Stixrude1

download Stixrude1

of 27

Transcript of Stixrude1

  • 8/6/2019 Stixrude1

    1/27

    7/12/04 CIDER/ITP Short Course

    Composition and Structure of

    Earths InteriorA Perspective from Mineral

    Physics

  • 8/6/2019 Stixrude1

    2/27

    Mineral Physics ProgramFundamentals of mineralogy, petrology, phase equilibria

    Lecture 1. Composition and Structure of Earths Interior (Lars) Lecture 2. Mineralogy and Crystal Chemistry (Abby)

    Lecture 3. Introduction to Thermodynamics (Lars)

    Fundamentals of physical properties of earth materials

    Lecture 4. Elasticity and Equations of State (Abby)

    Lecture 5. Lattice dynamics and Statistical Mechanics (Lars) Lecture 6. Transport Properties (Abby)

    Frontiers

    Lecture 7. Experimental Methods and Challenges (Abby)

    Lecture 8. Electronic Structure and Ab Initio Theory (Lars)

    Lecture 9. Building a Terrestrial Planet (Lars/Abby)

    Tutorials

    Constructing Earth Models (Lars)

    Constructing and Interpreting Phase Diagrams (Abby)

    Interpreting Lateral Heterogeneity (Abby)

    Molecular dynamics (Lars)

  • 8/6/2019 Stixrude1

    3/27

    Outline Earth as a material What is Earth made of?

    What are the conditions? How does it respond? How do we find out?

    Structure and Composition Pressure, Temperature,

    Composition Phases Radial Structure

    Origins of MantleHeterogeneity Phase Temperature

    Composition

  • 8/6/2019 Stixrude1

    4/27

    What is Earth made of? Atoms Contrast plasma ... All processes governed by

    Atomic arrangement

    (structure) Atomic dynamics

    (bonding)

    F = kx F : Change in energy,

    stress x : Change in temperature,

    phase, deformation k : Material property

    Beyond continuua Measure k Understanding

  • 8/6/2019 Stixrude1

    5/27

    What is Earth made of? Condensed Matter

    Potential Energy, i.e. bonds,are important

    No simple theory (contrastideal gas)

    Pressure Scale Sufficient to alter bonding,

    structure Not fundamental state

    Pbond~eV/3=160 GPa~Pmantle

  • 8/6/2019 Stixrude1

    6/27

    What is Earth made of? Solid (mostly)

    Response to stressdepends on time scale

    Maxwell relaxation time

    XM ~1000 years Crystalline Multi-phase Anisotropic

    XM!L

    G

    viscosity

    shear modulus

  • 8/6/2019 Stixrude1

    7/27

    How does it respond? To changes in energy

    Change in temperature Heat Capacity CP, CV

    Change in Density Thermal expansivity, E

    Phase Transformations Gibbs Free Energy, G

    Influence all responsesin general

  • 8/6/2019 Stixrude1

    8/27

    How does it respond? To hydrostatic stress

    Compression Bulk modulus, KS, KT

    Adiabatic heating Grneisen parameter K=EKS/VcP

    Phase Transformations Gibbs Free Energy

    To deviatoric stress Elastic deformation

    Elastic constants, cijkl Flow

    Viscosity, Lijkl

    Failure

  • 8/6/2019 Stixrude1

    9/27

    How does it respond? Rates of Transport of

    Mass: chemical diffusivity Energy: thermal

    diffusivity Momentum: viscosity Electrons: electrical

    conductivity

    Other Non-equilibrium

    properties Attenuation (Q)

  • 8/6/2019 Stixrude1

    10/27

    How do we find out?

    How does interior differ fromlaboratory? The significance of the differences

    depends on the property to beprobed

    Equilibrium thermodynamicproperties Depend on Pressure, Temperature,

    Major Element Composition. So: Control them and measure

    desired property in the laboratory!

    Or compute theoretically Non-equilibrium properties

    Some also depend on minor elementcomposition, and history

    These are more difficult to control

    and replicate

  • 8/6/2019 Stixrude1

    11/27

    How do we find out? Experiment

    Production of high

    pressure and/ortemperature

    Probing of sample insitu

    1.08

    1.07

    1.06

    1.05

    1.04

    1.03

    1.02

    1.01

    1.00

    RelativeVolume,

    V/V

    0

    200016001200800400

    Temperature (K)

    Forsterite0 GPa

    Bouhifd et al.(1996)

    K00.1

    q01

  • 8/6/2019 Stixrude1

    12/27

    How do we find out? Theory

    Solve Kohn-Sham

    Equations (QM) Approximations

    35

    30

    25

    20

    15

    10Tem

    erature

    Deri

    ati

    e

    G,-

    G/

    T

    MPa

    K

    -1)

    140120100806040200

    Pressure

    GPa)

    MgSiO 3 Perovskite

    2500 K

    Marton& Cohen 2002)

    Wentzcovitchetal.2004)

    Oganovetal. 2002)

    LS~K

    LS~

    LS~ K

    LS=LS0

  • 8/6/2019 Stixrude1

    13/27

    Pressure, Temperature,

    Composition P/T themselves depend on

    material properties Pressure: Self-gravitation

    modified significantly bycompression

    Temperature: Self-compression, energy,

    momentum transport Composition Heterogeneous Crust/Mantle/Core Within Mantle?

  • 8/6/2019 Stixrude1

    14/27

    Pressure, Temperature,

    Composition

  • 8/6/2019 Stixrude1

    15/27

    Pressure

    Combine

    K=bulk modulus

    Must account for phase

    transformations

    350

    300

    250

    200

    150

    100

    50

    0

    ressure(

    a)

    6000400020000

    epth (k )

    Inner

    ore

    uter

    ore

    Lowerantle

    TransitionZone

    Upper

    antle

    E

    xP

    xr! V(r)g(r)

    xPx

    ! K

    V

  • 8/6/2019 Stixrude1

    16/27

    Temperature Constraints: near surface Heat flow Magma source Geothermobarometry

    Constraints: interior Phase transformations Grneisen parameter Physical properties

    Properties of Isentrope (T1000 K Verhoogen effect

    Questions Boundary layers? Non-adiabaticity?

    2800

    2600

    2400

    2200

    2000

    1800

    1600

    Tem

    erature

    K)

    3000200010000

    Depth km)

  • 8/6/2019 Stixrude1

    17/27

    Composition Constraints: extraterrestrial Nucleosynthesis Meteorites

    Constraints: near surface

    Xenoliths Magma source

    Constraints: Interior Physical properties

    Fractionation important Earth-hydrosphere-space Crust-mantle-core

    Mantle homogeneousbecause well-mixed? Not in trace elements Major elements? Pyrolite/Lherzolite/Peridotite/

  • 8/6/2019 Stixrude1

    18/27

    Phases Upper mantle

    Olivine, orthopyroxene,clinopyroxene,

    plagpspinelpgarnet Transition Zone

    OlivinepWadsleyitepRingwoodite

    Pyroxenes dissolve into garnet

    Lower mantle Two perovksites + oxide

    What else? Most of interior still relatively

    little explored

  • 8/6/2019 Stixrude1

    19/27

    Radial Structure Influenced by

    Pressure

    Phasetransformation

    Temperature

    6.5

    6.0

    5.5

    5.0

    4.5

    4.0

    3.5

    earWave

    el

    city(k

    s

    1)

    6004002000

    e

    t

    !(k

    ")

    #l

    $

    s#

    %l

    &a

    ri

    % #x c

    #x

    '

    2/c$

    t( j

    ca# v # v

    ( &

    ak

  • 8/6/2019 Stixrude1

    20/27

    Radial Structure of Pyrolitic

    Mantle Lower mantle

    Questions

    Homogeneous incomposition, phase?

    Problems Physical properties at

    lower mantle conditions

    Phase transformationswithin lower mantle?

    5.5

    5.0

    4.5

    4.0

    3.5

    )

    e0

    sity(

    1

    c

    2

    3

    3)

    3000200010000

    4e

    5t

    6(k

    7)

    8

    yr9

    lite100@

    a

  • 8/6/2019 Stixrude1

    21/27

    Radial Structure of Pyrolitic

    Mantle Upper Mantle and

    Transition Zone

    Shallow discontinuities Local minimum

    410, 520,660

    High gradient zone at

    top of lower mantle Questions

    Role of anisotropy

    Role of attenuation

    4.6

    4.4

    4.2

    4.0

    3.8

    3.6

    3.4

    3.2

    A

    eB

    sity(

    C

    c

    D

    E

    3)

    10008006004002000

    Fe

    Gt

    H(k

    I)

    P

    yrQ

    lite100R

    a

  • 8/6/2019 Stixrude1

    22/27

    Radial Structure of Pyrolitic

    Mantle Discontinuities

    Questions:

    Structure asf(composition)

    How well do we knowphase equilibria?

    4.4

    4.3

    4.2

    4.1

    4.0

    3.9

    3.8

    S

    eT

    sity(

    U

    c

    V

    W

    3)

    700680660640620600

    Xe

    Yt

    (k

    a)

  • 8/6/2019 Stixrude1

    23/27

    O

    rigin of Mantle Heterogeneity

  • 8/6/2019 Stixrude1

    24/27

    Mantle Heterogeneity

    Temperature Most physical

    properties depend ontemperature

    Elastic constants mostlydecrease withincreasing T

    Rate variesconsiderably with P, T,composition, phase

    Few measurements,calculations at high P/T

    Dynamics: thermal

    expansion drives

    350

    300

    250

    200

    150

    100

    50

    0

    b

    lastic

    c

    d

    e

    f

    lf

    s(

    g

    h

    a)

    2000150010005000

    ie

    p q

    eratr

    re (s

    )

    t

    11

    t

    12

    t

    44

    ericlase0

    Au v

    ersw u

    x

    Isaak (1995)

  • 8/6/2019 Stixrude1

    25/27

    Mantle Heterogeneity

    Phase Mantle phase

    transformations areubiquitous

    Phase proportionsdepend on T: varylaterally

    Different phases havedifferent properties

    Dynamics: heat, volumeof transformationmodifies

    .

    .8

    .

    .

    .

    .

    tomic

    raction

    Pressure ( Pa)

    ol a ri

    op

    cp

    gt

    pv

    a-pv

    m

    il

    /c

    Pyrolitetacey eotherm

    Depth (km)

  • 8/6/2019 Stixrude1

    26/27

    Mantle Heterogeneity

    Composition Physical properties

    depend on composition

    Phase proportionsdepend on composition

    Major elementheterogeneity isdynamically active

  • 8/6/2019 Stixrude1

    27/27

    Origin of Lateral Heterogeneity

    Temperature Composition

    Phase

    Differentiation

    Radioactivity

    ChemicalPotential

    Entropy

    Latent

    Heat