Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2...

24
Steven T. Shipman , 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy of Ethyl 3- Methyl 3-Phenylglycidate (Strawberry Aldehyde) 1 New College of Florida 2 University of Virginia

Transcript of Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2...

Page 1: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Steven T. Shipman,1 Justin L. Neill,2 Matt T. Muckle,2 Richard D. Suenram,2 and Brooks H. Pate2

Chirped-Pulse Fourier Transform Microwave Spectroscopy of Ethyl 3-Methyl 3-Phenylglycidate

(Strawberry Aldehyde)

1 New College of Florida2 University of Virginia

Page 2: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Rotational Spectroscopy of Large Molecules

Challenges:• Low rotational constants → many transitions• More conformers → need more molecules / averaging for same S/N• Difficult to get into the gas phase• Potentially very expensive ($50 / gram for many biomolecules)• Ab initio calculations take much longer

Prototype large molecule:• Strawberry aldehyde – C12O3H14

• Workable vapor pressures by heating• Relatively rigid structure• Cheap! (Food additive…)

Page 3: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Direct Detect Spectrometer

Chirped pulse is generated by mixing output of 24 GS/s AWG with 18.95 GHz oscillator.

Detection is direct – no mixers!No “image peak” problem.

Collect 10 FIDs per valve pulse.

0.6 Hz at FID duration of 20 s. (21,600 FIDs per hour)

All data is from a 929,000 FID spectrum taken with 2 nozzles(4 – 5 days of data collection).

Page 4: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Strawberry Aldehyde SpectrumS/N on largest peak ~2000:1

Spectrum contains: • multiple conformers• isotopomers• decomposition products

1 atm He/Ne2 nozzlesSample at 120 °C929,000 FIDs (20 s)

Threshold S/N # of Peaks

200:1 323

40:1 967

10:1 2472

4:1 6352

3:1 8921

Page 5: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Strawberry Aldehyde Conformers

I

II

III

IVV

Page 6: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Strawberry Aldehyde Rotational ConstantsI II III IV V

A (MHz) 728.09519(7) 1214.72959(29) 723.14164(9) 1330.94914(23) 1460.5288(6)

B (MHz) 628.69162(5) 287.76597(4) 581.41125(6) 293.48257(4) 275.04576(8)

C (MHz) 429.84842(8) 269.46307(4) 421.96311(10) 281.86483(5) 269.61954(7)

J (kHz) 0.0762(5) 0.01579(3) 0.3261(5) 0.01870(4) 0.00869(11)

JK (kHz) -0.0802(20) -0.0628(7) -0.7634(21) -0.0914(6) -0.0236(18)

K (kHz) 0.0674(16) 0.862(12) 0.5728(19) 0.958(9) 1.49(4)

J (Hz) 25.55(26) 3.389(13) 119.11(27) 3.144(13) 0.896(17)

K (Hz) -18.2(12) -325.7(21) -95.2(15) 542(4) -1195(12)

# lines 280 221 232 193 124

OMC (kHz) 12.9 10.7 14.5 15.6 10.5

Page 7: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Possible Conformers

1

2

3

4

56

Dihedral 1234: 2 minimaDihedral 2345: 2 minimaDihedral 3456: 3 minima

12 for each diastereomer(1 and 2 are chiral)

Why only 5, and why not 6?

Next: map assigned species onto molecular geometries

Would expect cis and trans species to come in pairs…

Page 8: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Relaxed Potential Energy Surface (trans)

4000

2000

0 cm-1

Barrier between regions: 120° to 300° : 1220 cm-1

300° to 120° : 950 cm-1

Intra-region barrier:170 cm-1

Calculated at B3LYP/6-31+G(d)15 degree increments(576 geometry optimizations)

Page 9: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Relaxed Potential Energy Surface (cis)

4000

2000

0 cm-1

Barrier between regions: 1450 cm-1

(Roughly symmetric)

Intra-region barrier:185 cm-1

Calculated at B3LYP/6-31+G(d)15 degree increments(576 geometry optimizations)

Page 10: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Structures of Main ConformersI

III

II IV

V

Cis: Orientation of oxygens Trans: Orientation of terminal –CH3

(Structures from B3LYP/6-311++G(d,p) level of theory.)

Page 11: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Matching Theory With Experiment (trans)Method Conformer A (MHz) B (MHz) C (MHz) Dipoles (D)

Experiment II 1214.7 287.8 269.5 A ~ 0, B > C

IV 1330.9 293.5 281.9 A ~ 0, B > C

V 1460.5 275.0 269.6 A ~ 0, B > C

B3LYP II 1214.2 285.3 264.2 A = 0.1, B = 3.1, C = 0.9

6-311++G(d,p) IV 1317.5 289.4 274.6 A = 0.0, B = 3.2, C = 0.3

V 1442.8 272.6 265.1 A = 0.1, B = 2.8, C = 1.2

MP2 II 1215.5 291.8 265.5 A = 0.1, B = 3.7, C = 0.8

6-31G+(d) IV 1337.1 298.2 277.7 A = 0.3, B = 3.7, C = 0.4

V 1459.8 277.8 266.7 A = 0.3, B = 3.4, C = 0.8

Both B3LYP and MP2 constants and dipoles are in good agreement with data.All trans conformers have similar dipole moments and directions.

Page 12: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Matching Theory With Experiment (cis)

Method Conformer A (MHz) B (MHz) C (MHz) Dipoles (D)

Experiment I 728.1 628.7 429.8 A > B, C ~ 0

III 723.1 581.4 422.0 A ~ 0, B < C

B3LYP I 726.6 576.7 403.6 A = 1.5, B = 1.1, C = 0.1

6-311++G(d,p) III 772.8 476.8 374.8 A = 0.7, B = 0.9, C = 3.0

MP2 I 727.0 634.7 434.4 A = 2.0, B = 0.5, C = 0.2

6-31G+(d) III 712.2 604.5 431.2 A = 0.0, B = 1.3, C = 3.5

B3LYP constants are terrible! Dipoles are also bad.MP2 is closer. Constants are similar, so match is on basis of dipole direction.

Page 13: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Confirming Calculated StructuresNeed to verify that calculated structures are correct. Look at carbon backbone!

Can forward predict 13C constants and then search in spectrum.

Procedure:1) Use NS constants from experiment and theory to get scale factors.2) Predict 13C constants, use same scale factor.3) Use prediction as a starting point for the assignment.

Conformer I:MP2 (blue) and B3LYP (grey)

B3LYP does not handle dispersion interactions well.1,2

M05-2X (DFT) calculations underway…

1) Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput. 3, 289 (2007)2) V. A. Shubert et al., J. Chem. Phys. 127, 234315 (2007)

Page 14: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Carbon Backbone AnalysisConformer I – 319 transitions for 12 isotopomersConformer II – 347 transitions for 12 isotopomers

Data analyzed with the KRA program; Numbers are average deviation per C between theory and experiment.

I (B3LYP)

II (MP2)

I (MP2)

II (B3LYP)

0.41 Å 0.16 Å

0.14 Å 0.11 Å

I (M05-2X)

0.09 Å

Page 15: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Decomposition Products

AcetophenoneEthyl Formate (gauche and trans)

Also see ethanol, ethyl glycolate, and a mystery species. Mystery species is NOT:anisole, ethylbenzene, styrene, phenol, benzyl alcohol, or benzaldehyde.

Constants of A = 4948.395 MHz, B = 1677.941 MHz, C = 1273.960 MHz.All assigned transitions are a-type.

Page 16: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Residuals

Still a lot of peaks left!

Have only assigned about 20% of the peaks in the original spectrum.

Increasingly difficult to work as more and more peaks are removed from the spectrum.

Page 17: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Summary and Future Work

Would like to have:

Electronic spectrum (Pratt group)Stark effect data (2 – 8 GHz?)Identity of the mystery molecule!

Have assigned:

5 dominant conformers24 13C isotopomers4 decomposition products

For this system, it was extremely helpful to have:

Extensive ab initio resultsPreliminary spectrum at 2 – 8 GHzS/N to confirm assignments with 13C in natural abundanceMulti-nozzle, multi-FID setup to reduce sample consumption

Page 18: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Acknowledgements

Current and Former Members of The Pate LabLeo Alvarez

Christoph EtschmaierMatt MuckleJustin Neill

Daniel Zaleski

CollaboratorsRick Suenram

David Pratt

FundingNew College of Florida Start-Up Funding

NSF Chemistry CHE-0616660NSF CRIF:ID CHE-0618755

Page 19: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Page 20: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

Relative EnergiesFile # E (cm-1) T (D) D2 D4 Conf #

6 0 2.1 -67 -81 I

8 137 2.3 -61 -168 ─

10 374 3.8 101 80 III

5 387 1.8 -64 84 ─

9 647 3.7 110 179 ─

11 650 3.4 113 -82 ─

File # E (cm-1) T (D) D2 D4 Conf #

3 0 3.3 129 -178 II

2 159 3.0 128 -87 V

4 203 3.2 128 87 IV

18 219 1.7 -65 178 ─

19 390 1.5 -64 87 ─

20 461 1.7 -65 -87 ─

CisMP2 / 6-31+G(d)

Relative energies are NOT zero-point corrected

TransB3LYP / 6-311++G(d,p)

Relative energies ARE zero-point corrected

Page 21: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

KRA Table O’ Numbers (Conf I, cis)

a (Å) b (Å) c (Å) a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)

C1 2.48 0.72 1.26 -2.52 0.56 -1.26 -2.51 0.62 -1.25

C2 1.50 0.15 1.23 -1.46 -0.35 -1.24 -1.48 -0.32 -1.22

C3 0.97 0.69 ─ -0.92 -0.76 -0.01 -0.95 -0.73 0.00

C4 1.47 0.14 1.17 -1.43 -0.26 1.19 -1.44 -0.19 1.19

C5 2.47 0.83 1.14 -2.49 0.65 1.16 -2.47 0.74 1.15

C6 3.01 1.19 ─ -3.04 1.08 -0.06 -3.00 1.15 -0.06

C12 ─ 1.78 ─ 0.19 -1.77 0.01 0.13 -1.77 0.03

C13 1.52 1.39 ─ 1.60 -1.31 -0.05 1.55 -1.36 -0.04

C15 0.42 3.14 0.43 -0.15 -3.15 -0.48 -0.26 -3.14 -0.46

C18 1.92 0.02 0.22 1.91 0.14 -0.25 1.90 0.08 -0.26

C22 1.86 2.23 0.51 1.62 2.33 0.56 1.74 2.29 0.54

C25 0.73 2.86 0.19 0.49 2.87 -0.30 0.59 2.85 -0.28

Experiment MP2 M05-2X

Avg error / C:MP2: 0.16 Å

M05-2X: 0.09 Å

Exp’t good to 3 decimal places. Only showing 2 for space!

Page 22: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

KRA Table O’ Numbers (Conf I, cis)

a (Å) b (Å) c (Å) a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)

C1 2.48 0.72 1.26 -2.52 0.56 -1.26 -2.51 1.08 -1.26

C2 1.50 0.15 1.23 -1.46 -0.35 -1.24 -1.68 -0.04 -1.21

C3 0.97 0.69 ─ -0.92 -0.76 -0.01 -1.17 -0.52 0.01

C4 1.47 0.14 1.17 -1.43 -0.26 1.19 -1.51 0.17 1.19

C5 2.47 0.83 1.14 -2.49 0.65 1.16 -2.35 1.28 1.14

C6 3.01 1.19 ─ -3.04 1.08 -0.06 -2.85 1.74 -0.08

C12 ─ 1.78 ─ 0.19 -1.77 0.01 -0.31 1.73 0.05

C13 1.52 1.39 ─ 1.60 -1.31 -0.05 1.18 -1.64 -0.03

C15 0.42 3.14 0.43 -0.15 -3.15 -0.48 -0.97 -3.02 -0.40

C18 1.92 0.02 0.22 1.91 0.14 -0.25 1.91 -0.36 -0.29

C22 1.86 2.23 0.51 1.62 2.33 0.56 2.46 1.82 0.51

C25 0.73 2.86 0.19 0.49 2.87 -0.30 1.59 2.79 -0.28

Experiment MP2 B3LYP

Avg error / C:MP2: 0.16 ÅDFT: 0.41 Å

Exp’t good to 3 decimal places. Only showing 2 for space!

Page 23: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

KRA Table O’ Numbers (Conf II, trans)

a (Å) b (Å) c (Å) a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)

C1 3.57 1.16 1.07 3.49 -1.31 -1.02 3.47 -1.38 -0.98

C2 2.36 0.48 1.22 2.26 -0.65 -1.17 2.26 -0.72 -1.12

C3 1.77 0.19 ─ 1.77 0.17 -0.15 1.80 0.15 -0.12

C4 2.46 0.18 1.10 2.51 0.31 1.03 2.59 0.35 1.02

C5 3.68 0.46 1.24 3.73 -0.34 1.18 3.80 -0.31 1.16

C6 4.24 1.15 0.16 4.22 -1.16 0.16 4.25 -1.18 0.16

C12 0.39 0.88 0.15 0.45 0.86 -0.29 0.48 0.87 -0.27

C13 0.47 0.43 0.63 -0.65 0.38 0.59 -0.65 0.39 0.58

C15 0.20 1.52 1.59 0.16 1.53 -1.61 0.24 1.58 -1.59

C18 2.06 0.49 0.21 -2.09 0.50 0.19 -2.09 0.52 0.17

C22 4.04 0.74 0.14 -4.08 -0.74 -0.09 -4.09 -0.75 -0.10

C25 4.50 2.19 ─ -4.55 -2.16 0.12 -4.58 -2.16 0.16

Experiment MP2 B3LYP

Avg error / C:MP2: 0.11 ÅDFT: 0.14 Å

Exp’t good to 3 decimal places. Only showing 2 for space!

Page 24: Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.

2 – 8.5 GHz Spectrum of C12H14O3

I II

III IV

1 nozzle, heated to 120°C