SteelPortalFrameEC3 User manual€¦ · Design of purlins and bracing systems. Design of footings...

60
Copyright RUNET software www.runet-software.com Design of Structural Steelwork Elements according to Eurocode 3 EN 1993:2005 Classification of cross-sections, Resistance of cross-sections in single and combined actions, buckling resistance of members. Design of connections. Design of beams, columns, frames, of roof and floor structures. Design of purlins and bracing systems. Design of footings of steel structures. Parameters according to National Annex of Eurocode. Detailed reports with references to Eurocode paragraphs and necessary drawings. Tables with all international steel profiles with dimensions, resistance and buckling resistance values. User defined steel section properties. Welded steel sections formed by the user. USER’s Manual

Transcript of SteelPortalFrameEC3 User manual€¦ · Design of purlins and bracing systems. Design of footings...

  • Copyright RUNET software www.runet-software.com

    Design of Structural Steelwork Elements according to Eurocode

    3 EN 1993:2005

    Classification of cross-sections, Resistance of cross-sections in single and combined

    actions, buckling resistance of members. Design of connections. Design of beams,

    columns, frames, of roof and floor structures. Design of purlins and bracing systems.

    Design of footings of steel structures. Parameters according to National Annex of

    Eurocode. Detailed reports with references to Eurocode paragraphs and necessary

    drawings. Tables with all international steel profiles with dimensions, resistance and

    buckling resistance values. User defined steel section properties. Welded steel

    sections formed by the user.

    USER’s Manual

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 2

    License and Copyright If you do not agree with the terms of the following Disclaimer and License Agreement, return the program before you install and activate it, to RUNET Norway as, within 30 days of purchase for a full refund of software cost and sales tax. Disclaimer This software should be used only from experienced and licensed professional engineers. The software must be considered as a helping tool for the designer engineer, and can never replace the knowledge, the experience and the judgment of a professional engineer. The user of this software must understand that no matter how advanced and well checked this software is, he should carefully check the results and take responsibility of their use. Copyright This software is owned by RUNET Norway as, and it is protected by EC (European Community) Copyright Laws and International Treaty Provisions. This software and the accompanying materials must be treated like any other copyrighted material (e.g. book). It is allowed although to make one copy of the Software for backup or archive purposes. You may not copy and distribute the accompanying materials. It is strictly prohibited by law unauthorized reproduction or resale of this software product and the accompanying materials. Software License This is a legal agreement between the legal user of this software and RUNET Norway as. By installing this software you agree to be bound by the terms of this agreement. If you do not agree to the terms of this

    agreement then do not install this software and return within 30 days after purchase, for a fully refund of your payment. Scope of License Each licensed copy of STEELexpress, must be used either on a single computer, or installed on a single workstation used non-simultaneously by multiple people, but not both. This is not a concurrent use license. You may not rent or lease this software. You may not modify, adapt, translate, reverse engineer, decompose, or disassemble the software. Any violation of this agreement terminates your right to use this software. Liability Limitations STEELexpress, in no event shall be liable for any damages whatsoever (including without limitations, damages for loss of business profits, business interruption, or any other loss) arising of the use of this software. RUNET makes no warranties, either expressed or implied, as to the quality or performance of this software, that the results and calculations of this software will meet your requirements, or that the operation of this software will be error free. This software is a helping tool to aid you in the design of timber structures. The results of this software must be reviewed and interpreted from experienced licensed engineers, and by no means constitute an acceptable engineering design.

    STEELexpress and related documentation are provided "AS IS" and without warranties as to performance or merchantability or any other warranties whether expressed or implied. Because of the various hardware and software environment into which this software may be put, no warranty of fitness for a particular purpose is offered. Under no circumstances shall RUNET Norway as and its personal be liable for any direct or indirect, incidental special or consequential damages resulting from the use or inability to use of this software or related documentation, even if RUNET Norway as has been advised of the possibility of such damages. This agreement shall be governed by EC (European Community) laws. If for any reason a court or competent jurisdiction finds any provision of this agreement, or portion thereof, to be unenforceable, that provision of the agreement shall be enforced to the maximum extend permissible so as to effect the intent of the parties, and the remainder of this agreement shall continue in full force effect.

    If this license is too restrictive with the laws of your country, do not use this software and return within 30 days after purchase, for a fully refund of your payment.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 3

    Contents

    1 General about STEELexpress .................................................................................. 5 1.1 Steelwork elements included in the program .......................................................... 5 2 After program installation ....................................................................................... 7 3 Basic philosophy in program use ............................................................................. 7 3.1 The basic steps in using the program are: ................................................................ 8 4 Design objects ...................................................................................................... 8 5 Calculation Window ............................................................................................... 9 6 Files .................................................................................................................. 10 7 Step by step, program use ................................................................................... 10 8 Parameters......................................................................................................... 12 8.1 National Annex ................................................................................................ 12 8.2 Materials ......................................................................................................... 12 8.3 Design Parameters ........................................................................................... 13

    8.3.1 NAD parameters ................................................................................................. 13 8.3.2 Eurocode 3, design parameters ............................................................................. 13 8.3.3 Critical elastic moment for lateral torsional buckling Mcr .......................................... 13 8.3.4 Parameters for Portal frames ................................................................................ 14

    8.4 Snow load on the ground .................................................................................. 15 8.5 Basic wind velocity ........................................................................................... 15 8.6 Seismic zone ................................................................................................... 15 9 General input data for steelwork components ......................................................... 16

    9.1.1 Name of design object ......................................................................................... 16 9.1.2 Structural steel grade Eurocode 3 ΔΝ1993-1-1:2005 § 3.2 ...................................... 16 9.1.3 Partial safety factors for actions Eurocode 0 ΔΝ 1990:2002 § 6, Πίν. A1.2, Α1.3, Α1.4 17 9.1.4 Partial factors for materials Eurocode 3 ΔΝ1993-1-1:2005 § 6.1 .............................. 17 9.1.5 Actions Eurocode 0 ΔΝ 1990:2002 § 6.3 ............................................................... 17

    10 Eurocode 3, Tables and charts .............................................................................. 19 11 Design tables for Structural Steel Sections, ............................................................ 20 (Eurocode 3, EN1993-1-1:2005 § 5.5) .................................................................. 20 11.1 Tables with dimensions and properties of standard steel sections ........................ 20 11.2 Classification and resistance of standard steel sections ....................................... 21

    11.2.1 Symbols ............................................................................................................ 21 11.3 Tables of non standard steel sections ............................................................... 22 11.4 Tables of user defined welded steel sections ..................................................... 22 11.5 Classification and resistance of steel sections (detailed report) ............................ 23 12 Resistance of cross-sections (Eurocode 3, EN1993-1-1:2005 § 6.2) .......................... 24 13 Buckling resistance of members (Eurocode 3, EN1993-1-1:2005 § 6.3) ..................... 25 13.1 Uniform members in compression EN1993-1-1:2005 § 6.3.1 .............................. 25

    13.1.1 Columns with axial load only ................................................................................ 25 13.2 Uniform members in bending EN1993-1-1:2005 § 6.3.2 ..................................... 25

    13.2.1 Beams with vertical load only ............................................................................... 25 13.3 Uniform members in bending and axial compression, ......................................... 26 (EN1993-1-1:2005 § 6.3.3) ....................................................................................... 26

    13.3.1 Columns with axial compression and end moments ................................................. 26 13.3.2 Beams with vertical load and axial compression ...................................................... 27

    14 Connections EN1993-1-8:2005 ............................................................................. 27 14.1 Connection types ........................................................................................... 27

    14.1.1 Tension connections (design and capacity) ............................................................. 27 14.1.2 Beam to beam connections (design and capacity) ................................................... 27 14.1.3 Beam to column connections .............................................................................. 28 14.1.4 Connections of portal frames ................................................................................ 28 14.1.5 Connections made with pins (design and capacity) .................................................. 28

    14.2 Connection data ............................................................................................ 29 14.2.1 Connection loading .............................................................................................. 29

    14.3 Connection bolts EN1993-1-8 §3.1 .................................................................. 29 14.4 Connection plates .......................................................................................... 29 14.5 Joint geometry .............................................................................................. 29 15 Design of Steel Beams ......................................................................................... 30

    15.1.1 Beams in Uniform load......................................................................................... 30 15.2 Design of floor beams .................................................................................... 30 15.3 Design of Roof beams .................................................................................... 31

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 4

    15.4 Design of Purlins ........................................................................................... 31 16 Design of Steel Columns ...................................................................................... 32 16.1 Column design .............................................................................................. 32 16.2 Columns in simple constructions ...................................................................... 32 17 Design of single-bay steel portal frames ................................................................. 33 17.1 Basic structure dimensions ............................................................................. 33 17.2 Design parameters for buckling control ............................................................ 33 17.3 NAD parameters ............................................................................................ 34 17.4 Cross-sections ............................................................................................... 35 17.5 Estimate of member sizes ............................................................................... 35 17.6 Portal frame Connections ................................................................................ 35 17.7 Portal frame loading ....................................................................................... 36

    17.7.1 Single Bay portal frame under snow, wind and seismic load ..................................... 36 17.7.2 Single Bay portal frame under vertical and horizontal load ....................................... 37 17.7.3 Single Bay portal frame under vertical and horizontal load with concentrated loads on

    the columns 38 18 Design of Bracing systems ................................................................................... 39

    18.1.1 Example ............................................................................................................ 39 19 Fundaments of Steel columns ............................................................................... 40 19.1 Loading on the fundament .............................................................................. 40 19.2 Dimensions of Fundament .............................................................................. 40 19.3 Estimate of fundament dimensions (predimensioning) ........................................ 41 19.4 Steel Tie and Passive earth pressure ................................................................ 41 19.5 Foundation, Bearing resistance ........................................................................ 41 20 Base Plate design ................................................................................................ 43 20.1 Loading ........................................................................................................ 43 20.2 Anchor type .................................................................................................. 43 20.3 Bearing capacity of concrete base .................................................................... 43 21 Short theoretical overview .................................................................................... 44 21.1 Units ............................................................................................................ 44 21.2 Coordinate system ......................................................................................... 44 21.3 Design Loads, EN1991:2005 : ......................................................................... 44

    21.3.1 Permanent loads, EN1991-1:2005 ......................................................................... 44 21.3.2 Imposed loads EN1991-1:2005 ............................................................................. 44 21.3.3 Snow load EN1991-3:2003 ................................................................................... 44 21.3.4 Wind load of EN1991-4:2005 ................................................................................ 45 21.3.5 Earthquake loading EN1998-1:2004 ...................................................................... 45

    21.4 Design load combinations EN1990:2002 ........................................................... 45 21.4.1 Load combination factors (EN1990 Tab.A1.1) ....................................................... 45 21.4.2 Ultimate Limit State (ULS) (EQU) .......................................................................... 45 21.4.3 Ultimate Limit State (ULS) (STR) .......................................................................... 45 21.4.4 Serviceability Limit State (SLS) ............................................................................. 45 21.4.5 Ultimate Limit State (ULS) Seismic situation ........................................................... 46

    21.5 Materials ΔΝ 1993-1-1:2005 § 3.2 ................................................................... 46 21.5.1 Steel grades included in the program .................................................................... 46

    21.6 Partial factors ΔΝ 1993-1-1:2005 § 6.1 ............................................................ 47 21.7 Second order effects EN1993-1-1 §5.2.1 .......................................................... 47 21.8 Imperfections EN1993-1-1 §5.3.1 .................................................................... 48 21.9 Steel section types included in the program ...................................................... 48 21.10 Classification of cross sections ΔΝ 1993-1-1:2005 § 5.5 .................................. 49 21.11 Ultimate limit states ΔΝ 1993-1-1:2005 § 6.2 ................................................ 51

    21.11.1 Tension ΔΝ 1993-1-1:2005 § 6.2.3 ....................................................................... 51 21.11.2 Compression ΔΝ 1993-1-1:2005 § 6.2.4 ................................................................ 51 21.11.3 Bending moment ΔΝ 1993-1-1:2005 § 6.2.5 .......................................................... 52 21.11.4 Bi-axial bending ΔΝ 1993-1-1:2005 § 6.2.9 ........................................................... 53 21.11.5 Shear ΔΝ 1993-1-1:2005 § 6.2.6 .......................................................................... 53 21.11.6 Buckling resistance of uniform members in compression .......................................... 53 21.11.7 Lateral torsional buckling for uniform members ΔΝ 1993-1-1:2005 § 6.3.2 ........ 56 21.11.8 Uniform members in bending and compression ΔΝ 1993-1-1:2005 § 6.3.4 ................. 57

    22 Standards and Bibliography .................................................................................. 59

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 5

    1 General about STEELexpress

    The software STEELexpress covers the design and analysis of structural steelwork elements according to Eurocode 3 EN 1993:2005. In a unified environment you design steelwork elements in a simple way. The design of steel structural components cover many needs of a structural design firm. It simplifies all the repetitive and time-consuming every day calculations for steel elements. In addition, with the analytical reports and Eurocode references, helps for engineers and engineering students to gain familiarity with design

    according to Eurocode 3. In a graphical added environment you specify the necessary dimensions, loads and design code parameters of steel components, and the design is immediately performed. Default values and checks for erroneous input values, facilitate the input data process. The detailed calculations can be viewed immediately. The report, which is created simultaneously, shows in detail all the calculations and the design

    steps with references to the corresponding design code paragraphs. In case of inadequate

    design warnings in red colour appear in the report, and on the calculation window. The report quality is high with sketches, graphs and formulas, and with user specified title block, logos and fonts. In one project you can create as many structural elements (design objects) as you desire. All the data are stored automatically in one file. A dedicated window helps you working with the design objects in a project. Each structural element is well marked with a name and an icon.

    You can edit, copy or delete design objects in a project with a click of the mouse. You can select the design objects to be included in the final project report. With double clicking on a design object you enter its calculation window. With right clicking on a design object you can select actions like computations, report previewing and export file, or drawing. A help system, guides you through the use of the program and the Eurocode provisions. On-line user's manual and frequently asked questions (F.A.Q.) are included in the program.

    The design code parameters and the material properties are according to the requirements of

    the National Annex. The user can select National Annex region. Parameters and materials can also be adjusted by the user.

    1.1 Steelwork elements included in the program

    Basic design charts and graphs of Eurocode 3

    o Buckling curves

    o Elastic critical moment for lateral buckling Mcr,

    o Effective length of braced and unbraced members

    Steel sections (standard, user defined welded sections)

    o dimensions, geometric properties

    o classification

    o resistance values (axial load, bending shear)

    o buckling resistance and lateral buckling resistance for various buckling lengths.

    Resistance of cross-sections for various single or combined actions

    o Single actions, compression tension, shear Vy or Vz, and bending Myy or Mzz

    o Combined actions, axial shear and bending in various combinations

    Buckling resistance of members

    o Buckling resistance in compression Nc, and compression with bending Nc-My-Mz

    Lateral buckling resistance of members

    o Members in bending My, members in bending and compression My and Nc

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 6

    Connections of steel members

    o Simple tension connections (single double shear and splice joints)

    o Beam to beam connections (beam continuation, Gerber connection, connection

    with web cleats)

    o Beam to column connections (with web cleats or end plates)

    o Portal frame connections (Apex connection, eve connections simple or with hunch, Base connections simple or fixed).

    o Connections with pins. (Pin ended member, Gerber beam)

    Steel Beam design

    o Single beams (simply supported, fixed in one end or fixed in both ends).

    Combination of uniform, triangular or concentrated loads. Various lateral length supports.

    o Floor beams of one or two spans or one span and cantilever. Laterally unrestrained, restrained at one or two intermediate points, or totally restrained.

    o Roof beams of one or two spans. Snow, wind pressure and under pressure,

    imposed load.

    o Purlin design. Simply supported or continuous. Laterally restrained or unrestrained.

    Steel column design

    o Single members in compression (various end conditions and buckling lengths)

    o Columns under axial load, or axial load and single or double bending.

    o Columns in simple constructions (simple columns, columns in braced or

    unbraced frames)

    Steel frame design

    o Single bay portal frames under vertical and horizontal loadings

    o Single bay portal frames under vertical and horizontal loadings, with concentrated loads on the columns

    o Single bay portal frames under snow, wind and seismic loading.

    o Two floor single bay frame under vertical and horizontal loading.

    Design of bracing systems

    o Vertical bracing system

    o Horizontal bracing systems

    Design of footings of steel structures

    o Pinned footing under vertical and horizontal loading

    o Fixed footing under vertical and horizontal loading and moment

    o Footings resisting horizontal forces only with passive earth pressure

    o Footings with horizontal ties in order to resist horizontal forces

    o Design base plate design and base anchoring system. For simple and fixed base connection

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 7

    2 After program installation

    The program is based on the structural Eurocodes. The application as well as the parameters

    of Eurocodes may differ from country to country. It is advisable to consult the National Application Documents, which define the parameters, the supporting standards and provide national guidance on the application of Eurocodes. After the installation of the program, you must select the National Annex of your area. If it is necessary you may also adjust various parameters such as material constants, safety factors Eurocode 3 options, snow and wind regions, and default values.

    The user can decide the appearance of the report by adjusting: user defined graphic and logo text, page margins, font selection, size of indentation etc. The Report settings must also be adjusted to meet the requirements of the program user.

    From Parameters:

    NA-National Annex, Select the National Annex to apply in the design Design Parameters, Check and select options or modify (if it is necessary) the

    various design parameters of the Eurocode. Materials, You can adjust the characteristic material properties. It is advisable to

    consult the National Application Document of the Eurocodes 0, 1, 2, 6, 7, 8.

    Snow load on the ground Default region and snow zone Basic wind velocity Default region and wind zone Seismic design Default region and seismic zone

    From Report setup:

    You can adjust the report appearance (margins, font, cover, company logo, page caption,

    page footnote, indentations, graphic appearance, pagination). From [Setup/Decimal point] you can select type of decimal point symbol. You can change program language from [Setup/Language Set-Up]. By changing the

    language and confirm it by [apply]. You must recalculate the design objects to take the new language in the report. From [Help/Program user's manual] you can read or print the program user's manual.

    3 Basic philosophy in program use

    With the program you create and manipulate various design objects or structural steelwork elements. The design objects can be a variety of steelwork parts of a structure such as: beams, columns, connections, simple frame structures, footings, etc. All the program activity

    takes place within the main window. Within a project you may create as many design objects as you want. All the data are saved in

    one project file. A common report is created. You can select the steelwork objects that you want to include in the report. The main window displays and handles all the necessary information and actions for the design objects of the project. You can create new design objects with the action buttons at the top of the main program window. Each design object, with a name you specified, and a characteristic icon, is shown in a list in the [Design objects] window. From this window you can regulate their appearance and the

    order of appearance in the report. The right side window shows the calculations of the selected design object. By double clicking a design object you enter its calculation window, where you specify the dimensions, the loads and the design code parameters. When the object is created the parameters take the default values. All the required data are well marked with a sketch, and the appropriate dimensions. The program constantly checks for wrong or inappropriately

    entered values.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 8

    With right clicking a design object you can select from the popup menu actions like computation, report previewing, printing, exporting, or CAD drawing. In front of every design object is a check box. Only the objects that are checked will be included in the common report.

    3.1 The basic steps in using the program are:

    Open a Project File from menu [File]. Select a design object, from the [Design objects] window, or create a new one from the

    action buttons at the top of the main program window. Activate the computations of the object, by double clicking the design object or by clicking

    the computations button. If it is a new object the computations are activated automatically.

    In the object's calculation window enter the necessary data for the particular design object

    and do the computations.

    In the calculation window you can see the drawing of the object, and you can preview or print the report of that particular design object.

    Check the objects you would like to appear in the report, and adjust their order of appearance in the [Design objects] window.

    Preview and Print the report, for the marked objects. Specify the design and code parameters, and the default values from the menu Parameters

    Adjust the report appearance and the contents. Adjust also the units used in the report. Adjust program appearance and basic parameters.

    4 Design objects

    The design objects can be a variety of steelwork parts of a structure such as: beams, columns,

    connections, bracing systems, footings etc... We refer to these calculations as design objects or structural steelwork elements. You create the design objects with the action buttons on the top. In a project you may create as many design objects, as you want. Automatically the program gives a default name to each object, (which you may change), and assigns a small characteristic icon in front to recognize

    the type of the design object. You may change the name of the design object. Design objects must have different names.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 9

    The design objects are autonomous and each one has its own drawings, material properties and computations. All the design objects of the project are listed in the window at the left, which is the basic window in working with the design objects. By selecting (clicking at) an object, the corresponding computations appear on the right window. If the object appears in

    red colour, the computations have errors or are not satisfying. A characteristic sketch of the selected design object appears underneath. With double clicking on a design object you enter its calculation window. With right clicking on a design object you can select actions like computations, report previewing and printing exporting, or drawing.

    The objects checked in front, are included in the report. A common report is produced from

    the selected objects. In the Report Setup you may specify the report of each design object to start in a new page.

    The order of the objects, which is also the order of appearance in the report, is regulated with

    the two buttons . You can delete one or more selected objects by clicking at Del key

    or , (multiple selection of design objects with [Shift] and mouse click, or [Ctrl] and mouse

    click). You can duplicate a selected object by clicking at .

    5 Calculation Window

    A calculation window has a typical sketch of the steelwork object that is to be designed. All the necessary input data are marked with their dimensions.

    Depending on the speed of the computer the user can choose to have the computations performed simultaneously with the data input/change or when clicking the button [Computations]

    The calculations appear in the window underneath. This window can expand by clicking [Report Up]. Warnings and errors for inadequate design values are shown in red in the calculations. When the object is created all the parameters take default values. A check is always made for wrong or erroneous input values. After the computations an OK or Error (in red) message is

    shown on top left. With Preview you can preview the full report of that design object. From the preview window you can print or export the report to PDF or Word file.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 10

    6 Files

    You create, open and save files. The data are saved automatically as

    you change them and you do computations. All the structure objects are saved in the same unique file with an extension [SteelExpressData]. When you specify a new file name you don't have to type in the extension.

    7 Step by step, program use

    1- Open a Project File. Use New for new project and Open for an existing project file. All the data are saved in the same file. The data are saved automatically.

    2- Create a new Design object. From the drop-down buttons on the top, automatically you enter the

    computation window for this object. You may select an existing design object, from the [Design objects] window, and activate the computations by double clicking at the object, e.g.

    BEAM-001, or by clicking at .

    3- In the window with the computations, enter the necessary data for the particular design

    object and click on .

    When the Auto-computation is checked, the calculations are performed automatically when

    you change the data.

    Click to see more of calculations.

    All the computations for the design object are performed.

    A message appears if design is OK, the computations and the dimensions are adequate.

    If the design has problems due to inadequate dimensions this message will appear.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 11

    Automatic generation of CAD drawings.

    Preview report. From preview you can export the file to PDF or Word format.

    Select (check) the objects you want to include in the report. With the arrows you can adjust their order of appearance in the report. In the report only the objects checked in front will appear.

    Report setup. Adjust the appearance of the report. You can adjust: font size, margins, captions and footnotes, line distances, character font, new page after each object printout, line thickness and paragraph indentation

    Print the report

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 12

    8 Parameters

    Basic program parameters for materials, design parameters and regions for snow, wind and earthquake loading.

    8.1 National Annex

    Select the National Annex of the country you want to work. To do this, first click [Locked] to unlock. The various design parameters (load factors, material factors etc.) are set according to the National annex. This does don affect the

    regions for snow, wind and earthquake, which have to be selected from the next menu lines of the parameter menu.

    8.2 Materials

    Structural steel, Concrete, Reinforcing steel and Soils for the foundation. You can change (edit) material properties.

    In order to avoid accidental material changes the edit capabilities are locked. To edit, click first

    to unlock the edit capabilities. With you add or delete lines from the

    property tables, with the original program values are loaded.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 13

    8.3 Design Parameters

    The National Annex parameters are set according to

    the National Annex you select. You may although want to change some of them, or specify some design considerations not mentioned in the national Annex.

    8.3.1 NAD parameters Action coefficients for Ultimate limit states

    EQU and STR. According to Eurocode 0 Table A1.2A and Table A1.2B.

    Click Reset to reset to National Annex values.

    Load Combination coefficients according to Eurocode0 Table A1.1.

    Click Reset to reset to National Annex values Material factors for Steel according to Eurocode

    3 §6.1

    Material factors for Reinforced concrete

    according to Eurocode 2 §2.4.2.4., used for the reinforced concrete in the foundation.

    Material factors for Soil according to Eurocode 7

    Annex A. Used for the foundation design.

    8.3.2 Eurocode 3, design parameters Lateral torsional buckling computations base on Eurocode 3 Eq. 6.56, and Tables T 6.3, and T 6.4. (most common) Lateral torsional buckling computations base on Eurocode 3 Eq. 6.57, and Table T 6.5.

    Method for Bending and compression. Method 1 Annex A or method 2 Annex B (most common)

    8.3.3 Critical elastic moment for lateral torsional

    buckling Mcr

    The values of coefficients C1,C2,C3, for the evaluation of elastic critical moment Mcr can be found in literature. You may choose the source of definition of these parameters

    prEN 1993-1-1:2002 Annex C This is an intermediate publication of Eurocode 3 in 2002. After this the subject has been removed from Eurocode 3.

    ENV 1993-1-1:1992 Annex F ECCS 119/Galea SN030a-EN-EU Access Steel 2006 Kolekova Y-Balaz I. Engineering Mechanics 2012

    Vagias I., Stahlbau 73(2004), Heft 2 BS5958:1:1990 tables 15 and 16 NSN 6771 Table 9

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 14

    8.3.4 Parameters for Portal frames Specify some parameters that are not covered from national annex. Such as:

    1. Deflection limits for Serviceability limit state (SLS) The limits for these deflections are usually defined in the National Annex. EN1993-1-1 § 7.2 and EN 1990 Annex A1.4 According to EN1993-1-1 these limits may be specified for each project and agree with the client. Usual values: vertical deflection L/200, horizontal deflection H/150, vertical deflection due to bending L/200.

    2. Design parameters for buckling control

    Columns (1): (most reasonable default)

    In plane buckling, critical buckling length Lcr=system length points of axis. Out of plane buckling and torsional buckling and lateral torsional buckling, critical buckling

    Lcr the column height up to the haunch, or the distance of lateral restrains Lm1, if is

    specified smaller than the column length. (2): (conservatively) In plane buckling Lcr = system length points of axis. Out of plane buckling and torsional buckling and lateral torsional buckling, Lcr the system

    length or the distance of lateral restrains Lm1. Rafters

    (1) (most reasonable default) In plane buckling Lcr = system length. This s computed from the total span L and the

    first buckling mode. Lateral buckling length at span the purlin space, torsional buckling the distance

    between torsional restraints Lm2

    (2) (conservatively) In plane buckling Lcr=system length

    Lateral and torsional buckling length, the distance between torsional restraints Lm2.

    At haunch bottom At system length

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 15

    8.4 Snow load on the ground

    Default region and snow zone.

    Click and select the snow region of your area. The snow zone and the amplitude, and the characteristic snow load value on the ground sk is set according to Eurocode ΔΝ1991-1-3:2003.

    8.5 Basic wind velocity

    Select wind region and wind zone. The default

    basic wind velocity is set.

    8.6 Seismic zone

    Default seismic region and seismic zone. The ground

    acceleration α=αgr/g is set.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 16

    9 General input data for steelwork components

    Most of the steelwork design objects have some basic common data as follows:

    Name of design object

    Structural steel grade

    Partial safety factors for actions

    Partial factors for materials

    Actions

    Steel section

    9.1.1 Name of design object Every design object has a name, which appears in the report. In the creation of each object the program assigns a default name e.g. Beam-001, Beam-002 etc. which may be changed

    any time. (names up to 16 characters long). Names of structural design objects must be unique. Two design objects cannot have the same name.

    9.1.2 Structural steel grade

    Eurocode 3 ΔΝ1993-1-1:2005 § 3.2

    Select the steel grade from the steel materials available. Most of the used steel grades are included in the program, and are loaded according to the national Annex you select. You can add steel grades, or change properties for steel grades in the menu Parameters/materials/Structural Steel. The program automatically sets the respective steel properties (fyk, fuk, Es etc).

    9.1.2.1 Steel grades included in the program S 235 EN 10025-2 fy40:235;fu40:360

    S 275 EN 10025-2 fy40:275;fu40:430

    S 355 EN 10025-2 fy40:355;fu40:510

    S 450 EN 10025-2 fy40:440;fu40:550

    S 275 N/NL EN 10025-3 fy400:275;fu4:390

    S 355 N/NL EN 10025-3 fy40:355;fu40:490

    S 420 N/NL EN 10025-3 fy40:420;fu40:520

    S 460 N/NL EN 10025-3 fy40:460;fu40:540

    S 275 M/ML EN 10025-4 fy40:275;fu40:370

    S 355 M/ML EN 10025-4 fy40:355;fu40:470

    S 420 M/ML EN 10025-4 fy40:420;fu40:520

    S 460 M/ML' EN 10025-4 fy40:460;fu40:540

    S 235 W EN 10025-5 fy40:235;fu40:360

    S 355 W EN 10025-5 fy40:355;fu40:510

    S 460 Q/QL EN 10025-6 fy40:460;fu40:570

    S 235 H EN 10210-1 fy40:235;fu40:360

    S 275 H EN 10210-1 fy40:275;fu40:430

    S 355 H EN 10210-1 fy40:355;fu40:510

    S 275 NH/NLH EN 10210-1 fy40:275;fu40:390

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 17

    S 355 NH/NLH EN 10210-1 fy40:355;fu40:490

    S 420 NH/NLH EN 10210-1 fy40:420;fu40:540

    S 460 NH/NLH EN 10210-1 fy40:460;fu40:560

    S 220GD+Z EN 10147 fy40:220;fu40:300

    S 250GD+Z EN 10147 fy40:250;fu40:330

    S 280GD+Z EN 10147 fy40:280;fu40:360

    S 320GD+Z EN 10147 fy40:320;fu40:390

    S 350GD+Z EN 10147 fy40:350;fu40:420

    H240LA EN 10268 fy40:240;fu40:340

    H280LA EN 10268 fy40:280;fu40:370

    H320LA EN 10268 fy40:320;fu40:400

    H360LA EN 10268 fy40:360;fu40:430

    H400LA EN 10268 fy40:400;fu40:460

    H260LAD EN 10292 fy40:240;fu40:340

    H300LAD EN 10292 fy40:280;fu40:370

    H340LAD EN 10292 fy40:320;fu40:400

    H380LAD EN 10292 fy40:360;fu40:430

    H420LAD EN 10292 fy40:400;fu40:460

    220GD+ZA EN 10214 fy40:220;fu40:300

    250GD+ZA EN 10214 fy40:250;fu40:330

    280GD+ZA EN 10214 fy40:280;fu40:360

    320GD+ZA EN 10214 fy40:320;fu40:390

    350GD+ZA EN 10214 fy40:350;fu40:420

    The steel grades for cold formed steel C, Z and U sections are included.

    9.1.3 Partial safety factors for actions Eurocode 0 ΔΝ 1990:2002 § 6, Πίν. A1.2, Α1.3, Α1.4

    The partial safety γG, γG.sup (permanent loads unfavourable), γG.inf (permanent loads

    unfavourable), γQ (variable loads), and coefficients ψο, ψ1, ψ2 for combining actions, are set according to the national Annex selected. They can be changed from the menu Parameters/Design parameters/Action coefficients. And Parameters/Design parameters/Load combination factors. Common values γG =1.35, γG.inf =1.00, γQ =1.50, ψo=0.70.

    9.1.4 Partial factors for materials Eurocode 3 ΔΝ1993-1-1:2005 § 6.1

    The material partial factors γM0 γM1, γM2, are set according to the national Annex selected. They can be changed from the menu Parameters/Design parameters/Material factors. Usual values:

    γΜ0 = 1.00 γΜ1 = 1.00 γΜ2 = 1.25

    9.1.5 Actions

    Eurocode 0 ΔΝ 1990:2002 § 6.3

    9.1.5.1 Design value for actions

    In some cases (as the cases of evaluating the resistance of cross-section) you specify the design value for actions Ned (axial force), Medy, Medz (bending moments), etc. which is the result of combining permanent and variable actions. Ned = γG·Ng + γQ·Nq1 + γQ·ψο·Nq2 (Eq.6.10) Med = γG·Mq + γQ·Mq1 + γQ·ψο·Mq2

    In most cases you specify the permanent and variable actions and the program evaluates the

    design actions.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 18

    In cases of designing structural parts as floors, or roofs you specify the environmental loads permanent and variable on the structure.

    9.1.5.2 Permanent loads on floors

    Weight of floor finishing, the weight of the floor finishing (tiles etc.) Weight of floor structure then weight of the floor structure If you select thin concrete slab (70mm) or timber floor. The floor beams are checked as unrestrained. For thicker concrete slab

    are checked restrained. For steel floor (steel plates etc.) are checked later restrained at one middle point. The lateral restraining selection can be altered afterwards

    9.1.5.3 Variable loads on floors

    Variable load You can select from the table of EN1991-1-1 6.3).

    9.1.5.4 Permanent loads on roofs Load of roof covering [kN/m²] It includes the weight of the

    sheeting, purlins and insulation materials. Load of ceiling under the roof [kN/m²] self weight of frame elements, calculated by the program

    from the element cross sections with Unit mass π= 7850 Kg/m³

    9.1.5.5 Variable loads on roofs

    Imposed load according to EN1990-1-1 Tab 6.1, calculated by the program according to

    the selected National Annex

    Snow load according to Eurocode 1-3:2004 The characteristic snow load on the ground sk is specified in kN/m2.

    Click , and a special dialog window appear.

    In this window you set the snow zone and the height above the sea level. The characteristic snow load on the ground is computed according to Eurocode 1-3:2004, and the National Annex. The snow region can be selected from Parameters/snow load on the

    ground. The snow load on the roof is computed according to Eurocode 1-3:2003.

    Wind load, according to Eurocode 1-

    4:2005 The wind pressure on vertical surface is

    specified in kN/m2. Click and in this

    window you compute the wind pressure from the wind velocity and the topography of the region according to Eurocode 1-4:2005. The wind load is computed for various places at the roof and the vertical walls according to Eurocode 1-4:2005 §7.2.5 and Tab 7.4a and Tab. 7.1.

    The wind region, which specifies the wind velocity, is selected from Parameters/Basic

    wind velocity.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 19

    Wind internal pressure wi in kN/m2. This is internal pressure and it acts from inside outwards on the walls and roof. It is subtracted directly (without further multiplication by pressure coefficients) from any uplift wind pressure on the outside surfaces.

    9.1.5.6 Seismic load Eurocode 8-1:2004

    The program performs a verification of the structure under seismic loading, using both Lateral force method, and Modal superposition spectrum

    analysis. .

    Basic value used in the seismic design is the ratio

    of horizontal seismic acceleration. Click and a

    special dialog window appears where you may in

    detail specify all the necessary seismic parameters (soil factors, spectra periods, behaviour factors, etc.) for the design spectrum, according to Eurocode 8-1:2004.

    10 Eurocode 3, Tables and charts

    Various helpful charts and tables of Eurocode 3.

    Flexural buckling Lateral torsional buckling Effective length of columns in braced and unbraced frames.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 20

    11 Design tables for Structural Steel Sections,

    (Eurocode 3, EN1993-1-1:2005 § 5.5)

    Tables with steel sections, with their dimensions, properties, classification, resistance and

    buckling resistance values according to Eurocode 3 Three (3) groups of sections are included in the program. Standard sections. All international section profiles. Non standard sections. Sections with dimensions given by the user.

    Welded sections. Welded sections made from rectangular steel plates, with dimensions given by the user.

    z z z z z z z z z

    11.1 Tables with dimensions and properties of standard steel sections

    From the left tree you select the section type e.g. IPE, HE etc. On the right the table shows all the standard sections for this group and their dimensions and properties. Moving up and down

    the table on the right the section drawing is shown in scale (you can grab and move the

    section drawing around the window and you can make it small or bigger with the arrows).

    Click or double click on a section and you obtain analytical report for the

    classification, resistance values and buckling resistance of the selected section.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 21

    11.2 Classification and resistance of standard steel sections

    Classification of cross section according to EN1993-1-1:2005 §5.5. Resistance values of cross section according to EN1993-1-1:2005 §6.2. Buckling resistance and lateral buckling resistance according to EN1993-1-1:2005 §6.3 From the tree on the left you select the section with its designation. On the right, a drawing of

    the section profile is displayed together with the section dimensions and properties. On the right window are also displayed:

    Classification (1,2,3,4) according to EN1993-1-1:2005 §5.5 for axial loading and loading with bending moments.

    Resistances of the section in compression, bending in y-y and z-z axis, and shear according to EN1993-1-1:2005 §6.2

    Buckling resistance for various buckling lengths (Lc) according to EN1993-1-1:2005 §6.3.1

    Lateral torsional buckling resistance for various lateral buckling lengths (Llt) according to EN1993-1-1:2005 §6.3.2

    11.2.1 Symbols

    NtRd [kN]: Tension resistance EN1993-1-1:2005 §6.2.3

    NcRd [kN]: Compression resistance EN1993-1-1:2005 §6.2.4

    Mcrdy [kNm]:

    Bending resistance about the strong y-y axis EN1993-1-1:2005 §6.2.5

    Mcrdz [kNm]:

    Bending resistance about the weak z-z axis EN1993-1-1:2005 §6.2.5

    Vcrdz [kN]: Shear resistance in the axis z-z parallel to web EN1993-1-1 §6.2.6

    Vcrdy [kN]: Shear resistance in the axis y-y axis parallel to flanges EN1993-1-

    1:2005 §6.2.6

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 22

    Nbrdy [kN]: Nbrdz [kN]:

    Buckling resistance in compression about the strong y-y or weak z-z axis, for various buckling lengths Lc (1.00,1.50…15 m) EN1993-1-1:2005 §6.3.1

    Mbrd1

    [kNm]: Mbrd2 [kNm]:

    Lateral torsional buckling resistance for various lengths between

    constrains Llt (1.00,1.50 ….15 m) EN1993-1-1:2005 §6.3.2

    Mbrd1: Lateral torsional buckling resistance for constant (uniform) bending moment diagram along the beam

    Mbrd2: Lateral torsional buckling resistance for parabolic bending moment diagram along the beam

    h [mm]: Depth of cross section b [mm]: Width of cross section hw [mm]: Web depth dw [mm ]:

    Depth of straight portion of web

    tw [mm]: Web thickness tf [mm]: Flange thickness r [mm]: Radius of root fillet G [Kg/m]: Mass A [cm²]: Area Iy [cm4]: Moment of area about axis y-y Iz [cm4]: Second moment of area about axis z-z Wy [cm³]: Section modulus about axis y-y Wz [cm³]: Section modulus about axis z-z Wpy [cm]:

    Plastic section modulus about axis y-y

    Wpz [cm³]:

    Plastic section modulus about axis z-z

    iy [cm]: Radius of gyration about y-y axis iz [cm]: Radius of gyration about z-z axis Avz [cm²]:

    Shear area parallel to web

    Avy [cm²]:

    Shear area parallel to flanges

    It [cm4]: Torsional constant Iw [cm6]: Warping constant

    11.3 Tables of non-standard steel sections

    Tables with steel sections organized as the standard sections, but the user can change the basic dimensions. Changes are activated with the [Edit]. As you change the dimensions the new geometric and strength properties are evaluated. These sections can be used as standard sections.

    11.4 Tables of user defined welded steel sections

    Click [Edit] and you enter the window where you can enter the basic dimensions of a welded

    steel section. The strength properties of the section are listed at the same time.

    For adding new section or deleting existing click . Click [Stop edit] to stop editing.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 23

    11.5 Classification and resistance of steel sections (detailed report)

    1. Select section group (standard, non standard, welded) 2. From the tree on the left select the section. 3. Select the combination of actions on the cross-section.

    If it is combination with axial force and bending moments specify the actions. You obtain a detailed report of the section classification according to EN1993-1-1:2005 §5.5.

    You can adjust also the steel grade and the partial safety factors.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 24

    12 Resistance of cross-sections (Eurocode 3, EN1993-1-1:2005 § 6.2)

    Design of cross-section in Ultimate limit state, for various combinations of actions

    Design load combinations Single actions

    Tension Nt Compression Nc Bending Myy

    Bending Mzz

    Shear Vz Shear Vy

    Double actions

    Bending and compression Nc-Myy

    Bending and compression Nc-Mzz Biaxial bending Myy-Mzz Compression and shear Nc-Vz Compression and shear Nc-Vy

    Combined actions

    Compression, bending and shear Nc-Vz-My Tension, bending and shear Nt-Vz-My Bending and compression Nc-Myy-Mzz

    Bending and tension Nt-Myy-Mzz Axial force shear and bending N-V-M

    1. Select section group (standard, non standard, welded)

    2. From the tree on the left select the section. 3. Specify the design actions on the cross-section.

    Detail report is obtained for the design of the selected cross-section under the specified loading. If the cross-section is not appropriate to resist the loading, error messages are displayed.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 25

    13 Buckling resistance of members (Eurocode 3, EN1993-1-1:2005 § 6.3)

    13.1 Uniform members in compression EN1993-1-1:2005 § 6.3.1

    13.1.1 Columns with axial load only

    1. Select section group(standard, non

    standard, welded) 2. From the tree on the left select the

    section. 3. Specify the design actions. Axial load Nc,ed [kN]. 4. Specify the member length L in meters, and the buckling lengths in y-y and z-z direction. The

    buckling lengths are specified by the ratios to the member length. The ratios may be selected

    from the standard buckling lengths by click at or from the buckling lengths of frame

    columns by clicking at for braced or unbraced frames according to Eurocode 3.

    13.2 Uniform members in bending EN1993-1-1:2005 § 6.3.2

    13.2.1 Beams with vertical bending load

    1. Select section group

    2. From the tree on the left select the section. 3. Specify the beam loading as a combination of

    uniform [kN/m] and concentrated [kN] loads. For concentrated loads specify the distance x [m] from left support. The loads are for permanent and live

    loading conditions. 4. Specify the end support conditions of the beam

    (simply supported, fixed at one end or fixed at both ends).

    5. Specify the member length L in meters, and the lateral buckling length Lc [m]. The lateral buckling length is the distance of lateral supports.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 26

    13.3 Uniform members in bending and axial compression,

    (EN1993-1-1:2005 § 6.3.3)

    13.3.1 Columns with axial compression and end moments

    1.Select section group 2.From the tree on the left select the section. 3.Specify the column axial load Ng [kN] (permanent) and Nq [kN] (live).

    4.Specify the column end moments at top point A and bottom point B. Moments Myy [kNm] for the bending around the main axis and Mzz [kNm] for bending around the secondary axis. Moments MyyAg, MzzAg, MyyBg, MzzBg for permanent loading and MyyAq, MzzAq,

    MyyBq, MzzBq for live loading. 5.Specify the member length L in meters, 6.Specify the buckling lengths in y-y and z-z direction. The buckling lengths are specified by

    the ratios to the member length. This ratios may be selected from the standard buckling

    lengths by click at or from the buckling lengths of frame columns by clicking at for braced or unbraced frames according to Eurocode 3.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 27

    13.3.2 Beams with vertical load and axial compression

    1. Select section group

    2. From the tree on the left select the section. 3. Specify the axial load of the beam Ng[kN] permanent, Nq [kN] live load. 4. Specify the beam loading as a combination of uniform [kN/m] and concentrated [kN]

    loads. For concentrated loads specify the distance x [m] from left support. The loads are for permanent and live loading conditions.

    5. Specify the end support conditions of the beam. 6. Specify the member length L in meters, and the lateral buckling length Lc [m]. The lateral

    buckling length is the distance of lateral supports.

    14 Connections EN1993-1-8:2005

    Design of various connections. For most types of connections there is 1. Connection design, Specify the connection loading and the program selects optimum

    connection geometry and bolt arrangement to satisfy the design of the connection. 2. Connection capacity, you specify the connection geometry and the bolt arrangement, and

    the capacity of the connection is evaluated

    14.1 Connection types

    14.1.1 Tension connections (design and

    capacity)

    shear joint double shear joint splice joint chord continuity I sections

    14.1.2 Beam to beam connections (design and

    capacity)

    Beam-continuation connection Gerber-beam connection

    Beam-on-beam connection with web cleats

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 28

    14.1.3 Beam to column connections

    Beam on column connection with web cleats

    Beam on column connection with end plates

    14.1.4 Connections of portal frames

    Bolted connections with end or base plate.

    Apex connection Usual loading with positive bending moment, the bottom of the connection is in tension. A small haunch is provided at the bottom to increase the lever arm for the tension bolts.

    Eve connection with haunch Eve connection without haunch

    For connections with high bending moment a haunch is provided to increase the level arm of the bolts in tension. The height of the haunch is assumed the save as the

    height of the connected rafter beam. A compression stiffener is provided in the column at the bottom of the connection to take the increased compressive forces.

    Simple column base connection, Fixed column base connection

    The connection has a base plate connected to the column by fillet welds. Holding down anchoring bolts are designed. The bolts are anchored in the concrete foundation with hooks or washer plates. If the connection is simple connection then the connection is not designed to carry bending moment. (pin connection). In the case of pin

    connection the bolts are located in the middle of the column. If the connection is designed to carry bending

    moment (fixed connection), the bolts are located outside and close to the peripheral of the column.

    14.1.5 Connections made with pins (design and capacity)

    Pin ended member

    Gerber-beam connection

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 29

    14.2 Connection data

    14.2.1 Connection loading

    Design forces and moments on the connected members as the drawing shows.

    14.3 Connection bolts EN1993-1-8 §3.1

    Diameter of bolts in mm M (from 8 to 30 mm) Grade of bolts. (From 4.6 to 10.9) according to EN1993-1-8 Tab3.1. Regular or preloaded bolts (only for bolts of grades 8.8 and 10.9) EN1993-1-8 §3.1.2. In

    case of preloaded bolts give the values of Ks, μ ,γΜ3 according to EN1993-1-8 §3.9.1 Shear plane through the treated part or not. EN1993-1-8 Tab 3.4.

    14.4 Connection plates

    Dimensions of the connection plates are given in mm.

    14.5 Joint geometry

    In case of evaluating the capacity of a joint, the number and positioning of the bolts has to be chosen. The basic distances between the bolts have to be specified. In the case of designing a connection for a given load, the program selects the optimum

    geometry and the necessary number of bolts. The distances from the edges and between the bolts are according to EN1993-1-8 Tab 3.3 and Fig. 3.1

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 30

    15 Design of Steel Beams

    15.1.1 Beams with Uniform load

    Beams of one span, Continuous beams of two spans. Beam with one span and cantilever.

    Beam loads Uniformly distributed permanent and variable load in Kn/m. The program adds the beam self weight.

    Beam span and lateral restrains Beam span L in Meters Conditions of lateral restrains, laterally unrestrained, laterally totally restrained, and laterally restrained in middle span or at one third span.

    15.2 Design of floor beams

    Floor of one span

    Floor of two spans

    Floor loads

    Weight of floor finishing, the weight of the floor finishing (tiles etc.)

    Weight of floor structure then weight of the floor structure. If you select thin concrete slab (70mm) or timber floor. The floor beams are checked as unrestrained. For thicker

    concrete slab are checked restrained, and for steel floor (steel plates etc) are checked later restrained at one middle point. The lateral restraining selection can be altered afterwards

    Variable load. You can select from the table of EN1991-1-1 6.3).

    Beam span and lateral restrains Beam spans (L) of main floor beams and beam spacing (s) in Meters. Conditions of lateral restrains, laterally unrestrained, laterally totally restrained, and laterally restrained in middle span or at one third span

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 31

    15.3 Design of Roof beams

    Roof beam of one and two spans Purlins

    Dimensions Main roof, beam spans and spacing. The Purlin span is equal to the beam spacing.

    Loads Permanent loads

    Load of roof covering [kN/m²] It includes the weight of the sheeting,

    purlins and insulation materials. Load of ceiling under the roof

    [kN/m²] self weight of beams, is calculated by the program from the beam cross sections with

    Unit mass π= 7850 Kg/m³

    Variable loads

    Imposed load according to EN1990-1-1 Tab 6.1, calculated by the program according

    to the selected National Annex Snow load, according to Eurocode 1-3:200 Wind load, according to Eurocode 1-4:2005

    15.4 Design of Purlins

    The cladding is supported on purlins. The thickness of the sheeting tw [mm] and the profile height hw [mm] are used for estimating the degree of lateral restrain of the purlins.

    The spacing of purlins is the distance between the purlin axes. The section of purlins can be a

    symmetric section (I) or a non symmetric Z, C or U section. In the case of non symmetric purlin section the purlin is considered laterally restrained completely for downwards loading (sagging). If you select purlin laterally unrestrained then the possible restraining of the purlin due to sheeting is disregarded. If you select purlin laterally restrained then the restraining due to sheeting is evaluated and used for wind pressure (sagging). The purlin is considered laterally unrestrained for wind uplift (hogging).

    For the evaluation of the dimensioning bending moments and shear forces you may choose Simply supported purlin or Continuous purlin. In the second case the purlin is considered continuous over many spans.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 32

    16 Design of Steel Columns

    16.1 Column design

    Columns in axial load Columns in Axial load and simple bending

    Columns in Axial load and double bending

    Loading

    Axial load in (kN) and bending moments in (kNm) in the two bending directions. y-y is the main bending direction, z-z is the secondary bending direction. Permanent and variable load. Column height and buckling lengths

    Column height and buckling lengths in the two bending directions, y-y and z-z n. The buckling lengths are specified by the ratios to the column length. The ratios may be selected from the

    standard buckling lengths by click at or from the buckling lengths of frame columns by

    clicking at for braced or unbraced frames according to Eurocode 3.

    Eurocode 3 options

    You can select the lateral buckling curves of Eq 6.56 or Eq. 6.57. You can select the method (1 or 2 or both) for computing the interaction factors kyy,kyz,kzy and kzz.

    16.2 Columns in simple constructions

    Simple column

    Column in Braced frames Column in unbraced frames

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 33

    17 Design of single-bay steel portal frames

    Single bay Portal frame under snow, wind

    and seismic load. (common in portal frame for industrial buildings)

    Single Bay portal frame under vertical and horizontal load. (common in portal frame of one floor buildings)

    Single Bay portal frame under vertical and horizontal load with concentrated loads on the columns. (common in portal frame in buildings with many floors)

    Two-floor portal frame under vertical and horizontal load. (common in portal frame of two floor buildings)

    17.1 Basic structure dimensions

    Bay width L [m], the distance between

    column axes. Total height H [m] column height at axis

    points. In case of two-floor frames the floor heights H1, andH2

    Total transverse length B [m]. Spacing s [m] of frames, transverse

    distance of column axis. Type of support. Pinned or fixed.

    The spacing of the lateral bracing for columns and torsional bracing for rafters is

    used for the lateral-torsional buckling design.

    17.2 Design parameters for buckling control

    Select the way they apply the lateral bracing.

    By clicking at you define the lateral support

    of the columns and rafters. Column buckling

    (1): (most reasonable default) In plane buckling, critical buckling length Lcr=system length points

    of axis. Out of plane buckling and torsional buckling and lateral torsional

    buckling, critical buckling Lcr the column height up to the haunch,

    or the distance of lateral restrains Lm1, if is specified smaller than the column length.

    (2): (conservatively) In plane buckling Lcr=system length points of axis.

    Out of plane buckling and torsional buckling and lateral torsional buckling, Lcr the system length or the distance of lateral restrains Lm1.

    Rafter buckling (2) (most reasonable default)

    In plane buckling Lcr=system length. This s computed from the total span L and the first buckling mode.

    Lateral buckling length at span the purlin space, torsional buckling the distance between torsional restraints Lm2

    (2) (conservatively) In plane buckling Lcr=system length

    Lateral and torsional buckling length, the distance between torsional restraints Lm2.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 34

    17.3 NAD parameters

    Click to see and adjust (if needed) the Eurocode 3

    and National Annex parameters Action coefficients for Ultimate limit states EQU and

    STR. According to Eurocode 0 Tables A1 2A and TA1.2B. Click Reset to reset to National Annex values. Load Combination coefficients according to Eurocode0 Table A1.1.

    Material factors for Steel according to Eurocode 3 §6.1 Reinforced concrete according to Eurocode 2 §2.4.2.4., used for the reinforced concrete in the foundation.

    Eurocode 3, design parameters. Lateral torsional buckling computations base on Eurocode 3

    Eq. 6.56, and Tables T 6.3, and T 6.4. (most common) Lateral torsional buckling computations base on Eurocode 3 Eq. 6.57, and Table T 6.5.

    Method for Bending and compression. Method 1 Annex A or method 2 Annex B (most

    common) Source for computing elastic critical moment for lateral buckling.

    Parameters for Portal frames Specify some parameters that are not covered from national annex. Such as: Deflection limits for Serviceability limit state (SLS) The limits for these deflections are usually defined in

    the National Annex. EN1993-1-1 § 7.2 and EN 1990 Annex A1.4 According to EN1993-1-1 these limits may be specified for each project and agree with the client. Usual values: vertical deflection L/200, horizontal deflection H/150, vertical deflection due to bending L/200.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 35

    17.4 Cross-sections

    Specify the cross section for the columns, the rafters. Select if you use Standard section profiles, Non standard or fabricated (welded) sections). The sections are from the library of sections of the program. In which you specify the properties for the non standard sections as

    well as you make the welded sections.

    All the standard hot- rolled or cold-format cross sections are included.

    Click the library with the section appears to select section profile. You select the section type on the left tree and at the same time all the sections of this group with their geometric properties are displayed on the right window together with the section drawing in scale. Section geometric properties are calculated precisely including fillets. The notation is shown at the drawing at the low left window.

    17.5 Estimate of member sizes

    Click and you get a rough estimate of member sizes for the structural elements of the

    structure with the dimensions you have specified. You can start with this estimate to continue for better design.

    17.6 Portal frame Connections

    Apex and eave bolt-connections with end plate are designed to resist moment and shear forces. For the apex and eave connection the end plate (thickness and steel grade) and bolts (diameter, grade) are the same. The thickness of Apex and eave end plate should be at least as thick as the flange thickness of the rafter and column section. At the base of the haunch, a stiffener is designed to resist the increased compressive forces.

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 36

    Base plate bolt-connection is designed for the column over the concrete foundation. The

    anchor bolts are designed to resist shear and pullout forces due to uplift wind or seismic forces. CEN/TS 1992-4-1:1992 and CEN/TS 1992-4-2:1992 are used for the design of the fastenings in concrete

    The holding down anchor bolts of the base plate are extended with anchors. The anchor system can be (simple hook, bended hook or washer plate). The hook type anchoring (first

    two choices) cannot be selected for bolt grade with fy>300N/mm2 (M>5.6), according to Eurocode 1993-1-8:2005, 6.2.6.12 (6). Anchor bolts with hook have much lower capacity of anchors with washer plate. The design of connections is skipped if Design of connections is unchecked. The design of connections is skipped automatically if hollow cross section is selected.

    If in the design process the base plate thickness or the bolt diameter is not adequate the program adjust them (if possible) to new higher values if the boxes next to them are not checked. Connections are designed according to EN1993-1-8.

    17.7 Portal frame loading

    17.7.1 Single Bay portal frame under snow, wind and seismic load

    The program automatically forms and evaluates all the load combinations in ultimate limit state ULS (EQU, STR), and serviceability limit state SLS. The partial factors for loading and

    load combination factors are taken according to Eurocode 0 and National Annex. The basic loads are:

    Permanent loads

    Load of roof covering [kN/m²] It includes the weight of the sheeting, purlins and insulation materials.

    Load of ceiling under the roof [kN/m²] self weight of frame elements, calculated by the program from the element cross

    sections with Unit mass π= 7850 Kg/m³ Variable loads

    Imposed load according to EN1990-1-1 Tab 6.1, calculated by the program according to the selected National Annex

    Snow load according to Eurocode 1-3:2004

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 37

    The characteristic snow load on the ground sk is specified in kN/m2.

    Click and a special dialog window appears

    from where by entering the zone and the height above the sea level the characteristic snow load on the ground is computed

    according to Eurocode 1-3:2004, and the National Annex. The snow region can be selected from Parameters/snow load on the ground. The snow load on the roof is computed according to Eurocode 1-3:2003.

    Wind load, according to Eurocode 1-4:2005

    The wind pressure on vertical surface is

    specified in kN/m2. Click and a special

    dialog window appear from where you can compute the wind pressure from the wind

    velocity and the topography of the region according to Eurocode 1-4:2005. The wind load is computed for various places at the roof and the vertical walls according to Eurocode 1-4:2005 §7.2.5 and Tab 7.4a and Tab. 7.1. The wind region, which specifies the wind

    velocity, is selected from Parameters/Basic wind velocity. Wind internal pressure wi in kN/m2. This is internal pressure and it acts from inside outwards

    on the walls and roof. It is subtracted directly (without further multiplication by pressure coefficients) from any uplift wind pressure on the outside surfaces. Seismic load Eurocode 8-1:2004

    The program performs a verification of the structure under seismic loading, using both Lateral force method, and Modal superposition

    spectrum analysis. .

    Basic value used in the seismic design is the

    ratio of horizontal seismic acceleration. Click

    and a special dialog window appears where you

    may in detail specify all the necessary seismic parameters (soil factors, spectra periods,

    behaviour factors, etc..) for the design spectrum, according to Eurocode 8-1:2004. If seismic loading is specified 0 (zero), the seismic analysis is skipped.

    17.7.2 Single Bay portal frame under vertical and horizontal load Permanent load gk kN/m (total load except self weight of rafter) Variable load-1 vertical load qk kN/m (imposed floor loads or snow load etc.) Variable load–2 concentrated Horizontal load Hk kN (wind or seismic load) The two variable loads qk and Hk are combined if they act together with ψo factor ψo=0.70 The design loads obtained from load combinations as:

    ULS (Ultimate limit state): L.C. 201: 1.35gk+1.50qk (Eq.6.10)

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 38

    L.C. 202: 1.35gk+1.50Hk (Eq.6.10) L.C. 221: 1.35gk+1.50qk+0.70x1.50Hk= 1.35xgk+1.50qk+1.05Hk (Eq.6.10) L.C. 222: 1.35gk+1.50Hk+0.70x1.50qk= 1.35xgk+1.50Hk+1.05qk (Eq.6.10)

    SLS (Serviceability limit state) L.C. 301: Gk+Qk (Eq.6.14a) L.C. 302: Gk+Hk (Eq.6.14a)

    L.C. 311: G + Qk + 0.70Hk (Eq.6.14a) L.C. 312: G + Hk + 0.70Qk (Eq.6.14a)

    17.7.3 Single Bay portal frame under vertical and horizontal load with concentrated

    loads on the columns Permanent load gk kN/m (total load except self weight of rafter)

    Variable vertical load qk kN/m (imposed floor loads or snow load etc.) Permanent Concentrated load Gk kN (load from higher floors) Variable vertical concentrated load Qk kN (load from higher floors) Variable concentrated Horizontal load Hk kN (wind or seismic load)

    17.7.4 Two floor portal frame under vertical and horizontal load Permanent load gk kN/m (total load except self weight of rafter)

    Variable load-1 vertical load qk kN/m (floor loads.) Variable load–2 concentrated Horizontal load Hk kN (wind or seismic load) The two variable loads qk and Hk are combined if they act together with ψo factor ψo=0.70 The design loads obtained from load combinations as: ULS (Ultimate limit state): L.C. 201: 1.35gk+1.50qk (Eq.6.10) L.C. 202: 1.35gk+1.50Hk (Eq.6.10) L.C. 221: 1.35gk+1.50qk+0.70x1.50Hk= 1.35xgk+1.50qk+1.05Hk (Eq.6.10) L.C. 222: 1.35gk+1.50Hk+0.70x1.50qk= 1.35xgk+1.50Hk+1.05qk (Eq.6.10)

    SLS (Serviceability limit state) L.C. 301: Gk+Qk (Eq.6.14a) L.C. 302: Gk+Hk (Eq.6.14a) L.C. 311: G + Qk + 0.70Hk (Eq.6.14a) L.C. 312: G + Hk + 0.70Qk (Eq.6.14a

  • STEELexpress RUNET software

    Copyright RUNET Software www.runet-software.com 39

    18 Design of Bracing systems

    Bracing systems are required to resist transverse actions, due to wind and earthquake. For this two bracing systems are provided. Vertical bracing system in the sidewalls between the columns. This system transmits the horizontal transverse

    loads from the roof to the ground and temporary stability during the erection. Horizontal roof bracing system. On the roof to transmit the transverse loads from the roof to the vertical bracing and to provide temporary stability during the erection.

    For the vertical bracing system basic data are the dimensions length (Ly) and height H in meters, and the concentrated load on the top of the bracing system Qed2. For a structure with N bracings in the transverse direction and wind pressure wk (kN/m2), and wind pressure coefficients Cpe,D (pressure) on the upwind face and Cpe,E (suction) on the downwind face ,

    Qed2=(µ)γqx(Cpe,D+Cpe,E)xwkxA/N. (A is the area of the face to the wind)

    For the horizontal bracing system basic data are the length Lx and the width Ly and the load on the nodes Qed1. For a bracing system as above with k nodes

    Qed1=(´)γqx(Cpe,D+Cpe,E)xwkxA/(Nx(k-1)) For A general bracing system (vertical and horizontal) the loading is the uniform distributed load on the roof level qed.

    qed=(´)γqx(Cpe,D+Cpe,E)xwkxA/(NxL).

    18.1.1 Example

    Wk=0.91kN/m2, Cpe,D=0.80, Cpe.E=-0.50,