Stevens November 2010 Great Lakes

download Stevens November 2010 Great Lakes

of 73

Transcript of Stevens November 2010 Great Lakes

  • 8/8/2019 Stevens November 2010 Great Lakes

    1/73

    NationalNational CCenter forenter for SSecure andecure and

    RResilient Maritime Commerce andesilient Maritime Commerce and

    Coastal Environments (CSR)Coastal Environments (CSR)

    CSR

  • 8/8/2019 Stevens November 2010 Great Lakes

    2/73

    CODAR Network Glider FleetL-Band & X-Band Satellite

    Receivers

    3-D Nowcasts

    & Forecasts

    Rutgers University - Coastal Ocean Observation Lab

    Operations, Data Fusion & Training Center

  • 8/8/2019 Stevens November 2010 Great Lakes

    3/73

    International Constellation of Satellites Since 1992X-Band

    (installed 2003)

    L-Band

    (installed 1992)

    IRS-P4

    OCM Chlorophyll

    India

    FY1-D

    ch7:ch9

    China

    Global

    Regional

    Local

    MODISUnited States

  • 8/8/2019 Stevens November 2010 Great Lakes

    4/73

    Autonomous Underwater Gliders

    Since 1999

  • 8/8/2019 Stevens November 2010 Great Lakes

    5/73

    A)CODAR

    HF Radar

    Network

    1998-

    2009

    B)

    D) E)

    F)

    C)

    G) H) I) J)

  • 8/8/2019 Stevens November 2010 Great Lakes

    6/73

    monopole (A3)

    radial whips

    loop box

    (A1 & A2)

    Computer and Monitor Transmitter

    Receiver

    What does an HF RADAR consist of?

    loop 1 (A1)loop 2 (A2)

    receive antenna

    loop box

    Transmit Antenna

    Receive Antenna

    electronics

  • 8/8/2019 Stevens November 2010 Great Lakes

    7/73

    Compact CODAR

    HF Radars

    Receive Antenna

    Transmit

    Antenna

    25 MHz and 13 MHz

    5 MHz

  • 8/8/2019 Stevens November 2010 Great Lakes

    8/73

    Shed for Equipment

  • 8/8/2019 Stevens November 2010 Great Lakes

    9/73

    New

    Jersey

    Long Island

    Nested Ranges & Resolutions

  • 8/8/2019 Stevens November 2010 Great Lakes

    10/73

    30 Co-PIs, 20 Institutions,

    10 States

    Regional Priorities:1) Safety at Sea

    Search and Rescue

    2) Ecosystem Decision

    Support Fisheries

    3) Water Quality4) Coastal Inundation

    5) Offshore Energy

    MARCOOSThe Mid-Atlantic RegionalCoastal Ocean Observing

    System

    NWS WFOs

    Std Radar Sites

    Mesonet Stations

    LR HF Radar Sites

    Glider AUV Tracks

    USCG SLDMB Tracks

    NDBC Offshore Platforms

    CODAR Daily Average

    Currents

    Cape Cod to

    Cape Hatteras:

    ~1000 kmCoastline

  • 8/8/2019 Stevens November 2010 Great Lakes

    11/73

    Success Stories Making a Difference

    Optimizing HF Radar for SAR using USCG Surface Drifters

    Art Allen

    U.S. Coast Guard

    Scott Glenn

    Rutgers University

    and the Mid-Atlantic Regional

    Coastal Ocean Observing System

  • 8/8/2019 Stevens November 2010 Great Lakes

    12/73

    20002000

    20062006

    2006200620092009

    20032003

    20032003

    2001200120032003

    20032003

    20032003

    2001200120072007

    20012001

    LONG

    RANGE

    NETWORK

  • 8/8/2019 Stevens November 2010 Great Lakes

    13/73

    C:\Documents and Settings\hroarty\My Documents\COOL\01 CODAR\MARCOOS\Renewal

  • 8/8/2019 Stevens November 2010 Great Lakes

    14/73

    Nested

    Standard

    Range

    Network

  • 8/8/2019 Stevens November 2010 Great Lakes

    15/73

    15

    Surface Currents and

    Temperature

    15

  • 8/8/2019 Stevens November 2010 Great Lakes

    16/73

    ApplicationsSearch & Rescue

  • 8/8/2019 Stevens November 2010 Great Lakes

    17/73

    Nearest Coastal Site

    CODAR Currents

    SLDMB Drifter

    Long Island Sound (2002)

    New Jersey Shelf (2004)

    Comparison of Actual Drifter Tracks with CODAR Data

  • 8/8/2019 Stevens November 2010 Great Lakes

    18/73

    HYCOM

    Low Confidence

    HF Radar

    High Confidence

    24 Hours IntoS

    earch

  • 8/8/2019 Stevens November 2010 Great Lakes

    19/73

    HYCOM

    Low Confidence

    HF Radar

    High Confidence

    48 Hours IntoS

    earch

  • 8/8/2019 Stevens November 2010 Great Lakes

    20/73

    HYCOM

    36,000 km2

    10,500 nmi2

    HF Radar

    12,000 km2

    3,500 nmi2

    232 km

    154 km

    123 km

    100 km

    Search Area After 96 Hours

  • 8/8/2019 Stevens November 2010 Great Lakes

    21/73

    NOAA Press Release

    Tokyo Bay

  • 8/8/2019 Stevens November 2010 Great Lakes

    22/73

    29 Participating Organizations

    129 Radar Locations

    National Network

  • 8/8/2019 Stevens November 2010 Great Lakes

    23/73

    National IOOS HF RadarSteering

    Team Inagural Meeting July 28, 2010

    HF Radar applications for fresh water one offour Tiger Teams Previous literature Fernandez et al (2000) in

    Lake Michigan and Lake Tahoe, Veseckey and

    Meadows in Lake Michigan, Babkov et al(2009) in the Baltic Sea

    when sufficiently strong surface winds (2 about7 m/s) exist for an hour or more, a single HF

    radar can be effective in measuring the radial

    component of surface currents out to ranges of

    10-15 km

    Jack Harlan would be contacting Jen Read,

    Executive Director of GLOS for members

  • 8/8/2019 Stevens November 2010 Great Lakes

    24/73

    ApplicationsDetection of Vessels

  • 8/8/2019 Stevens November 2010 Great Lakes

    25/73

    Oleander track

    Loveladies 5 MHz

    Tuckerton 5 MHz

    BrantBeach25MHz

    Ship Detection

    2001-2006

  • 8/8/2019 Stevens November 2010 Great Lakes

    26/73

    Doppler Spectra from all Range Cells

    with Detection Threshold Applied

    Doppler Frequency

    Bragg Waves Bragg Waves

    Fixed Objects & Direct Signals

    Vessel Vessel

  • 8/8/2019 Stevens November 2010 Great Lakes

    27/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    28/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    29/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    30/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    31/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    32/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    33/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    34/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    35/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    36/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    37/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    38/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    39/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    40/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    41/73

    S S

  • 8/8/2019 Stevens November 2010 Great Lakes

    42/73

    Transmit

    Antenna

    Receive

    Antenna

    Enclosure MacComputer

    13 MHz SeaSonde

    at Sea Bright, NJ

  • 8/8/2019 Stevens November 2010 Great Lakes

    43/73

    AIS Data

    CODAR Data

    13 MHz CODAR

    Surface Current Coverage

    Average Range 70 km

    New York Harbor

    13 MHz CODAR Testbed

  • 8/8/2019 Stevens November 2010 Great Lakes

    44/73

    Mol Efficiency

    Joel Mare

    Pilot

    Maas Trader

    Dolphin

    13 MHz Test CaseFebruary 26, 2009 0000 to 0100 GMT

    Ship Trails from AIS data

  • 8/8/2019 Stevens November 2010 Great Lakes

    45/73

    Five Vessels of Interest February 26 2009

  • 8/8/2019 Stevens November 2010 Great Lakes

    46/73

    IIR Method FFT 256 Threshold 10

    dB

    Median Method FFT 256 Threshold 11 dB

    Distance

    (km)

    Radial

    Velocity

    (m/s)

    Bearing

    (rCWN)

    Best Detection Method IIR and Median

  • 8/8/2019 Stevens November 2010 Great Lakes

    47/73

    Using GPS Track to Perform Association

    IIR Method FFT 256 Threshold 10 dB

  • 8/8/2019 Stevens November 2010 Great Lakes

    48/73

    Comparison of Median and IIR method

  • 8/8/2019 Stevens November 2010 Great Lakes

    49/73

    etection of Tugboat Dolphin

    atS

    ea Bright CodarS

    ite

  • 8/8/2019 Stevens November 2010 Great Lakes

    50/73

    Median Method FFT 256 Threshold 11 dBIIR Method FFT 256 Threshold 10

    dB

    Distance

    (km)

    Radial

    Velocity

    (m/s)

    Bearing

    (rCWN)

    DOLPHIN

  • 8/8/2019 Stevens November 2010 Great Lakes

    51/73

    MAAS TRADER

    DOLPHIN

  • 8/8/2019 Stevens November 2010 Great Lakes

    52/73

    November 9-10, 2009

    Exercise

  • 8/8/2019 Stevens November 2010 Great Lakes

    53/73

    AIS DATA

  • 8/8/2019 Stevens November 2010 Great Lakes

    54/73

    GPS Track YM Los Angeles

  • 8/8/2019 Stevens November 2010 Great Lakes

    55/73

    Track of YM Los Angeles

  • 8/8/2019 Stevens November 2010 Great Lakes

    56/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    57/73

    13 MHz SeaSonde

  • 8/8/2019 Stevens November 2010 Great Lakes

    58/73

    Median Method

    8 dB 9 dB 10 dB 11 dB 12 dB 13 dB

    32 FFT 11.8

    64 FFT 22.4

    128

    FFT50.7 49.0 46.7 46.3 29.5 37.5

    256

    FFT44.3

    512

    FFT 29.9

    13 MHz SeaSonde

    Detection Rate

    Ph 1 St d L R S S d HF R d P f

  • 8/8/2019 Stevens November 2010 Great Lakes

    59/73

    Investigators: CODAR,Rutgers, CodarNor

    Objective: Performanceassessment vs. radar andenvironmental factors

    Coverage region forcurrent mapping fromproposed Long-RangeSeaSonde Sites

    Russian BorderKJLNES

    VARD

    Phase 1 Study -- Long-Range SeaSonde HF Radar Performance

    nearNordkap forNavy/NOBLE Program

    Ship Surveillance and Environmental Monitoring

  • 8/8/2019 Stevens November 2010 Great Lakes

    60/73

    Littoral Expeditionary Autonomous PowerBuoy

    (LEAP)

  • 8/8/2019 Stevens November 2010 Great Lakes

    61/73

    RiverSonde vs SeaSonde:

  • 8/8/2019 Stevens November 2010 Great Lakes

    62/73

    RiverSonde vs. SeaSonde:

    UHF frequency (420-450 MHz) vs. HF/VHF (5-50 MHz)

    shorter distance: ~300 m vs. 20-200 kmfiner range resolution: 5-15 m vs. 200 m-6 kmFaster data updates: 5 min. vs. 30 min.-1 hour

    Both technologies based on same basic Dopplerprincipal. Doppler shift gives total radial velocity,water phase velocity known from water wavelength

    RiverSonde UHF radar: ~420-450 MHz (1-m or0.7-m radar wavelength). Bragg scatter from 0.5-mor 0.35-m wavelength water waves

    Ri S d H d

  • 8/8/2019 Stevens November 2010 Great Lakes

    63/73

    RiverSonde Hardware

    RiverSonde Antenna System

  • 8/8/2019 Stevens November 2010 Great Lakes

    64/73

    RiverSonde Antenna SystemCenter array used for Tx & RxSide arrays used for Rx only

  • 8/8/2019 Stevens November 2010 Great Lakes

    65/73

    Typical RiverSonde Geometry

  • 8/8/2019 Stevens November 2010 Great Lakes

    66/73

  • 8/8/2019 Stevens November 2010 Great Lakes

    67/73

    67

    Boat tracks that were taken

    Track results of the RIVERsonde

    Boat Trip Results

  • 8/8/2019 Stevens November 2010 Great Lakes

    68/73

    Boat path

    Dimensions

    Height to top of antenna : 24Length : 40Beam : 15

    First TestSecond test

  • 8/8/2019 Stevens November 2010 Great Lakes

    69/73

    Dimensions

    Height to top of antenna : 24Length : 40Beam : 15

    First TestSecond test Boat path

    A k f b li l k

  • 8/8/2019 Stevens November 2010 Great Lakes

    70/73

    Atrack from a boat traveling along track one.

    B D i P i i R di l V l i k

  • 8/8/2019 Stevens November 2010 Great Lakes

    71/73

    Boat Detection , Positive Radial Velocity on track 2.

    R di l l it t k

  • 8/8/2019 Stevens November 2010 Great Lakes

    72/73

    Radial velocity on track 4

  • 8/8/2019 Stevens November 2010 Great Lakes

    73/73

    yWe were able to detect the boat when it wasdirected towards us. At 4 and 7 knots

    y

    We were able to detect the boat when it wasdirected away from us. At 4 and 7 Knots

    yThe test was very successful and useful for

    preparation for week 6.

    Conclusion