotation

    Strain is formally defined by considering the diagonal length of a cube:Figure 4-4 undeformed x3

    (small letters)

    x2

    Paul A. Lagace 2001 x1 Unit 4 - p. 22

    MIT - 16.20 Fall, 2002

    and looking at the change in length under general (and possibly large)d f

  • 7/27/2019 Structural Mechanics - MIT 2002

    59/531

    deformation:

    Figure 4-5 deformed(capital letters) x3

    x2

    x1

    The formal definition of the strain tensor is:

    2 22 mn dxm dxn = (dS ) - (ds )

    2 11 dx1 dx1 + 2 22 dx 2 dx 2 + 2d 33 dx 3 dx 3+ 2( 12 + 21) dx1 dx 2 + 2( 13 + 31) dx1 dx 3

    2 2+ 2( 23 + 32 ) dx 2 dx 3 = (dS ) (ds )

    Paul A. Lagace 2001 Unit 4 - p. 23

    MIT - 16.20 Fall, 2002

    where mn = formal strain tensor.

  • 7/27/2019 Structural Mechanics - MIT 2002

    60/531

    This is a definition . The physical interpretation is related tothis but not directly in the general case.

    One can show (see BMP 5.1 - 5.4) that the formal strain tensor is relatedto relative elongation (the familiar l ) via:

    l

    relative elongation in m-direction:

    Em = m1 m+ 2 1 (no summation on m)

    and is related to angular change via:2 mnsin = mn (1 + Em ) (1 + En )

    Thus, it also involves the relative elongations!

    Most structural cases deal with relatively small strain. If the relativeelongation is small (

  • 7/27/2019 Structural Mechanics - MIT 2002

    61/531

    Em = 1 + 2 mm 1

    2 (Em + 1) = 1 + 2 mm

    E 2 + 2E m = 2 mmm

    but if E m

  • 7/27/2019 Structural Mechanics - MIT 2002

    62/531

    2 mnsin

    = mn (1 + Em ) (1 + En )

    for small elongations (E m

  • 7/27/2019 Structural Mechanics - MIT 2002

    63/531

    consider

    Large Displacement and Non-Infinitesimal(Non-linear) Strain

    See BMP 5.8 and 5.9The general strain-displacement relation is:

    1 u u u u mn = m + n + r s rs2

    xn

    xm

    xm

    xn

    Where:rs = Kronecker delta

    The latter terms are important for larger displacements but are higher

    order for small displacements and can then be ignored to arrive backat:

    1 um + unmn = 2 yn ym

    Paul A. Lagace 2001 Unit 4 - p. 27

    MIT - 16.20 Fall, 2002

    How to assess?L k

  • 7/27/2019 Structural Mechanics - MIT 2002

    64/531

    Look at

    um ur u svs. rsxn xm xnand compare magnitudes

    Small vs. large and linear vs. nonlinear will depend on: material(s) structural configuration mode of behavior the loading

    Examples Rubber in inflated structures

    Large strain (Note : generally means larger displacement) Diving board of plastic or wood

    Small strain but possibly large displacement (will look at thismore when we deal with beams)

    Paul A. Lagace 2001 Unit 4 - p. 28

    MIT - 16.20 Fall, 2002

    Floor beam of steelS ll t i d li t i (N t li t i t l b

  • 7/27/2019 Structural Mechanics - MIT 2002

    65/531

    Small strain and linear strain (Note: linear strain must also be small)

    Nextback to constitutive constantsnow their physicalreality

    Paul A. Lagace 2001 Unit 4 - p. 29

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    66/531

    Unit 5Engineering Constants

    Readings:Rivello 3.1 - 3.5, 3.9, 3.11

    Paul A. Lagace, Ph.D.Professor of Aeronautics & Astronautics

    and Engineering Systems

    Paul A. Lagace 2001

    MIT - 16.20 Fall, 2002

    We do not characterize materials by their E mnpq . The E mnpq areuseful in doing transformations manipulations etc

  • 7/27/2019 Structural Mechanics - MIT 2002

    67/531

    useful in doing transformations, manipulations, etc.

    We characterize materials by theirENGINEERING CONSTANTS

    (or , Elastic Constants)

    (what we can physically measure)

    There are 5 types

    1. Longitudinal (Youngs) (Extensional) Modulus: relates

    extensional strain in the direction of loading to stress in thedirection of loading.

    (3 of these)

    2. Poissons Ratio: relates extensional strain in the loadingdirection to extensional strain in another direction.

    (6 of theseonly 3 are independent)

    Paul A. Lagace 2001 Unit 5 - p. 2

    MIT - 16.20 Fall, 2002

    3. Shear Modulus: relates shear strain in the plane of shearloading to that shear stress.

  • 7/27/2019 Structural Mechanics - MIT 2002

    68/531

    g

    (3 of these)

    4. Coefficient of Mutual Influence: relates shear strain due to shearstress in that plane to extensional strain or , relates extensional

    strain due to extensional stress to shear strain.(up to 18 of these)

    5. Chentsov Coefficient: relates shear strain due to shear stress in

    that plane to shear strain in another plane.(6 of these)

    Lets be more specific:

    1. Longitudinal Modulus1) E 11 or E xx or E 1 or E x: contribution of 11 to 112) E 22 or E yy or E 2 or E y: contribution of 22 to 223) E 33 or E zz or E 3 or E z: contribution of 33 to 33

    Paul A. Lagace 2001 Unit 5 - p. 3

    MIT - 16.20 Fall, 2002

    In general: Emm = mm due to mm applied onlymm

  • 7/27/2019 Structural Mechanics - MIT 2002

    69/531

    mm

    (no summation on m)

    2. Poissons Ratios ( negative ratios)1) 12 or xy: (negative of) ratio of 22 to 11 due to 11

    2) 13 or xz: (negative of) ratio of 33 to 11 due to 113) 23 or yz: (negative of) ratio of 33 to 22 due to 224) 21 or yx: (negative of) ratio of 11 to 22 due to 225) 31 or zx: (negative of) ratio of 11 to 33 due to 336) 32 or zy: (negative of) ratio of 22 to 33 due to 33

    In general: nm = mm due to nn applied onlynn

    (for n m)

    Important: nm mn

    Paul A. Lagace 2001 Unit 5 - p. 4

    MIT - 16.20 Fall, 2002

    However, these are not all independent. There are relationsknown as reciprocity relations (3 of them)

  • 7/27/2019 Structural Mechanics - MIT 2002

    70/531

    p y ( )

    21 E11 = 12 E 22

    31 E11 = 13 E 33

    32 E 22 = 23 E33

    3. Shear Moduli1) G 12 or G xy or G 6: contribution of (2) 12 to 122) G 13 or G xz or G 5: contribution of (2) 13 to 133) G 23 or G yz or G 4: contribution of (2) 23 to 23

    In general: Gmn = mn due to mn applied only 2mn

    factor of 2 here since it relates physical quantitiesshear stress mn

    Gmn = shear deformation (angular charge) mn

    Paul A. Lagace 2001 Unit 5 - p. 5

    MIT - 16.20 Fall, 2002

    4. Coefficients of Mutual Influence ( negative ratios)(also known as coupling coefficients)

  • 7/27/2019 Structural Mechanics - MIT 2002

    71/531

    Note: need to use contracted notation here:1) 16 : (negative of) ratio of (2) 12 to 11 due to 11

    2) 61 : (negative of) ratio of 11 to (2) 12 due to 12

    3) 26 (5) 36 (7) 14 (9) 24

    4) 62 (6) 63 (8) 41 (10) 42

    11) 34 (13) 15 (15) 25 (17) 35

    12) 43 (14) 51 (16) 52 (18) 53

    5. Chentsov Coefficients ( negative ratios)1) 46 : (negative of) ratio of (2) 12 to (2) 23 due to 232) 64 : (negative of) ratio of (2) 23 to (2) 12 due to 12

    3) 45 : (negative of) ratio of (2) 13 to (2) 23 due to 234) 54 : (negative of) ratio of (2) 23 to (2) 13 due to 135) 56 : (negative of) ratio of (2) 12 to (2) 13 due to 136) 65 : (negative of) ratio of (2) 13 to (2) 12 due to 12

    Paul A. Lagace 2001 Unit 5 - p. 6

  • 7/27/2019 Structural Mechanics - MIT 2002

    72/531

    MIT - 16.20 Fall, 2002

    in general:

    E G

  • 7/27/2019 Structural Mechanics - MIT 2002

    73/531

    nm Em = mn Gn(m = 1, 2, 3) no sum

    (n = 4, 5, 6)

    and

    46 G6 = 64 G445 G5 = 54 G456 G6 = 65 G5

    in general:

    nm Gm = mn Gn(m = 4, 5, 6) no sum

    (m n)

    Paul A. Lagace 2001 Unit 5 - p. 8

    MIT - 16.20 Fall, 2002

    This gives 21 independent (at most)engineering constants:

  • 7/27/2019 Structural Mechanics - MIT 2002

    74/531

    Total 3 E n 6 nm 3 G m 18 nm 6 nm

    Indpt.: 3 3 3 9 3 = 21

    --> Now that we have defined the terms, we wish to write theengineering stress-strain equations

    Recall compliances:

    mn = S mnpq pq

    and consider only the first equation:

    11 = S 1111 11+ 2S 1123

    1 = S 11 1 +

    Paul A. Lagace 2001

    + S 1122 22 + S 1133 33

    23 + 2S 1113 13 + 2S 1112 12(well have to use contracted notation, so)

    S 12 2 + S 13 3 + S 14 4 + S 15 5 + S 16 6(Note: 2s disappear!)

    Unit 5 - p. 9

    MIT - 16.20 Fall, 2002

    Consider each of the compliance terms separately:

    Case 1: Only 11 applied

  • 7/27/2019 Structural Mechanics - MIT 2002

    75/531

    1 = S 11 1and we know

    E1 = 1 due to 1 only11 S 11 = E1

    Case 2: Only 22 applied1 = S 12 2

    We need two steps here.The direct relation to 2 is from 2:

    E 2 = 2 due to 2 only2

    and we know21 =

    1 due to 2 only2

    2 = E 2 due to 2 only

    1 21Paul A. Lagace 2001 Unit 5 - p. 10

    MIT - 16.20 Fall, 2002

    Thus:S 12 =

    21 (due to 2 only)E 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    76/531

    E 2--> to make this a bit simpler (for later purposes), we recall the reciprocity

    relation:12 E 2 = 21 E1

    21

    12 = E2 E1

    Thus:

    S 12 = 12E1

    Case 3: Only 3 appliedIn a similar manner we get:

    S 13 = 13

    E1Case 4: Only 4 ( 23) applied

    1 = S 14 4Again, two steps are needed.

    Paul A. Lagace 2001 Unit 5 - p. 11

  • 7/27/2019 Structural Mechanics - MIT 2002

    77/531

    MIT - 16.20 Fall, 2002

    get:S 15 =

    15E1

  • 7/27/2019 Structural Mechanics - MIT 2002

    78/531

    E1and

    S 16 = 16E1

    With all this we finally get:1 14 4 5 6 ]1 = E1

    [1 12 2 13 3 15 16

    we used the reciprocity relations so

    we could pull out this commonfactor.

    We can do this for all the other cases.In general we write:

    1 6n m = 1

    Note: nn = -1

    If we let s be sPaul A. Lagace 2001 Unit 5 - p. 13

    n = E nm m

    MIT - 16.20 Fall, 2002

    Engineering Stress-Strain Equations

  • 7/27/2019 Structural Mechanics - MIT 2002

    79/531

    General Form11 = E1

    [1 12 2 13 3 15 1614 4 5 6 ]

    1

    2=

    E 2 [ 21 1+

    2 23 3 4 5 6 ]

    24 25 26

    13 = E 3[31 1 2 + 3 34 4 35 5 36 6 ] 32

    1 4 = 4 = G4 [41 1 42 2 43 3 + 4 45 5 46 6 ]

    1 5 = 5 = G5[51 1 52 2 53 3 54 4 + 5 56 6 ]

    1 6 = 6 = G6 [ 1 62 2 63 3 64 4 65 5 + 6 ] 61

    Paul A. Lagace 2001 Unit 5 - p. 14

    MIT - 16.20 Fall, 2002

    In general:

  • 7/27/2019 Structural Mechanics - MIT 2002

    80/531

    1 6n = E nm mn m = 1Note: nn = -1 s --> s

    We have developed these for a fully anisotropic material. Again,there are currently no useful engineering materials of this nature.Thus, these would need to be reduced accordingly.

    Paul A. Lagace 2001 Unit 5 - p. 15

    MIT - 16.20 Fall, 2002

    Orthotropic Case:In material principal axes, there is no coupling between extension and

  • 7/27/2019 Structural Mechanics - MIT 2002

    81/531

    shear and no coupling between planes of shear, so:all mn = 0

    Thus, only the following constants remain:E

    1

    12,

    21G

    12E2 13 , 31 G13E3 23 , 32 G23

    3 + 3 + 3 = 9(same as E mnpq, better be! )

    Paul A. Lagace 2001 Unit 5 - p. 16

    MIT - 16.20 Fall, 2002

    So the six equations become:

    11 = [1 12 2 13 3 ]

  • 7/27/2019 Structural Mechanics - MIT 2002

    82/531

    1E1

    [ 1 12 2 13 3 ]

    12 = E2[ 21 1 + 2 23 3 ]

    13 = E 3[31 1 32 2 + 3 ]

    14 = 4G23

    15 = 5G13

    16 = 6G12

    Paul A. Lagace 2001 Unit 5 - p. 17

    MIT - 16.20 Fall, 2002

    matrix form:

    1 1 12 13 0 0 0 1

  • 7/27/2019 Structural Mechanics - MIT 2002

    83/531

    0

    1 E1 E1 E1 2

    21E1

    2 23 0 0 0 2

    E 2 E 2 3 31 32 1 0 0 0

    3

    = E 3 E 3 E 3 4 0 0 0 1 0 0 4 G23 1 5 0 0 0 0

    G130 5

    1 0 0 0 0 0 G12 66

    = S ~ ~ ~this is, in fact, the compliance matrix

    Paul A. Lagace 2001 Unit 5 - p. 18

    MIT - 16.20 Fall, 2002

    Thus: If we know the engineering constants (through tests -- this is

    upcoming)

  • 7/27/2019 Structural Mechanics - MIT 2002

    84/531

    Relate engineering constants to S mnpq

    Get Emnpq by inversion of S mnpq matrix (combine steps to directlyget relationships between E mnpq and the engineering constants)

    Isotropic CaseAs we noted in the last unit, as we get to materials with less elasticconstants (< 9) than an orthotropic material, we no longer have any morezero terms in the elasticity or compliance matrix, but more nonzero terms

    are related.For the isotropic case:

    All extensional moduli are the same:E1 = E 2 = E 3 = E

    All Poissons ratios are the same: 12 = 21 = 13 = 31 = 23 = 32 =

    All shear moduli are the same:G

    4 = G

    5 = G

    6 = G

    Paul A. Lagace 2001 Unit 5 - p. 19

    MIT - 16.20 Fall, 2002

    And, there is a relationship between E, and G (from Unified):E

    G = +

  • 7/27/2019 Structural Mechanics - MIT 2002

    85/531

    2 1 )(Thus, there are only 2 independentconstants.

    We now have all the relationships to do the manipulations,but we need to measure the basic properties. We musttherefore talk about

    TestingTesting is used for a variety of purposes.

    Depending on the purpose, the technique and care will vary. The

    fidelity needed in the testing depends on the use.Basically, apply a load (stress) condition and measure appropriateresponses:

    Paul A. Lagace 2001 Unit 5 - p. 20

    MIT - 16.20 Fall, 2002

    Strain

    Displacements

  • 7/27/2019 Structural Mechanics - MIT 2002

    86/531

    Failure(or maybe vice versa)

    Concerns in test specimens Boundary conditions and introduction of load

    Stress concentrations

    Achievement of desired stress state

    Cost and ease of use also important (again, depends onuse of test)

    Many of these concerns will depend on the material / configuration andload condition. This generally involves issues of scale.

    Properties of a material / structure depends on the scale at which youlook at it.

    Scale level of homogenization (average behavior over a certainsize)

    Paul A. Lagace 2001 Unit 5 - p. 21

    MIT - 16.20 Fall, 2002

    Example 1: Atoms make up a materialFigure 5.1 Representation of atomic bonding as springs

  • 7/27/2019 Structural Mechanics - MIT 2002

    87/531

    The behavior of the materials is some combination of theatoms and their bonds.

    Example 2: CompositeFigure 5.2 Representation of unidirectional composite

    fibers in a matrix

    Fibers and matrix respond differently. Average theirresponse to get composite properties

    Paul A. Lagace 2001 Unit 5 - p. 22

  • 7/27/2019 Structural Mechanics - MIT 2002

    88/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    89/531

    MIT - 16.20 Fall, 2002

    Figure 5.4 Tension specimens

  • 7/27/2019 Structural Mechanics - MIT 2002

    90/531

    Tapered Dogbone Straight-edged couponBar Specimen (composites) stressconcentration problem

    2. CompressionSimilar specimens can be used, but must beware of buckling(global and local instabilities)

    Possibility of local reinforcement to prevent buckling.

    Paul A. Lagace 2001 Unit 5 - p. 25

    MIT - 16.20 Fall, 2002

    3. ShearVery hard to apply pure shear.

    Figure 5 5 P ibl h i

  • 7/27/2019 Structural Mechanics - MIT 2002

    91/531

    Figure 5.5 Possible shear specimens

    Tube

    Iosipescu

    (beam theory shows area ofpure shear -- test section)

    Refer to: ASTM (American Society for Testingand Materials) Annual Book of Standards

    Voluntary test standards are contained there.Paul A. Lagace 2001 Unit 5 - p. 26

    MIT - 16.20 Fall, 2002

    what to do with test dataTest data must be reduced to give the engineeringconstants.

  • 7/27/2019 Structural Mechanics - MIT 2002

    92/531

    Figure 5.6 Typical stress-strain data (for ductile material)

    The engineering constants are defined (somewhat

    arbitrary) as various parts of this curve. Generally withinthe initial linear region.

    Often use linear regression

    Paul A. Lagace 2001 Unit 5 - p. 27

  • 7/27/2019 Structural Mechanics - MIT 2002

    93/531

    MIT - 16.20 Fall, 2002

    We have now developed the general 3-D stress-strain relations. But weoften deal with a problem where we can simplify (model as) to a 2-Dsystem. Two important cases to next consider:

  • 7/27/2019 Structural Mechanics - MIT 2002

    94/531

    Plane Stress

    Plane Strain

    Paul A. Lagace 2001 Unit 5 - p. 29

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    95/531

    Unit 6 Plane Stress and Plane Strain

    Readings:T & G 8, 9, 10, 11, 12, 14, 15, 16

    Paul A. Lagace, Ph.D.Professor of Aeronautics & Astronautics

    and Engineering Systems

    Paul A. Lagace 2001

    MIT - 16.20 Fall, 2002

    There are many structural configurations where we do nothave to deal with the full 3-D case.

    First lets consider the models

  • 7/27/2019 Structural Mechanics - MIT 2002

    96/531

    First let s consider the models Lets then see under what conditions we can

    apply them

    A. Plane Stress

    This deals with stretching and shearing of thin slabs.Figure 6.1

    Representation of Generic Thin Slab

    Paul A. Lagace 2001 Unit 6 - p. 2

    MIT - 16.20 Fall, 2002

    The body has dimensions such thath

  • 7/27/2019 Structural Mechanics - MIT 2002

    97/531

    consider later)

    Thus, the plate is thin enough such that there is no variation ofdisplacement (and temperature) with respect to y 3 (z).

    Furthermore, stresses in the z-direction are zero (small order ofmagnitude).

    Figure 6.2 Representation of Cross-Section of Thin Slab

    Paul A. Lagace 2001 Unit 6 - p. 3

    MIT - 16.20 Fall, 2002

    Thus, we assume: zz = 0

    yz = 0

  • 7/27/2019 Structural Mechanics - MIT 2002

    98/531

    0 xz = 0

    = 0z

    So the equations of elasticity reduce to:

    Equilibrium

    11 + 21 + f1

    = 0 (1)y1 y2

    12 + 22 + f2 = 0 (2)y1 y2

    (3rd equation is an identity) 0 = 0(f3 = 0)In general: + f = 0y

    Paul A. Lagace 2001 Unit 6 - p. 4

    MIT - 16.20 Fall, 2002

    Stress-Strain (fully anisotropic)Primary (in-plane) strains

    11 = [ 1 12 2 16 6 ] (3)

  • 7/27/2019 Structural Mechanics - MIT 2002

    99/531

    1 E 1[ 1 12 2 16 6 ] (3)

    1 2 = E

    2

    [ 21 1 + 2 26 6 ] (4)

    16 = G6

    [61 1 62 2 + 6 ] (5)

    Invert to get:*

    = E

    Secondary (out-of-plane) strains

    (they exist, but they are not a primary part of the problem)13 = E 3

    [ 311 32 2 36 6 ]

    Paul A. Lagace 2001 Unit 6 - p. 5

    MIT - 16.20 Fall, 2002

    14 = G4[ 41 1 42 2 46 6 ]

    1 = [ ]

  • 7/27/2019 Structural Mechanics - MIT 2002

    100/531

    5 = G5[51 1 52 2 56 6 ]

    Note: can reduce these for orthotropic, isotropic(etc.) as before.

    Strain - DisplacementPrimary

    11 = u1 (6)y1

    22 = u2 (7)y2

    12 = 1

    u1

    + u2

    (8)2 y2 y1

    Paul A. Lagace 2001 Unit 6 - p. 6

  • 7/27/2019 Structural Mechanics - MIT 2002

    101/531

    MIT - 16.20 Fall, 2002

    This further implies from above(since = 0 )

    y3No in-plane variation

  • 7/27/2019 Structural Mechanics - MIT 2002

    102/531

    pu3 = 0y

    but this is not exactly true

    INCONSISTENCY

    Why? This is an idealized model and thus an approximation. Thereare, in actuality, triaxial ( zz , etc.) stresses that we ignore here as

    being small relative to the in-plane stresses!(we will return to try to define small)

    Final note: for an orthotropic material, write the tensorialstress-strain equation as:

    2-D plane stress = ( , , , , = 1 2)

    E

    Paul A. Lagace 2001 Unit 6 - p. 8

  • 7/27/2019 Structural Mechanics - MIT 2002

    103/531

    MIT - 16.20 Fall, 2002

    Figure 6.3 Representation of Long Prismatic Body

  • 7/27/2019 Structural Mechanics - MIT 2002

    104/531

    Dimension in z - direction is much, much larger than inthe x and y directions

    L >> x, y

    Paul A. Lagace 2001 Unit 6 - p. 10

    MIT - 16.20 Fall, 2002

    (Key again: where are limits to >>??? wellconsider later)

    Since the body is basically infinite along z, the important loads are in thex - y plane (none in z) and do not change with z:

  • 7/27/2019 Structural Mechanics - MIT 2002

    105/531

    x y plane (none in z) and do not change with z:

    = = 0

    y3 z

    This implies there is no gradient in displacement along z, so (excludingrigid body movement):

    u3 = w = 0

    Equations of elasticity become:

    Equilibrium:Primary

    11 + 21 + f1 = 0 (1)y1 y2

    12 + 22 + f2 = 0 (2)y1 y2Paul A. Lagace 2001 Unit 6 - p. 11

    MIT - 16.20 Fall, 2002

    Secondary13 + 23 + f3 = 0y

    1y

    2 13 and 23 exist but do not enter into primary

  • 7/27/2019 Structural Mechanics - MIT 2002

    106/531

    13 23 p yconsideration

    Strain - Displacement

    11 = u1 (3)y1

    22 = u2 (4)y2

    12 = 1 u1 + u2

    (5)

    2 y2 y1

    Assumptions

    = 0, w = 0

    give:y3

    13 = 23 = 33 = 0(Plane strain)

    Paul A. Lagace 2001 Unit 6 - p. 12

    MIT - 16.20 Fall, 2002

    Stress - Strain(Do a similar procedure as in plane stress)

    3 Primary11 = (6)

  • 7/27/2019 Structural Mechanics - MIT 2002

    107/531

    11 ... (6) 22 = ... (7)12 = ... (8)

    Secondary13 = 0 23 = 0

    orthotropic ( 0 for anisotropic)

    33 0INCONSISTENCY: No load along z,

    yet 33 ( zz) is non zero.

    Why? Once again, this is an idealization. Triaxial strains ( 33 )actually arise.

    You eliminate 33 from the equation set by expressing it in terms of via ( 33 ) stress-strain equation.

    Paul A. Lagace 2001 Unit 6 - p. 13

    MIT - 16.20 Fall, 2002

    SUMMARY Plane Stress Plane Strain

    length (y 3) >> in-planedimensions (y 1 y2)

    thickness (y 3)

  • 7/27/2019 Structural Mechanics - MIT 2002

    108/531

    Eliminate 33

    from eq.Set by using 33 - eq. and expressing 33in terms of

    Eliminate 33

    from eq. setby using 33 = 0 - eq.and expressing 33 interms of

    Note:

    3333, u 3SecondaryVariable(s):

    , , u , , u PrimaryVariables:

    i3 = 0 i3 = 0ResultingAssumptions:

    only

    / y3 = 0

    33

  • 7/27/2019 Structural Mechanics - MIT 2002

    109/531

    Figure 6.4 Pressure vessel (fuselage, space habitat) Skin

    in order of 70 MPa(10 ksi)

    p o 70 kPa (~ 10 psi for living environment) zz

  • 7/27/2019 Structural Mechanics - MIT 2002

    110/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    111/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    112/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    113/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    114/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    115/531

    MIT - 16.20 Fall, 2002

    Problem: get expressions for (whatever) in one axis system in terms of(whatever) in another axis system

    (Review from Unified)

    Recall: nothing is inherentlychanging, we just describe a body

  • 7/27/2019 Structural Mechanics - MIT 2002

    116/531

    from a different reference.

    Use ~ (tilde) to indicate transformed axis system.Figure 7.2 General rotation of 3-D rectangular axis system

    (still rectangular cartesian)

    Paul A. Lagace 2001 Unit 7 - p. 3

    MIT - 16.20 Fall, 2002

    Define this transformation via direction cosines

    ~~l mn = cosine of angle from y m to y n

    Notes: by convention, angle is measured positivecounterclockwise (+ CCW)

  • 7/27/2019 Structural Mechanics - MIT 2002

    117/531

    counterclockwise (+ CCW)(not needed for cosine)

    ~ ~ since cos is an even functionl mn = l nmcos ( ) = cos (- )(reverse direction)

    ~ ~But

    lmn

    lmn

    angle differs by 2 !

    The order of a tensor governs the transformation needed. An n th ordertensor requires an n th order transformation (can prove by showing link of

    order of tensor to axis system via governing equations).

    Paul A. Lagace 2001 Unit 7 - p. 4

  • 7/27/2019 Structural Mechanics - MIT 2002

    118/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    119/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    120/531

    MIT - 16.20 Fall, 2002

    Not only do we sometimes want to change the orientation ofthe axes we use to describe a body, but we find it more

    convenient to describe a body in a coordinate system otherthan rectangular cartesian. Thus, consider

  • 7/27/2019 Structural Mechanics - MIT 2002

    121/531

    Other Coordinate Systems

    The easiest case isCylindrical (or Polar in 2-D) coordinates

    Figure 7.3 Loaded disk

    Figure 7.4 Stress around a hole

    Paul A. Lagace 2001 Unit 7 - p. 8

    MIT - 16.20 Fall, 2002

    Figure 7.5 Shaft

  • 7/27/2019 Structural Mechanics - MIT 2002

    122/531

    Define the point p by a different set of coordinates other than y 1, y2, y 3

    Figure 7.6 Polar coordinate representation

    Volume = rd drdz

    Paul A. Lagace 2001 Unit 7 - p. 9

    MIT - 16.20 Fall, 2002

    Use , r, z where:y1 = r cos

    y2 = rsin

    y3 = zare the mapping functions

  • 7/27/2019 Structural Mechanics - MIT 2002

    123/531

    are the mapping functionsNow the way we describe stresses, etc. change

    --> Differential element is now differentRectangular cartesian

    Figure 7.7 Differential element in rectangular cartesian system

    Volume = dy 1 dy 2 dy 3

    Paul A. Lagace 2001 Unit 7 - p. 10

    MIT - 16.20 Fall, 2002

    CylindricalFigure 7.8 Differential element in cylindrical system

  • 7/27/2019 Structural Mechanics - MIT 2002

    124/531

    Volume = rd drdz

    Generally:dy1 --> drdy2 --> rd dy3 --> dz (get from mapping functions)

    Paul A. Lagace 2001 Unit 7 - p. 11

  • 7/27/2019 Structural Mechanics - MIT 2002

    125/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    126/531

    MIT - 16.20 Fall, 2002

    (engineering shear strains)

    r = u + 1 ur u r r r

    z = 1 u3 + u r z

  • 7/27/2019 Structural Mechanics - MIT 2002

    127/531

    r z

    zr

    = ur + u3z r

    Stress - Strain Equations become, however, more complicated and noteasy to map into another coordinate systems.

    Why? Unless the material is isotropic, the properties change withdirection (if the material principal axes are rectangular orthogonal).

    Emnpq = l l qu E rstumr ns l pt l So, for cylindrical coordinates:

    Emnpq ( )

    a function of

    Paul A. Lagace 2001Unit 7 - p. 14

  • 7/27/2019 Structural Mechanics - MIT 2002

    128/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    129/531

    MIT - 16.20 Fall, 2002

    For cylindrical case: = r =

    = zactual mapping functions:

  • 7/27/2019 Structural Mechanics - MIT 2002

    130/531

    actual mapping functions:

    F y 11 ( , y 2 , y 3 ) = y22y1

    2+

    2 ( ,F y y 2 , y 3 ) = tan-1 (y2 / y1)1

    F y y 2 , y 3 ) = y33 ( ,1Other cases

    Lets next consider some general solution approaches

    Paul A. Lagace 2001Unit 7 - p. 17

    MIT - 16.20 Fall, 2002

    Unit 8Solution Procedures

  • 7/27/2019 Structural Mechanics - MIT 2002

    131/531

    Readings:R Ch. 4T & G 17, Ch. 3 (18-26)

    Ch. 4 (27-46)Ch. 6 (54-73)

    Paul A. Lagace, Ph.D.Professor of Aeronautics & Astronautics

    and Engineering Systems

    Paul A. Lagace 2001

  • 7/27/2019 Structural Mechanics - MIT 2002

    132/531

    MIT - 16.20 Fall, 2002

    Lets consider exact techniques. A common, and classic, one is:

    Stress Functions

    Relate six stresses to (fewer) functions defined in such a mannerh h id i ll i f h ilib i di

  • 7/27/2019 Structural Mechanics - MIT 2002

    133/531

    that they identically satisfy the equilibrium conditon Can be done for 3-D case Can be done for anisotropic (most often orthotropic) case

    --> See: Lekhnitskii, Anisotropic Plates,Gordan & Breach, 1968.

    --> Lets consider plane stress (eventually) isotropic

    8 equations in 8 unknowns

    - 2 equilibrium - 3 strains- 3 strain-displacement - 2 displacements- 3 stress-strain - 3 stresses

    Paul A. Lagace 2001

    Unit 8 - p. 3

  • 7/27/2019 Structural Mechanics - MIT 2002

    134/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    135/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    136/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    137/531

    MIT - 16.20 Fall, 2002

    Step 2: Use these in the plane stress compatibility equation:

    2xx 2yy

    2xy+ =

    x yy2

    x2

    (E6)

    we get quite a mess! After some rearranging andmanipulation, this results in:

  • 7/27/2019 Structural Mechanics - MIT 2002

    138/531

    p ,

    V V

    +

    +

    =

    ( )

    + ( )

    ( )

    +

    4

    4

    4

    2

    2

    4

    2

    2

    2

    2

    2

    2

    2

    21

    x y y

    ET

    xT

    y y

    2

    2

    x

    x

    (*)

    temperature term wehavent yet considered

    = coefficient of thermal expansionT = temperature differential

    This is the basic equation for isotropic planestress in Stress Function form

    Recall : is a scalarPaul A. Lagace 2001

    Unit 8 - p. 8

  • 7/27/2019 Structural Mechanics - MIT 2002

    139/531

    MIT - 16.20 Fall, 2002

    this function, and accompanying governing equation, couldbe defined in any curvilinear system (well see one suchexample later) and in plane strain as well.

    Butwhats this all useful for???This may all seem like magic. Why were the s assumed as theywere?

  • 7/27/2019 Structural Mechanics - MIT 2002

    140/531

    were?

    This is not a direct solution to a posed problem, per se , but is knownas

    The Inverse Method

    In general, for cases of plane stress without body force or temp ( 4 = 0):1. A stress function (x, y) is assumed that satisfies the

    biharmonic equation2. The stresses are determined from the stress function as

    defined in equations (8-1) - (8-3)3. Satisfy the boundary conditions (of applied tractions)4. Find the ( structural ) problem that this satisfies

    Paul A. Lagace 2001

    Unit 8 - p. 10

  • 7/27/2019 Structural Mechanics - MIT 2002

    141/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    142/531

    MIT - 16.20 Fall, 2002

    (Rule of Thumb) Generally, the area where specificsare important extends into the body for a distance equalto about the greatest linear dimension of the portion of

    the surface on which the loading / B.C. occurs. This allows us to get solutions for most parts of a

    structure via such a method.

  • 7/27/2019 Structural Mechanics - MIT 2002

    143/531

    But failure often originates/occurs in a region of load

    introduction/boundary condition(example: where do nailed/screwed boards

    break?)

    Examples (for stress functions)

    Example 1 (assume T = 0, V = 0 [no body forces])Pick = C 1 y2

    this satisfies 4 = 0C1 is a constantwill be determined by satisfying the

    B.C.sPaul A. Lagace 2001

    Unit 8 - p. 13

    MIT - 16.20 Fall, 2002

    Using the definitions:

    2 xx = 2 = 2C 1y

    2 = = 0yy

    x2

  • 7/27/2019 Structural Mechanics - MIT 2002

    144/531

    = 0xy

    gives the state of stress

    What problem does this solve???

    Uniaxial loadingFigure 8.1 Representation of Uniaxial Plane Stress Loading

    applied stress (uniformstress on end)

    Paul A. Lagace 2001

    Unit 8 - p. 14

    MIT - 16.20 Fall, 2002

    Check the B.C.s:@ x = l , 0

    xx =

    o =

    2C 1

    C1 = o

    2 = 0xy

  • 7/27/2019 Structural Mechanics - MIT 2002

    145/531

    @ y = w2

    = 0yy = 0xy

    Thus: =

    o y22

    Paul A. Lagace 2001

    Unit 8 - p. 15

  • 7/27/2019 Structural Mechanics - MIT 2002

    146/531

    MIT - 16.20 Fall, 2002

    Figure 8.2 Representation of uniaxial test specimen and resultantstress state

    x

    y

  • 7/27/2019 Structural Mechanics - MIT 2002

    147/531

    These grips allow no displacement in the y-direction

    --> v = 0 both @ x = 0, lThe solution gives:

    v = y 0 in general @ x = 0, l

    E

    But , far from the effects of load introduction, the solution holds.Near the grips, biaxial stresses arise. Often failure occurs here.(Note : not in a pure uniaxial field. This is a common problem with testspecimens.)

    Paul A. Lagace 2001 Unit 8 - p. 17

    MIT - 16.20 Fall, 2002

    Example 2

    Lets now get a bit more involved and consider the

    Stress Distribution Around a HoleFigure 8.3 Configuration of uniaxially loaded plate with a hole

  • 7/27/2019 Structural Mechanics - MIT 2002

    148/531

    Large (infinite) plate subjected to uniform far - field tension

    Since the local specific of interest is a circle, it makes sense to usepolar coordinates.

    By using the transformations to polar coordinates of Unit #7, we find:

    Paul A. Lagace 2001 Unit 8 - p. 18

    MIT - 16.20 Fall, 2002

    1 1 2 rr = r r+

    r2 2+ V

    2

    + V = r2

    1 2 1 + r = 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    149/531

    r r r r2

    These are, again, defined such that equilibrium equations areautomatically satisfied.

    where: fr = V

    f = 1 V

    r r

    f + f 1 frand V exists if: =r r r

    The governing equation is again:

    4 = E 2 (T) (1 )2 V for plane stress, isotropic

    Paul A. Lagace 2001 Unit 8 - p. 19

  • 7/27/2019 Structural Mechanics - MIT 2002

    150/531

    MIT - 16.20 Fall, 2002

    Step 2: Determine stressesPerforming the derivatives from the - relations in polar coordinatesresults in:

    rr =B

    20 + 2C 0 + 2A 2

    6B4

    2 4D 2 cos2 r r r 2

    B0 2C 2A6B 2 12C 2 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    151/531

    = 20 + 2C 0 + 2A 2 + 4

    2 + 12C 2r2

    cos2

    r r

    2 in r = 2A 2 6B

    42 + 6C 2r

    2 2D 2 s 2 r rNote that we have a term involving r 2. As r gets larger, the stresseswould become infinite. This is not possible. Thus, the coefficient C 2must be zero:

    C2 = 0

    So we have five constants remaining:A2, B 0, B2, C 0, D 2

    we find these by

    Paul A. Lagace 2001 Unit 8 - p. 21

  • 7/27/2019 Structural Mechanics - MIT 2002

    152/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    153/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    154/531

    MIT - 16.20 Fall, 2002

    Figure 8.5 Stress condition at boundary of hole

  • 7/27/2019 Structural Mechanics - MIT 2002

    155/531

    So we (summarizing) appear to have 4 B. C.s: rr = o + o cos2 @ r = 2 2

    r = o sin2 @ r = 2

    rr = 0 @ r = a

    r = 0 @ r = a

    Paul A. Lagace 2001 Unit 8 - p. 25

  • 7/27/2019 Structural Mechanics - MIT 2002

    156/531

    MIT - 16.20 Fall, 2002

    Figure 8.6 Polar coordinate configuration for uniaxially loaded platewith center hole

  • 7/27/2019 Structural Mechanics - MIT 2002

    157/531

    So we have the solution to find the stress field around a hole. Letsconsider one important point. Wheres the largest stress?

    At the edge of the hole. Think of flow around the hole:

    Figure 8.7 Representation of stress flow around a hole

    Paul A. Lagace 2001 Unit 8 - p. 27

    MIT - 16.20 Fall, 2002

    @ = 90, r = a

    a 2 a 4o = xx = 2

    o 1 + a

    2

    2

    1 + 3a

    4 (1)

    = 3 o

    Define the:

  • 7/27/2019 Structural Mechanics - MIT 2002

    158/531

    Stress Concentration Factor (SCF) = local stressfar - field stress

    SCF = 3 at hole in isotropic plate

    The SCF is a more general concept. Generally the sharper thediscontinuity, the higher the SCF.

    The SCF will also depend on the material. For orthotropic materials, itdepends on E x and E y getting higher as E x /E y increases. In a uni-directionalcomposite, can have SCF = 7.

    Can do stress functions for orthotropic materials, but need to go tocomplex variable mapping

    --> (See Lekhnitskii as noted earlier)Paul A. Lagace 2001 Unit 8 - p. 28

  • 7/27/2019 Structural Mechanics - MIT 2002

    159/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    160/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    161/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    162/531

    MIT - 16.20 Fall, 2002

    If these thermal expansions / contractions are resisted by some means,then thermal stresses can arise. However , thermal stresses is amisnomer, they are really

    stresses due to thermal effects -- stresses are alwaysmechanical(well see this via an example)

    --> Consider a 3-D generic material.

  • 7/27/2019 Structural Mechanics - MIT 2002

    163/531

    Then we can write:T ij = ij T (9 1)

    i, j = 1, 2, 3 (as before)

    ij = 2nd order tensorThe total strain of a material is the sum of the mechanical strain and thethermal strain .

    mechanical

    thermalM T ij = ij + ij (9 2)

    totalPaul A. Lagace 2001 Unit 9 - p. 3

    MIT - 16.20 Fall, 2002

    (actual) total strain ( ij): that which you actually measure; thephysical deformation of the part

    T thermal strain ( ij ): directly caused by temperature differencesM

    mechanical strain ( ij ): that part of the strain which is directlyrelated to the stress

    Relation of mechanical strain to stress is:M = S

  • 7/27/2019 Structural Mechanics - MIT 2002

    164/531

    ij

    Sijkl

    kl

    compliance

    Substituting this in the expression for total strain (equation 9-2) and usingthe expression for thermal strain (equation 9-1), we get:

    ij = S ijkl kl + ij T

    S ijkl kl = ij ij TWe can multiply both sides by the inverse of the compliancethat is

    merely the elasticities:1

    Sijkl

    = E ijkl

    Paul A. Lagace 2001 Unit 9 - p. 4

  • 7/27/2019 Structural Mechanics - MIT 2002

    165/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    166/531

    MIT - 16.20 Fall, 2002

    Stresses will arise due to the mechanical strain and these are theso-called thermal stresses.

    Due to equilibrium there must be a reaction at the boundaries.

    (must always have dA = Force for equilibrium)Think of this as a two-step process

    Figure 9.3 Representation of stresses due to thermal expansion astwo-step process

  • 7/27/2019 Structural Mechanics - MIT 2002

    167/531

    p p

    expands due to T, T

    Reactionforce of boundaries related to mechanical strain, M

    M = -T

    total = 0 (no physical deformation)

    Paul A. Lagace 2001 Unit 9 - p. 7

    MIT - 16.20 Fall, 2002

    Values of C.T.E.s

    Note: ij = ji

    Anisotropic Materials6 possibilities: 11 , 22 , 33 , 12 , 13 , 23

    T can cause shear strains

    not true in engineering materials

  • 7/27/2019 Structural Mechanics - MIT 2002

    168/531

    Orthotropic Materials3 possibilities: 11 , 22 , 33

    T only causes extensional strainsNotes: 1. Generally we deal with planar structures and

    are interested only in 11 and 222. If we deal with the material in other than the

    principal material axes, we can have an 12

    Transformation obeys same law as strain (its a tensor).

    Paul A. Lagace 2001 Unit 9 - p. 8

    MIT - 16.20 Fall, 2002

    2-D form:

    = l l

    11 , 22 (in- plane values) 12 = 0 (in material axes)

    3-D form:

    ij = l l kl

  • 7/27/2019 Structural Mechanics - MIT 2002

    169/531

    j j li k

    So, in describing deformation in some axis system at an angle tothe principal material axes..

    Figure 9.4 Representation of 2-D axis transformation

    ~y2

    y1~

    y2

    + CCW

    y1Paul A. Lagace 2001 Unit 9 - p. 9

    MIT - 16.20 Fall, 2002

    11 = cos2 11 + sin

    2 22 22 = sin

    2 11 + cos2 22

    12 = cos sin ( 22 11) only exists if 11 22

    [isotropic no shear]

  • 7/27/2019 Structural Mechanics - MIT 2002

    170/531

    Isotropic Materials1 value: is the same in all directions

    Typical Values for Materials:

    Units: x 10 -6 /Fin/in/Fstrain/F

    strain/F

    Paul A. Lagace 2001 Unit 9 - p. 10

    Material C.T.E.

    Uni Gr/Ep (perpendicular to fibers)

    Uni Gr/Ep (along fibers)

    TitaniumAluminum

    Steel

    16

    -0.2

    512.5

    6

  • 7/27/2019 Structural Mechanics - MIT 2002

    171/531

    MIT - 16.20 Fall, 2002

    = (T) C.T.E. is a function of temperature (see MIL HDBK 5for metals). Can be large difference.

    Implication: a zero C.T.E. structure may not truly be

    attainable since it may be C.T.E. at T 1 but not at T 2 !--> Sources of temperature differential (heating)

    ambient environment (engine, polar environment, earthshadow, tropics, etc.)

  • 7/27/2019 Structural Mechanics - MIT 2002

    172/531

    aerodynamic heating radiation (black-body)

    --> Constant T (with respect to spatial locations)

    In many cases, we are interested in a case where T (from some referencetemperature) is constant through-the-thickness, etc. thin structures structures in ambient environment for long periods of time

    Relatively easy problem to solve. Use: equations of elasticity equilibrium stress-strain

    Paul A. Lagace 2001 Unit 9 - p. 12

  • 7/27/2019 Structural Mechanics - MIT 2002

    173/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    174/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    175/531

    MIT - 16.20 Fall, 2002

    Convection most important in aircraft:

    Aerodynamic Heatinglook at adiabatic wall temperature

    2TAW = 1 + 1 r M T2

    where: = specific heat ratio (1.4 for air)r = "recovery factor" (0 8 0 9)

  • 7/27/2019 Structural Mechanics - MIT 2002

    176/531

    r = "recovery factor" (0.8 - 0.9)M = Mach numberT = ambient temperature ( K)

    TAW is maximum temperature obtained on surface (for zero heat flux)

    Note: @40,000 ft. M = 2 TAW = 230FM = 3 TAW = 600F

    (much above M = 2, cannot use aluminum

    since properties are too degraded)worse in reentry

    Paul A. Lagace 2001 Unit 9 - p. 16

  • 7/27/2019 Structural Mechanics - MIT 2002

    177/531

    MIT - 16.20 Fall, 2002

    q = - Ts 4

    surface temperatureheatflux Stefan-Boltzmann constant

    emissivity(a material property)

    2. Absorptivity

  • 7/27/2019 Structural Mechanics - MIT 2002

    178/531

    heatq = I s angle factor

    flux intensity of sourceabsorptivity(a material property)

    Figure 9.5 Representation of heat flux impinging on structure

    angle ofstructurelike the sun

    Is (intensity of source)

    Paul A. Lagace 2001 Unit 9 - p. 18

    MIT - 16.20 Fall, 2002

    Heat conductionThe general equation for heat conduction is:

    Tqi

    T = kij

    T

    x jwhere:

    T = temperature [K]T wattsq i = heat flux per unit area in i direction

    m2

  • 7/27/2019 Structural Mechanics - MIT 2002

    179/531

    mT wattsk ij = thermal conductivity m K

    (material properties)TThe k ijare second order tensors

    Paul A. Lagace 2001 Unit 9 - p. 19

    MIT - 16.20 Fall, 2002

    consider:Figure 9.6 Representation of structure exposed to two environments

    Environment 1 Environment 2

  • 7/27/2019 Structural Mechanics - MIT 2002

    180/531

    look at a strip of width dz:Figure 9.7 Representation of heat flow through infinitesimal strip of

    materialTq z

    TTq z +

    qz dz

    z

    Paul A. Lagace 2001 Unit 9 - p. 20

  • 7/27/2019 Structural Mechanics - MIT 2002

    181/531

  • 7/27/2019 Structural Mechanics - MIT 2002

    182/531

    MIT - 16.20 Fall, 2002

    Bottom line : use these equations to solve for temperature distribution instructure subject to B.C.s

    T (x, y, z) gives T (x, y, z)

    Note : These variations can be significant

    Example:Figure 9.8 Representation of plate in space

  • 7/27/2019 Structural Mechanics - MIT 2002

    183/531

    4q in

    sun side black space side

    q in

    = I s - Ts4 qout = Ts

    Paul A. Lagace 2001 Unit 9 - p. 23

    MIT - 16.20 Fall, 2002

  • 7/27/2019 Structural Mechanics - MIT 2002

    184/531

    could get other cases where T peaks in the center, etc.Result :

    Internal stresses (generally) arise if T varies spatially. (unless it isa linear variation which is unlikely given the governing equations).

    Why?consider an isotropic plate with T varying only in the y-direction

    Paul A. Lagace 2001 Unit 9 - p. 24

    MIT - 16.20Fall, 2002

    Figure 9.9 Representation of isotropic plate with symmetric y-variationof T about x-axis

  • 7/27/2019 Structural Mechanics - MIT 2002

    185/531

    (for the time being, limit T to be symmetric withrespect to any of the axes)

    Paul A. Lagace 2001 Unit 9 - p. 25

    MIT - 16.20Fall, 2002

    At first it would seem we get a deformation of a typical cross-sectionA-B as:

    x

    y

  • 7/27/2019 Structural Mechanics - MIT 2002

    186/531

    This basic shape would not vary in x.Note, however, that this deformation in the x-direction (u) varies in y.

    u 0

    y shear strain exists!

    But , T only causes extensional strains. Thus, this deformationcannot occur.

    (in some sense, we have planesections must remain plane)

    Thus, the deformation must be:Paul A. Lagace 2001 Unit 9 - p. 26

    MIT - 16.20Fall, 2002

    locally

    In order to attain this deformation, stresses must arise. Consider

    two elements side by sideU d f d D f d

  • 7/27/2019 Structural Mechanics - MIT 2002

    187/531

    Undeformed Deformed

    T

    greater

    These two must deform the same longitudinally, so there must bestresses present to compress the top piece and elongate the bottompiece

    Paul A. Lagace 2001 Unit 9 - p. 27

    MIT - 16.20Fall, 2002

    Thus:x = x (x)y = y (y)

    This physical argument shows we have thermal strains, mechanicalstrains and stresses.

    Causes

  • 7/27/2019 Structural Mechanics - MIT 2002

    188/531

    self-equilibrating

    a a ydx = 0

    b b xdy = 0

    Paul A. Lagace 2001 Unit 9 - p. 28

    MIT - 16.20 Fall, 2002

    Solution Technique

    No different than any other elasticity problem. Use equations of elasticity

    subject to B. C.s. exact solutions stress functions

    recall:

    4 = E 2 (T) (1 )2 V

  • 7/27/2019 Structural Mechanics - MIT 2002

    189/531

    etc.(see Timoshenko)

    --> Does this change for orthotropic materials?NO (stress-strain equations change)

    Weve considered Thermal Strains and Stresses , now lets

    look at the other effect:

    Paul A. Lagace 2001 Unit 9 - p. 29

    MIT - 16.20 Fall, 2002

    Degradation of Material Properties (due tothermal effects)

    Here there are two major categories

    1. Static Properties

    Modulus, yield stress, ultimate stress, etc. change withtemperature (generally T property )

    (see Rivello)

  • 7/27/2019 Structural Mechanics - MIT 2002

    190/531

    temperature (generally, T property ) Fracture behavior (fracture toughness) goes through a

    transition at glass transition temperatureductile brittle

    Tg

    Paul A. Lagace 2001 Unit 9 - p. 30

    MIT - 16.20 Fall, 2002

    Figure 9.10 Representation of variation of ultimate stress withtemperature

  • 7/27/2019 Structural Mechanics - MIT 2002

    191/531

    Figure 9.11 Representation of change in stress-strain behavior withtemperature

    ductile as T increases)(generally, behavior is more

    --> Thus, must use properties at appropriate temperature in analysisMIL-HDBK-5 has much data

    Paul A. Lagace 2001 Unit 9 - p. 31

    MIT - 16.20 Fall, 2002

    2. Time-Dependent Properties

    There is a phenomenon (time-dependent) in materials known as creep .This becomes especially important at elevated temperature.

    Figure 9.12 Representation of creep behavior

    Hang a load P and

    monitor strain with time

  • 7/27/2019 Structural Mechanics - MIT 2002

    192/531

    resulting strain-timebehavior

    This keeps aluminum from being used in supersonic aircraft in criticalareas for aerodynamic heating.

    Paul A. Lagace 2001 Unit 9 - p. 32

    MIT - 16.20 Fall, 2002

    Other Environmental Effects

    Temperature tends to be the dominating concern, but others

    may be important in both areas atomic oxygen degrades properties UV degrades properties etc.

    Same effects may cause environmental strains like thermalstrains:

  • 7/27/2019 Structural Mechanics - MIT 2002

    193/531

    Example - moistureMaterials can absorb moisture. Characterized by aswelling coefficient = ij

    Same operator as ij (C. T. E.) except it operates on moistureconcentration, c:

    sij = ij c

    swelling moisture concentrationstrain swelling

    coefficient

    Paul A. Lagace 2001 Unit 9 - p. 33

    MIT - 16.20 Fall, 2002

    and then we have:ij = ij

    M+ ij

    T+ ij

    S

    totalThis can be generalized such that the strain due to an environmentaleffect is:

    environmental

    strain Eij = ij X

  • 7/27/2019 Structural Mechanics - MIT 2002

    194/531

    environmentalenvironmentaloperator scalar

    and the total strain is the sum of the mechanical strain(s) and theenvironmental strains

    A strain of this type has become important in recent work.This deals with the field of

    Paul A. Lagace 2001 Unit 9 - p. 34

    MIT - 16.20 Fall, 2002

    Piezoelectricity

    A certain class of materials, known as piezoelectronics, have a coupling

    between electric field and strain such that:electric field causes deformation/strainstrain results in electric field

    This can be looked at conceptually the same way as environmentalstrains except electric field is a vector (not a scalar). Thus, the basicrelationship is:

  • 7/27/2019 Structural Mechanics - MIT 2002

    195/531

    piezoelectric

    ijp

    = d E kijkwhere:

    Ek = electric fieldd ijk = piezoelectric constant

    units = [strain/field]a key difference here is that the operator (d ijk) is a third-order tensor

    (how transform? 3 direction cosines)

    Paul A. Lagace 2001 Unit 9 - p. 35

    MIT - 16.20 Fall, 2002

    And we add this strain to the others to get the total strain

    (consider the case with only mechanical and piezoelectric strain)

    ij=

    ijM

    + ij

    p

    Again, only the mechanical strain is related directly to the stress:ij = S ijmn mn + d ijk Ek

    inverting gives:

    ij = E ijmn mn E ijmn dmnk Ek( t h th it hi f i di !)

  • 7/27/2019 Structural Mechanics - MIT 2002

    196/531

    (watch the switching of indices!)thus we have piezoelectric-induced stresses of:

    E ijmn d mnk E kif the piezoelectric expansion is physically resisted.Again, equilibrium ( = F) must be satisfied.

    But , unlike environmental cases, the electric field is not just an externalparameter from some uncoupled equation of state but there is a coupledequation:

    Paul A. Lagace 2001 Unit 9 - p. 36

    MIT - 16.20 Fall, 2002

    Di = e ik Ek + d inm mnnote switch in indices since this is transpose ofdielectric constant from previous equation

    where:e ik = dielectric constantDi = electrical charge

    --> Normally, when piezoelectric materials are utilized, E-field control

    is assumed. That is, E k is the independent variable and the electricalcharge is allowed to float and take on whatever value results. But,

  • 7/27/2019 Structural Mechanics - MIT 2002

    197/531

    g ,when charge constraints are imposed the simultaneous set of equations:

    mn = Emnij ij Emnij d ijk Ek

    Di = e ik Ek + d inm mnmust be solved. This is coupled with any other sources of strain(mechanical, etc.)

    Paul A. Lagace 2001 Unit 9 - p. 37

    MIT - 16.20 Fall, 2002

    Piezoelectrics useful for

    sensors control of structures (particularly dynamic effects)

    Note: electrical folk use a very differentnotation (e.g., S = strain)

    Now that weve looked at the general causes of stress andstrain and how to manipulate, etc., consider generalstructures and stress and strain in that context

  • 7/27/2019 Structural Mechanics - MIT 2002

    198/531

    structures and stress and strain in that context.

    Paul A. Lagace 2001 Unit 9 - p. 38

  • 7/27/2019 Structural Mechanics - MIT 2002

    199/531

    MIT - 16.20 Fall, 2002

    III Torsion

  • 7/27/2019 Structural Mechanics - MIT 2002

    200/531

    III. Torsion

    Paul A. Lagace 2001 Unit 10 - p. 2

    MIT - 16.20 Fall, 200