Storage Tank Dike Design - Purdue Engineering · Storage Tank Dike Design George Harriott...

22
Storage Tank Dike Design George Harriott Computational Modeling Center Air Products P2SAC Spring Meeting Purdue University May 3, 2017

Transcript of Storage Tank Dike Design - Purdue Engineering · Storage Tank Dike Design George Harriott...

Storage Tank Dike Design

George HarriottComputational Modeling CenterAir Products

P2SAC Spring MeetingPurdue UniversityMay 3, 2017

Tank Rupture Consequences

• Molasses tank, Boston MA, 1919, 2.5x106 gallons, 21 fatalities

• Water tank, Juarez, MX, 1986, 7.5 x105 gallons, 4 fatalities

• Oil tank, Floreffe PA, 1988, 3.8x106 gallons

• Molasses tank, Loveland CO, 1990, 6.2 x105 gallons

• HCl tank, McDonald, PA, 2002,104 gallons

Floreffe Aftermath

Regulatory Requirements

• Secondary containment volume must be sufficient to hold the contents of the tank (EPA/OSHA).

• Fire code constraints

• Dynamics not considered!

Design Considerations

• Dike height

• Dike diameter

• Dike shape

• Complete tank rupture

• Small hole in tank wall

Rupture Flow Scales

• Height: H ∼ 10 m

• Distance: L ∼ 10 m

• Velocity: (gH)1/2 ∼ 10 m/s

• Time: L/(gH)1/2 ∼ 1 s

• Reynolds number: Re ∼ 108

Initial Condition

H

L

Shallow-Water Theory

• Depth-averaged inviscid equations of motion

• Exact mass balance

• Hydrostatic pressure

• Analogous to compressible gas dynamics

h + ∇•(hu) = 0

u + u•∇u + ∇h = 0

• h ⇒u ⇒ ⇒

Shock Conditions

• Multi-valued SWT solutions

• Supplemental jump equations

u+ − λ( )h+ − u− − λ( )h− = 0

u+ − λ( )2 h+ − u− − λ( )2 h− +12(h+ )2 − (h− )2( ) = 0 (-) (+)

⇐ λ

Numerical Pitfalls

• Diffusive Errors

• Dispersive Errors

Computational Methods

• Method of Characteristics

• Explicit Finite-Difference (Lax, FCT, WENO)

• Implicit Finite Element (DG, SUPG)

• Projection Methods (POD)

Method of Characteristics

φ =hu⎧⎨⎩

⎫⎬⎭

⇒ Ai∂φ∂t

+ Bi∂φ∂x

+ψ = 0

Eigenvalue: λ ξiA( ) = ξiB

ξiA( )i ∂φ∂t

+ λ ∂φ∂x

⎧⎨⎩

⎫⎬⎭+ ξiψ = 0

ξiA( )idφdt

+ ξiψ = 0 : dxdt

= λ

Simple Planar WaveWavespeed : c = h

dhdt

± cdudt

= 0 : dxdt

= u ± c

x

t

c = 0u = 0

c = 1u = 0

c =23−

13

x −αt

⎛⎝⎜

⎞⎠⎟

: u = 23+

23

x −αt

⎛⎝⎜

⎞⎠⎟

Splash

Lax FD Method

x

t

i + 1, ji, j i - 1, j

i, j + 1

∂h∂t

+∂q∂x

= 0 : q ≡ uh

hi, j+1 =12hi−1, j + hi+1, j( ) − Δt

2Δx⎛⎝⎜

⎞⎠⎟qi+1, j − qi−1, j( )

Planar Rupture Splash

Complete Rupture Symmetric Planar Flow

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Wall Position

DikeSplash

Complete Rupture: Planar Flow

a d0.80 0.990.60 0.960.40 0.900.30 0.840.20 0.760.15 0.690.10 0.590.05 0.41

Polar Rupture Splash

Complete Rupture Symmetric Polar Flow

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Tank Radius

DikeSplash

Complete Rupture: Polar Flow

a d0.90 0.910.80 0.820.70 0.730.60 0.640.50 0.550.40 0.450.30 0.350.20 0.25

Similarity Solution

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

r

h

Polar Paraboloid Wave

t=0.0

t=0.2

t=0.4

0 ≤ r ≤ R(t ) = α 2 + 4t 2 h(r,t ) = 2α2

R2 1− r2

R2

⎛⎝⎜

⎞⎠⎟

u(r,t ) = 4rtR2

Polar Parabaloid Splash

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Tank Radius

H

Polar Paraboloid Splash

Rupture Flow Experiments

• Greenspan & Young (1978)

(a) planar flow, validated SWT

(b) sloped dikes particularly ineffective

(c) initial splash exceeds tank height

• Greenspan & Johansson (1981)

(a) polar flow

(b) dike shape study

(c) proposed trip rings, deflectors

Summary

• Low (equilibrium) dikes do not contain rupture flow

• Shallow Water Theory can be applied to address:

(a) small hole splash

(b) dike overflow

(c) multiple dike interaction

• Small-scale experiments are representative