STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT...

79
COMMESSA/Job N: XX DIS./Dwg n : XX CLIENTE/Client : XX PAG./Page : 1 DI/of 79 IMPIANTO/Plant : XX REV. 00 DATA/Date: XX STEEL STRUCTURAL CALCULATION REPORT 00 XX XX XX REV. DATE DESCRIZIONE EMESSO CONTROLLATO APPROVATO N° DATE DESCRIPTION ISSUED BY CONTROLLED BY APPROVED BY

Transcript of STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT...

Page 1: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 1 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

STEEL STRUCTURAL

CALCULATION REPORT

00 XX XX XX

REV. DATE DESCRIZIONE EMESSO CONTROLLATO APPROVATO

N° DATE DESCRIPTION ISSUED BY CONTROLLED BY APPROVED BY

Page 2: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 2 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

1 CALCULATION ASSUMPTION

1.1 SCOPE This report describes the calculation procedure and data considered in order to design the steel structure of the HEATER.

1.2 REFERENCE DOCUMENTS & DRAWINGS

- Heater Assembly xx - Foundation Assembly / Details with loads xx

1.3 CALCULATION CODES - Uniform Building Code Volume 2 UBC-97 - Minimum Design Loads for Buildings and other Structures UBC-97 - Manual of steel construction - Allowable Stress Design AISC – ASD/01 - Specification for Structural Steel Buildings AISC 360-05

1.4 MATERIAL AND CODE ALLOWABLE VALUES Material used for the structures : JIS SS400 or equivalent Yield stress fy: 235 N/mm2 (thickness ≤ 16 mm) Minimum Tensile stress fu: 400 N/mm2

Page 3: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 3 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2 LOAD CALCULATION

2.1 PRIMARY LOADS The decomposition of the loads into following primary loads :

- Structure Self-Weight (SLF): Weighs of the structural components automatically calculated by the program, and based on the model feature.

- Extra Steelwork Weight (EXTSTEEL): Extra Steelwork weights not directly included in the model and not automatically calculated.

- Platform (EXTPLTF): Platform Extra Steelwork weights not directly included in the model and not automatically calculated.

- Refractory Loads (REFRACT): Weights of the refractory lining surfaces applied to the structural elements.

- Pipe empty loads (PPEMPT): Weights of all the operating pipes installed on the structure considered empty.

- Pipe Operating Loads (PPOPER) Weights of the pipes filled with gas or liquid fluid as they are during the normal operation of the plant and load at terminal points.

- Hydrostatic test loads (PPTEST) Weights of the pipes considered full of water as they are during the hydrostatic test conditions

- Burners (BURN): Weights of the burners applied to the radiant floor - Air Duct (ADUCT): Weights of air duct installed on heater

- Live Load 1 (LL1): For the calculation of the foundation loads and structural analysis has been considered an overload of 500 Kg/m2 on each platforms.

- Wind Load +X WLX According to UBC-97 - Wind Load +Y WLY According to UBC-97 - Earthquake Load +X EQX According to UBC-97 - Earthquake Load +Y EQY According to UBC-97

- Thermal Load TMP

A thermal load has been considered on steel structures during normal operation according to spec n° 00-ZA-E-205001-rev.02 Tmax on frame = 47°C Tmin on frame = 2°C Tmax on furnace skin = 83°C Tmin on furnace skin = 38°C

Page 4: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 4 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2 LOADING DETAILS

2.2.1 Radiant cell

2.2.1.1 Radiant Floor

A.1 FLOOR External Radius 2474 mm Internal Radius 1697 mm support internal Radius 515 mm External Diameter 4948 mm Internal surface diameter 3394 mm support internal diameter 1060 mm Floor thickness 6 mm Overall Surface 19,2 m2 Floor surface weight 905,7 Kg 9,06 KN burners supporting surface 8,16 m2 External surface 11,1 m2 Refractory (wet) 57,04KN Wet D.ty M.W.C. 1:2:4 1930 Kg/m3 Thickness 75 mm Wet D.ty VLWC 1:0:5 1215 Kg/m3 Thickness 125 mm

A 1.2 Burners Weight of each burner considered 450 Kg number of burners 6 Overall burners weight 2700 Kg 27,00KN

A 1.3 Steelwork Extra steelwork not modelled 40,00 Kg/m2 Extra steelwork weight 769,15 Kg 7,69 KN

Input Sap Data Overall floor weight 100,79 KN

Internal surface External surface load case

KN/m2 KN/m2 Overall refractory weight distribuited on surface 2,97 2,97 REFRACT Overall steelwork weight distribuited on surface 0,4 0,4 EXTSTEELOverall burners weight distributed on surface 3,31 BURN

Page 5: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 5 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.1.2 Radiant Lateral walls

LATERAL WALL External Diameter 4948 mm Height 9198,0 mm Thickness 5,0 mm Lateral Surface 142,9 m2 Lateral surface weight 5609,1 Kg 56,1 KN Refractory (wet) 323,7 KN L.W.C. 124 1400 Kg/m3 Thickness 75 mm V.L.W.C 105 1215 Kg/m3 Thickness 100 mm Steelwork Extra steelwork not modelled

20,00 Kg

Extra steelwork weight 2858,1 Kg/m2 28,6 KN tot. weight 408,4 KN

load case

KN/m2 Overall refractory weight distribuited on surface 2,26 REFRACT Overall steelwork weight distribuited on surface 0,20 EXTSTEEL

Page 6: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 6 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.1.3 Heater Arch

ARCH Diameter 4948 mm Thickness 6 mm Surface 19,2 m2 Arch surface weight 905,7 Kg 9,1 KN Rectangular hole Lenght 4900 mm Width 1453 mm hole surface 7,1 m2 Arch surface without hole 12,11 m2 Refractory (wet) 31,105 KN L.W.C. 124 1400 Kg/m3 Thickness 75 mm V.L.W.C 105 1215 Kg/m3 Thickness 125 mm Steelwork Extra steelwork not modelled 20,00 Kg Extra steelwork weight 242,2 Kg/m2 2,4 KN tot. weight 42,6 KN Overall refractory weight added to arch surface 2,57 KN/m2 REFRACT Overall steelwork weight added to arch surface 0,20 KN/m2 EXTSTEEL

Page 7: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 7 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.2 Radiant Internal coil

Type of fuel Fuel Oil Bare tubes O.D: 141,3 mm Bare tubes thickness 6,55 mm Bare tubes I.D. 128,2 mm Maximum Operating fluid density 556 Kg/m3 Water density for hydrostatic test 1000 Kg/m3 Pipe weight per meter 21,77 Kg/m Operating fluid weight per meter on each pipe 7,18 Kg/m Water weight per meter inside each pipe 12,91 Kg/m Number of tubes on each anchor 2,0 Medium pipe lenght 7,800 m Return bends medium diameter 254,0 mm Number of return bends on each anchor 2,0 Bends unit weight 8,7 Kg/each Operating fluid on each return bend 2,9 Kg/each Water weight on each return bend 5,1 Kg/each Pipe empty weight on each anchor (2 tube + 2 bend) 356,9 Kg Pipe weight with operating fluid on each anchor (2 tube + 2 bend) 474,6 Kg Pipe full weight on each anchor (2 tube + 2 bend) 568,6 Kg Crossing Tubes Number of crossing tubes 4,0 Medium pipe lenght 2,248 m Empty crossing tubes weight 195,7 Kg Operating crossing tube weight (pipes + Op. fluid) 260,3 Kg Test crossing tube weight (pipes + water) 311,8 Kg Anchor number 24,0 Total number of tubes on each anchor 48,0 Total number of bends on each anchor 48,0 Overall empty weight 8761,6 Kg 87,6 KN Overall operating weight (Pipe + Operating fluid) 11650,5 Kg 116,5 KN Overall test weight (Pipe + water) 13957,4 Kg 139,6 KN Point empty weight applied on each anchor (ELEV. 19050) 3,65 KN PPEMPT Point operating weight applied on each anchor (ELEV. 19050) 4,85 KN PPOPER Point test weight applied on each anchor (ELEV. 19050) 5,82 KN PPTEST

Page 8: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 8 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.3 Convection cell

2.2.3.1 Convection Lateral vertical walls

Width 4900,0 mm Height 3555,0 mm Thickness 5,0 mm Surface 17,4 m2 Weight of each convection wall 683,7 Kg 6,8 KN Refractory (wet) 36,6 KN D.ty LWC 1:2:4 1400 Kg/m3 Thickness 150 mm Steelwork not modelled Extra steelwork not modelled 20,00 Kg/m2 Extra steelwork weight 348,4 Kg 3,5 KN

Overall convection wall weight (2X) 93,8 KN Overall refractory weight distributed each surface 2,10 KN/m2 REFRACT Overall steelwork weight added to each surface 0,20 KN/m2 EXTSTEEL

2.2.3.2 Convection End tube sheets (E.T.S.)

width 1453,0 mm Height 3555,0 mm Thickness 13,0 mm Surface 5,2 m2 Weight of each convection wall 527,1 Kg 5,3 KN Refractory (wet) 7,2 KN Wet D.ty LWC 1400 Kg/m3 Thickness 100 mm Steelwork not modelled 1,0 KN Unit Weight 20 Kg/m2

tot. weight of each End Tube Sheet 13,5 KN Overall End Tube Sheet weight 27,1 KN

Overall refractory weight added to each E.T.S. surface 1,40 KN/m2 REFRACT

Overall steelwork weight added each E.T.S. surface 0,20 KN/m2 EXTSTEEL

Page 9: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 9 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.3.3 Convection Header Boxes

Deep considered for the Header boxes 450 mm Width 2353,0 mm Height 4455,0 mm Surface 10,5 m2 Steelwork not modelled sheet thickness 5,0 mm Plate steelwork weight 411,4 Kg 4,1 KN Refractory (wet) 7,3 KN D.ty LWC 1:2:4 1400 Kg/m3 Thickness 50 mm Extra Steelwork not modelled 5,24 KN Unit Weight 50 Kg/m2

tot. weight of each Header Box 16,7 KN Overall Header Boxes weight 33,4 KN

Overall refractory weight distributed on each E.T.S. surf. 1,42 KN/m2 REFRACT Overall steelwork weight distributed on each E.T.S. surf. 1,81 KN/m2 EXTSTEEL

Page 10: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 10 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.3.4 Convection Piping (coil, inlet &outlet piping)

CONVECTIVE PROCESS COIL type of fuel fuel oil Operating fluid density 556 Kg/m3 Water density for Hydrostatic test 1000 Kg/m3 Bare tube external diameter 141,3 mm Bare tube thickness 6,55 mm Bare tube internal diameter 128,2 mm Bare tube length 5,226 m Nr of flow passes 4 Number of tubes 44 N° tubes/row 4 Number of rows 11 Number of 180° return bends 40 Medum diameter of 180° return bends 254 mm single empty tube weight per meter 21,76 Kg/m Operating fluid weight per meter inside each tube 7,17 Kg/m Water weight per meter inside each pipe 12,90 Kg/m Weight of each empty bend 8,68 Kg/each Operating fluid weight per meter inside each bend 2,86 Kg/each Water weight per meter inside each bend curve 5,14 Kg/each Overall empty coil weight (pipes + bends) 5350 Kg 53,50 KN Overall Operating coil weight (pipes + bends + operating fluid)

7113 Kg 71,13 KN

Overall Test coil weight (pipes + bends + water) 8522 Kg 85,22 KN STUDDED SURFACE AROUND CONVECTIVE COIL Stud height 25,40 mm Studs diameter 12,70 mm studs per meter 1260 stud /m Number of bare tubes not finned Number of studded tubes 28 studded surface length (on each tube) 5,026 m exposed surface of each stud 0,001013 m2 studded exposed surface of each tube 6,414 m2 total exposed surface calculated (studs+ tubes) 242,04 m2 Weight of studded surface 4476,4 Kg 44,76 Overall empty coil weight 9826 Kg 98,26 KN

Overall Operating coil weight (tube + Op. fluid) 11590 Kg 115,90 KN Overall test coil weight (tube + water) 12998 Kg 129,98 KN

Page 11: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 11 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Height of End Tube Sheet portion 3555,0 mm Width of End Tube Sheet portion 1453,0 mm Heading surface with coil weight distributed 5,17 m2 Overall empty tube weight distributed on each convection header surfaces 9,51 KN/m2 PPEMPT

Overall Operating weight distributed on each convection header surfaces (tube + Op. Fluid) 11,22 KN/m2 PPOPER

Overall test weight distributed on each convection header surfaces (tube + water) 12,58 KN/m2 PPTEST

2.2.3.5 Inlet & Outlet terminal points load

TAG F x F y F z M x M y M z N N N Nm Nm Nm

N1 9342 17346 17346 7566 5694 5694 N2 9342 17346 17346 7566 5694 5694

2.2.4 Breeching

C.1 BREECHING Base lenght 4900 mm Base width 1453 mm plate thickness 5 mm Overall SAP surface 10,2 m2

C.1.1 Refractory (wet) Wet D.ty LWC 1:2:4 1400 Kg/m3 Thickness 75 mm Overall breeching refractory weight 1071 Kg 10,71 KN

C.1.4 Steelwork not modelled Steelwork not modelled 30Kg/m2 Overall steelwork not modelled weight 306Kg 3,06 KN tot. Breeching Weight 13,77 KN

Overall breeching refractory weight distributed on modelled surface1,05 KN/m2 REFRACT Overall breeching steelwork weight distributed on modelled surface0,30 KN/m2 EXTSTEEL

Page 12: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 12 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.5 Platforms, Vertical ladders & Stairs

Live load (for base foundation loads ) 500 Kg/m2

Grating 37 Kg/m2

Structure 75 Kg/m2

Handrail 16 Kg/m2

Toe board 7 Kg/m2

Total 135 Kg/m2

2.2.5.1 Platforms EL+ 3000 on plinth L

Dimension LengthWidth Surface mm mm m2 Plant platform at 0° 1250 1835 2,29

nr.supporting

beam load on middle

beam

KN/m Total platform Dead load

309,66 Kg 3,10 KN 2 0,84

Total platform Live load 1146,88 11,47 KN 2 3,13 2.2.5.2 Platforms EL+ 3000

Dimension Internal Radius

Middle radius

modelled

External Radius

Angle (°)

Surface

mm mm mm m2 Plant 2474 3104 3854 360 27,42

nr.supp.

beam

load on middle beam

load on external

beam KN/m KN/m

Total platform Dead load 3701,77 Kg 37,02 KN 2 0,95 0,76 Kg

Total platform Live load 13710,24 137,10 KN 2 3,52 2,83

Page 13: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 13 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.5.3 Platforms EL+9000

Dimension Internal Radius

Middle radius

modelled

External Radius

Angle (°) Surface

mm mm mm m2 Plant 2474 2875 3854 345 27,42

nr.supporting

beam

load on middle beam

load on external

beam KN/m KN/m

Total platform Dead load

3701,77 Kg 37,02 KN 2 1,07 0,80

Kg Total platform Live load

13710,24 137,10 KN 2 3,96 2,96

Dimension Surface

Total length of

beam modelled

m2 m Plant platform at 270° and 90° 5,79 15,07

load on beams

KN/m Total platform Dead load

781,38 Kg 7,81 KN 0,52

Total platform Live load

2894,00 28,94 KN 1,92

Page 14: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 14 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.5.4 Platforms EL+12498

Dimension Length Width Surface mm mm m2 Plant platform at 0° 4000 1124 4,50

Plant platform at 90° 6151 1145 7,04 Plant platform at 180° 4000 1124 4,50 Plant platform at 270° 6151 1145 7,04

Nr of

portion consid.

Load on each supp.

beam column

KN Dead Load on Plant platform at 0° 606,96 Kg 6,07 KN 1 0,76 Dead Load on Plant platform at 90° 950,79 Kg 9,51 KN 1 0,77 Dead Load on Plant platform at 180° 606,96 Kg 6,07 KN 1 0,76 Dead Load on Plant platform at 270° 950,79 Kg 9,51 KN 1 0,77 Live load on Plant platform at 0° 2248,00 Kg 22,48 KN 1 2,81 Live load on Plant platform at 90° 3521,45 Kg 35,21 KN 1 2,86 Live load on Plant platform at 180° 2248,00 Kg 22,48 KN 1 2,81 Live load on Plant platform at 270° 3521,45 Kg 35,21 KN 1 2,86

2.2.5.5 Platforms EL+17203

Dimension Length Width Surface mm mm m2

Plant platform at 0° 5133 1375 7,06 Plant platform at 90° 1453 1349 1,96 Plant platform at 180° 5133 1375 7,06 Plant platform at 270° 1453 1349 1,96

Nr of portion

consid. Load on each supporting

beam column KN

Dead Load on Plant platform at 0° 952,81 Kg 9,53 KN 1 0,93 Dead Load on Plant platform at 90° 264,61 Kg 2,65 KN 1 0,91 Dead Load on Plant platform at 180° 952,81 Kg 9,53 KN 1 0,93 Dead Load on Plant platform at 270° 264,61 Kg 2,65 KN 1 0,91

Live load on Plant platform at 0° 3528,94 Kg 35,29 KN 1 3,44 Live load on Plant platform at 90° 980,05 Kg 9,80 KN 1 3,37 Live load on Plant platform at 180° 3528,94 Kg 35,29 KN 1 3,44 Live load on Plant platform at 270° 980,05 Kg 9,80 KN 1 3,37

Page 15: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 15 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.5.6 Vertical ladder and stairs

E.1.8 Vertical ladder

load (steelwork + live load)

Kg/m Applicable to elev.

lenght (m)

weight (Kg)

weight (KN)

80 LD.2 3000 6,00 480 4,80 KN LD.2A 3000 6,00 480 4,80 KN LD.3 11500 3,50 279,84 2,80 KN LD.4 20000 3,50 279,84 2,80 KN LD.5 25010 4,71 376,4 3,76 KN

E.1.8 Stairs

load (steelwork + live load)

Kg/m Applicable to elev.

lenght (m)

weight (Kg)

weight (KN)

300 SG.1 3000 5,25 1573,5 7,87 KN

Page 16: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 16 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.6 Wind Loads (WL)

WIND LOAD according toUBC-97

P = Ce*Cq*qs*Iw EXPOSURE D Pressure coefficient on cilindrical surfaces Cq = 0,8

Site elevation 19-25 m According to spec. Nr. 00-ZA-E-205001 rev.2

Basic wind speed V = 44,4 m/s According to spec. Nr. 00-ZA-E-205001 rev.2

wind stagnation pressure suggested for site elevation qs =

1,30E-03 Mpa 1,30 KN/m2

Importance factor Iw = 1,15 (hazardous facilities)

2.2.6.1 Wind Load in X direction

From Elev.

To Elev. Frontal

dimension Surface

considered Ce

Specific Pressure on portion p(z)

Wind Load

mm mm m m 2 kN/m2 KN Radiant 3000 7000 4948 19,8 1,48 1,77 35,0 Radiant 7000 12198 4948 25,7 1,62 1,94 49,8 convection 12198 17203 4900 24,5 1,71 2,05 50,2 Stack I 17203 27203 1574 15,7 1,83 2,19 34,4 Stack II 27203 37203 1570 15,7 1,93 2,31 36,2 Stack III 37203 47203 1566 15,7 2 2,39 37,5

Total Wind X 243,18 KN

INPUT SAP DATA

Portion Intermediate

columns UNIT

wind load distributed

wind load distributed ext. Columns

load case

Radiant 1 KN/m 4,38 2,19 WX Radiant 1 KN/m 4,79 2,40 WX Convection 2 KN/m 3,34 1,67 WX Stack I 0 KN/m 3,44 WX Stack II 0 KN/m 3,62 WX Stack III 0 KN/m 3,75 WX

Page 17: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 17 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.6.2 Wind Load in Y direction

WIND IN Y DIRECTION

From Elev. To Elev. Frontal

dimension Surface

considered Ce Specific Pressure on

stack p(z) Wind Load

mm mm m m2 kN/m2 KN 3000 7000 4948 19,8 1,48 1,77 35,0 7000 12198 4948 25,7 1,62 1,94 49,8

12198 17203 1453 7,3 1,71 2,05 14,9 17203 27203 1574 15,7 1,83 2,19 34,4 27203 37203 1570 15,7 1,93 2,31 36,2 37203 47203 1566 15,7 2 2,39 37,5

Total Wind Y Weight 207,89 KN

INPUT SAP DATA

Portion Intermediate columns

UNITwind load distributed

wind load distributed ext. Columns

load case

Radiant 2 KN/m 2,92 1,46 WY Radiant 2 KN/m 3,20 1,60 WY Convection 1 KN/m 1,49 WY Stack I 0 KN/m 3,44 WY Stack II 0 KN/m 3,62 WY Stack III 0 KN/m 3,75 WY

Page 18: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 18 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.7 Earthquake Loads calculation (EQX/Y)

Earthquake load according to UBC-97 (*)

Notes

Sismic Zone 4 According to spec. nr. 00-ZA-E-205001 rev.02 Seismic zone factor Z 0,4 According to table 16-I of UBC-97 Solid Profile SC According to customer data Ca 0,40 According to table 16-Q of UBC-97 and for customer request Cv 0,56 According to table 16-R of UBC-97 and for customer request

I 1,25 According to table 16-K

“Hazardous facilities for toxic and explosives material”

R 4,5 According to table 16-N of UBC-97

“Moment Resisting Frame systems – OMRF – Steel”

(*) Note: In order to calculate the earthquake effect on the structure, the previous data have been assigned as input data to the model in SAP 2000 program and the effect of the earthquake as base reaction, structure elements deformation and vertical distribution of the lateral forces have been calculated automatically. According to UBC- 97 the automatic calculation of the elastic fundamental period of vibration (performed by SAP 2000) is based on following formulation based on method A:

4/3)(*nt hCT = = 0,802 s

where: Ct = 0,0853 is the coefficient for the calculation of steel moment-resisting frames hn = is the height of the structure above the base (m) from this value of T it is automatically calculated the total design base shear according to:

WTR

ICV v *

*

*=

where W is the total weight of the structure.

Page 19: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 19 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

According to UBC 97, the base shear so calculated has to respect the following limits:

The value of base shear shall not exceed the value WR

ICV a

MAX*

**5.2=

The value of base shear shall not be less than WICV aMIN***11.0=

For seismic zone 4 the value of base shear shall also not be less than WR

IZNV v

ZMIN*

**8,04 =−

Following are listed the values calculated for the heater in the different condition of work:

Work condition Total

weight considered

Total base shear Vtot

VMAX VMIN V MIN-Z4

KN KN KN KN KN Erection 1680 326 467 92.4 149.3

Operating 1748 341 485.6 96.16 155.4 Test 1772 344 492.2 97.5 157.5

Operating + 33% Live 1937 379 538 106.5 172.2

Page 20: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 20 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.8 Stack 2.2.8.1 Loading details Stack – sections

Stack Material JIS SS400

Stack total Length 30000 mm

Internal Stack Diameter 1550 mm

Internal lining diameter 1450 mm

Stack portion I

Casing and Refractory Height 10000 mm External diameter 1574 mm Shell thickness 12 mm

Lateral External surface 49,42 m2 Casing Weight 4620,2 Kg 46,20 KN Refractory LWC

Refractory D.ty 1400 Kg/m3 Thickness 50 mm Overall refractory weight 3406,9 Kg 34,1 KN Extra steel-work not modelled

Safety margin Unit Weight 20 Kg/m2 Overall Extra Steelwork Weight 988,5 Kg 9,9 KN

Base skirt / flange weight Total base skirt weight 885,25 Kg 8,85 KN

Intermediate stiffening rings weight Number of A-75x75x9 stiffening rings on portion 4 A-75x75x9 weight per meter 9,96 Kg/m Total A-75x75x9 stiffening rings weight 196,90 Kg 1,97 KN

Overall Stack portion weight 100,98 KN Overall Steelwork weight distributed along stack span 1,19 KN/mOverall refractory weight distributed along portion span 3,41 KN/mPoint skirt weight at stack base 8,85 KN

Page 21: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 21 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Stack portion II

Casing and Refractory Height 10000 mm External diameter 1570 mm Shell thickness 10 mm

Lateral External surface 49,30 m2 Casing Weight 3845,2 Kg 38,45 KN Refractory LWC

Refractory D.ty 1400 Kg/m3 Thickness 50 mm Overall refractory weight 3406,9 Kg 34,1 KN Extra steel-work not modelled

Safety margin Unit Weight 20 Kg/m2 Overall Extra Steelwork Weight 986,0 Kg 9,9 KN

Base skirt / flange weight Total base skirt weight 447,05 Kg 4,47 KN

Intermediate stiffening rings weight Number of A-75x75x9 stiffening rings on portion 4 A-75x75x9 weight per meter 9,96 Kg/m Total A-75x75x9 stiffening rings weight 196,40 Kg 1,96 KN

Overall Stack portion weight 88,82 KN Overall Steelwork weight distributed along stack span 1,18 KN/mOverall refractory weight distributed along portion span 3,41 KN/mPoint skirt weight at stack base 4,47 KN

Page 22: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 22 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Stack portion III

Casing and Refractory Height 10000 mm External diameter 1566 mm Shell thickness 8 mm

Lateral External surface 49,17 m2 Casing Weight 3072,3 Kg 30,72 KN Refractory LWC

Refractory D.ty 1400 Kg/m3 Thickness 50 mm Overall refractory weight 3406,9 Kg 34,1 KN Extra steel-work not modelled

Safety margin Unit Weight 20 Kg/m2 Overall Extra Steelwork Weight 983,4 Kg 9,8 KN

Base skirt / flange weight Total base skirt weight 443,59 Kg 4,44 KN

Fan duct weight Overall Fan duct supporting stiffness weight 0,00 Kg 0,00 KN Overall fan duct steelwork weight Kg KN Overall refractory weight Kg KN

Intermediate stiffening rings weight Number of A-75x75x10 stiffening rings on portion 4 A-75x75x10 weight per meter 9,96 Kg/m Total A-75x75x10 stiffening rings weight 195,90 Kg 1,96 KN

Overall Stack portion weight 81,02 KN Overall Steelwork weight distributed along stack span 1,18 KN/mOverall refractory weight distributed along portion span 3,41 KN/mPoint skirt weight at stack base 4,44 KN

Page 23: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 23 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.2.8.2 STACK VERIFICATION

Stack stress verification are performed in according to API STANDARD 560.

Stack general dimensions

Portion From Elev.

To Elev.

Internal stack

diameter

Refractory internal

diameter

Shell thickness

Shell Outer diameter

Portion height

Stiffness ring profile type

Nr. Of stiffness on

span mm mm mm mm mm I 17200 27200 1550 1450 12 1574 10000 A-75x75x9 4 II 27200 37200 1550 1450 10 1570 10000 A-75x75x9 4 III 37200 47200 1550 1450 8 1566 10000 A-75x75x10 4

Base & connecting flanges dimensions Rectangular stiffness Triangular stiffness

Portion Internal Plate

diameter

External plate

diameter

Lower plate

thickness

Upper plate

thickness

Nr. Of stiffness on plate

Stiffness thickness

Height of stiffness

Nr. Of stiffness on plate

Stiffness thickness

Height of stiffness

mm mm mm mm mm mm mm mm I 1574 2074 30 25 28 12 270 28 12 270 II 1570 1890 30 30 0 30 8 250 III 1566 1886 30 30 0 28 8 250

Bolts Dimensions

Flanges at base of Portion Bolts nominal diameter Bolts number Bolt circle diameter

M mm

I 30 36 2060 II 27 30 1662 III 24 28 1662

LOADS ANALYSIS AND STANDARD REFERENCE

Wind action

Checks are performed according to API 560 – Specification for steel chimneys According to the values of wind load calculated on paragraph 0 following are calculated the value of loads and moments at the base of each section of the stack

Portion Thk. Diameter at portion

Base

Portion height

Portion casing weight

Wind Load uniformly distributed

along height

Shear Load at portion barycentre

Moment at portion

barycentre

Resulting Shear at portion base

Resulting moment at

portion base

mm mm mm mm KN/m KN KNm KNm KNm I 12 1574 10000 46,2 3,48 34,83 174,16 108,80 1660,07 II 10 1570 10000 38,5 3,63 36,33 181,63 73,97 746,24 III 8 1566 10000 30,7 3,76 37,64 188,20 37,64 188,20

Page 24: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 24 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

According to what written in the previous paragraphs, the stack here described has the following characteristics:

Portion Thickness Corroded Thickness

Conical / cilindrical Top External Diameter

Portion Length

Lateral Surface

Casing Weight

mm mm mm mm m² Kg I 12 10 1574 10000 49,4 4620,2 II 10 8 1570 10000 49,3 3845,2 III 8 6 1566 10000 49,2 3072,3

Total 30000 147,9 11537,7

Lining thickness = 50 mm Specific weight = 1400 daN/m3

Refractory weight calculation

Portion Refractory Density Portion lenght with refractory Refractory Thickness Refractory Weight

Kg/m³ mm mm Kg I 1400,0 10000,0 50,0 3406,9 II 1400,0 10000,0 50,0 3406,9 III 1400,0 10000,0 50,0 3406,9

Page 25: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 25 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Max. Height of stack: 30 m The values above listed do not consider the effect of the corrosion on the stack walls. The corrosion on the walls it will be considered later.

Material considered for Stack: JIS SS400 Overall Stack Height considered = 30 m Young modulus E = 200000 N/mm² Yield stress for the material fy = 235 N/mm² Lining Thickness = 50 mm Lining density = 1400 Kg/m³

Overall casing lateral surface 147,9 m² Overall Casing weight 115,38 KN Overall lining weight 102,21 KN Overall extra weight for Equipments appended: 0 KN Overall extra steelwork, stiffening and flanges weight 53,23 KN Total platform surface considered 0 m² Overall structural platform weight 0 KN Live load considered on each platform surface 2 KN/m² Overall non permanent live load 0 KN Overall ladder length 0 m Overall ladder weight 0 KN Overall stack permanent weight 270,82 KN Overall weight with 33% of live load 270,82 KN

Maximum resulting shear at stack base 108,8 KN Maximum resulting moment at stack base 1660,08 KMn

Page 26: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 26 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

ANCHOR BOLTS AND GROUND RING

The design procedure described in this paragraph is written according to chapter 10 of the book :

“Process Equipment Design” Written by: L.E. Brownell and E.H. Young Publisher: Wiley Publishing Bearing plate thickness assumed t4 = 30 mm Compression plate thickness assumed t5 = 25 mm Gusset plate thickness assumed t6 = 12 mm Base plate outer diameter De = 2074 mm Base plate bolt circle diameter Db = 2060 mm Base plate inner diameter Di = 1574 mm Minimum vertical load on base plate Nmin = 270,82 KN Maximum vertical load on base plate Nmin = 270,82 KN Maximum shear load at stack base Vmax = 108,8 KN Maximum resulting moment at stack base Mmax = 1660,08 KNm

Number of bolts on base plate nb = 36

Nominal diameter of anchor bolts db = 30 mm

Resistance section of anchor bolts Ares = 561 mm² Safety coefficient on yield stress n= 1,5 Admissible stress for parts resistance check σadm = 156,67 N/mm² Max load on anchor bolts is given by: Nb =(-Nmin/nb)+(4Mmax/Nb*Db) = 82,02 KN

Page 27: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 27 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Bearing plate design procedure:

Stress on net section of anchor bolt: σb = Nb/Ab = 14,62 KN/cm2 VERIFIED Maximum compression stress

σc = Nmax/(3,14*Db*c) + 4*Mmax/(3,14*Db2*c) = 0,22 KN/cm2 where: c: Ring outer radius - medium shell radius = 1037 - 781 = 256 mm Base plate is defined as follows: distance between stiffening bmin = 150 mm distance between stiffening bmax = 300 mm external width of base plate l = 250 mm ratio (l/ b)max = 0,834 mm

thickness of bearing plate tb = (6*Mmax/σadm)0,5 = 29,6 mm Where Mmax is calculated with the formulas:

Mmax = c1*σb*b2 = 14,53 KNcm with c1 = 0,0765 by interpolation

Mmax = c2*σb*b2 = 22,82 KNcm with c2 = -0,173 by interpolation

the value of “tb” has to be checked where the bolts are located In order to do this the maximum bolt load P is given by the formula: P = sb*Ab = 87,9 KN

Where σb is the maximum stress admissible on bolts The Maximum bending moment supported by bolts is given by: Mmax = P*b/8 = 329,59 KN/cm The bearing plate thickness calculated with the considerations above is:

tb=(6*Mmax/(lt-bhd)*σadm)0,5 = 24,2 mm THICKNESS t4 ASSUMED VERIFIED

Where: lt : overall bearing plate width = 250 mm bhd :bolt hole diameter in bearing plate = 33 mm

Page 28: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 28 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Compression plate design procedure:

The thickness of the compression plate is calculated as follow:

Mymax = (P/4*π)*[(1,3*ln(2*l/π*e)+(1-g1)] = 15,95 KNcm Where: Mmax: Maximum bending moment acting on compression plate P: Maximum bolt load calculated above lc : Radial distance from outside of skirt to outer edge of compression plate e: One-half distance across flats of bolting nuts = 23 mm g1: Constant = 0,472 (by interpolation) The thickness of the compression plate is:

tc =(6*Mymax/sigma_amm)0,5 = 24,7 mm THICKNESS t5 ASSUMED VERIFIED

Vertical gussets plate design procedure:

The vertical gusset plated equally spaced may be considered to react as a vertical column.

From empirical calculations it comes that the minimum thickness required for the gusset plates is given by the equation:

18000*l*tg³-P*tg²-h²*P/1500=0

Where:

l: is the width of the gussets (inches)

h: is the height of the gussets (inches)

tg: is the thickness of the gussets (inches)

P: is the Maximum value of bolt load calculated (lbs)

According to the values above listed the minimum thickness required for the gussets is:

tg = 6,25 mm THICKNESS t6 ASSUMED VERIFIED

Page 29: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 29 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

INTERMEDIATE RING FLANGES STRESS CHECK

Flange Stress Check

The procedure considered for the stress check of the flanges is the following: The maximum pressure on flange due to vertical load is given by:

()4

22max

pipefV

DD

P

A

Pp

−⋅==−π

The uniform load on middle flange diameter due to Pmas-V is given by:

⎟⎟⎟

⎟⎟⎟⎟

⎟ −⋅= −− 2maxmax

pipeVVp

DDpq

Assuming that the neutral axis for maximum moment passes from the section axis and assuming that the highest pressure value is located on bolt circle diameter, the maximum pressure on flange due to wind is given by:

()2

22max

cbpipe

Max

cbf

MaxW

DDD

M

DA

Mp

⋅−==−π

Assuming that this pressure is uniformly distributed on compressed side of the flange it can be calculated the uniform load on middle flange diameter due to this pressure:

⎟⎟⎟

⎟⎟⎟⎟

⎟ −⋅⋅= −− 2

2 maxmaxpipe

WWp

DDpq

Where: P: is the maximum vertical load calculated at the base of the section considered Mmax is the maximum moment calculated at the base of the section considered Dpe & Dpi are the Outside and the Inside flange diameters Dcb is the Bolt Circle diameter the worst load combination is given in the position where the two loads add one to the other:

WpVp qqq −− += maxmaxmax

With the geometry assumed it follows that the distance between the stiffness on bolt circle diameter is given by:

ss

cb tN

Db −=πmax

Page 30: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 30 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

where: ts is the thickness of the stiffness Ns is the total number of stiffness (assumed) Now each flange can be assumed as a beam simply supported in the position where it joins to the stiffness, so the maximum moment calculated between the two supports is given by:

8

2maxmax bq

M f

⋅=

The stress check of the flange is verified if

fadmf

fMf

tb

M−≤

⋅= σσ

6

2max

where: tf is the thickness of the flange (assumed) In order to check the maximum stress of the stiffness placed on each flange they are calculated the maximum shear load and the maximum moment acting at the base of each stiffness. In order to do this, the flange is considered as a beam uniformly loaded and supported by each stiffness. From this consideration the maximum reaction and the maximum moment calculated under the stiffness are given by the equations:

maxmaxmax 2

1bqR s

=− 2maxmaxmax 12

1bqM s

=−

From these values it is easy to calculate the maximum shear and bending stresses:

sss

th

Rmaxmax =−τ 2

maxmax

6

sss

ht

M=−σ

where: ts is the thickness of the stiffness (assumed) hs is the height of the stiffness (assumed) The stress of the stiffness is verified if

fadmsssid −−−− ≤+= στσσ 2max

2max 3

Page 31: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 31 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Following are listed all the geometric data and the resulting value calculated according to the procedure above described.

Flange at base of portion

Stack External DIA

Stack Shell Thk

Flange Outside Dia

Flange inside Dia

Flange circular surface

Flange thk

Dext ts Dpe Dpi Af tf mm mm mm mm mm2 mm

II 1570 10 1890 1570 869152 30

III 1566 8 1886 1566 867142,4 30 Section Bolt Circle diameter Nr. of stiffness on interm. flange Stiffness Height Stiffness Thk

Dcb Ns hs ts

mm mm mm II 1662 30 250 8 III 1662 28 250 8

Section

Max Vertical load on flange

Max moment at section base due

to wind or earthquake

Max pressure on

flange due to vertical load

Uniform load on middle

diameter due to vertical

load

Max pressure on flange due

to wind

uniform load on middle

diameter due to wind

Max uniform load on flange

PMax Mmax Pmax-V qpmax-V Pmax-W qpmax-W qmax KN KNm N/mm2 N/mm N/mm2 N/mm N/mm II 169,84 746,24 0,20 31,26 0,52 82,66 113,92 III 81,02 188,20 0,09 14,95 0,13 20,89 35,84

Section distance between the stiffness Max Bending moment on flange Max stress on flange Check

bmax Mf sMf

mm KNm N/mm2 II 189,46 0,51 17,99 OK III 203,06 0,18 6,07 OK

Section Max reaction

under stiffness Max moment under stiffness

Max bending stress on Stiffness

Max shear stress on Stiffness

Max ideal stress on Stiffness

Check

Rmax-s Mmax-s smax-s tmax-s sid-s KN KNm N/mm2 N/mm2 N/mm2 II 26,98 0,29 3,45 13,49 23,62 OK III 9,10 0,10 1,25 4,55 7,98 OK

Page 32: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 32 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Flange bolts stress check

The flange bolts considered in the following procedures are in class 8.8 with the following values for admissible stress: σadm-b = 373 N/mm2

τadm-b = 264 N/mm2

The procedure considered for the stress check of the flange bolts is the following: The maximum axial load on each bolt is given by the difference of the axial load due to bending moment at the base of each section and the minimum vertical load calculated in the same section. The maximum axial load on worst stressed bolt is given by:

bcbbbN

n

N

Dn

MF

minmax4−=−

From this follows that the highest axial stress on bolts is given by:

res

bNb

A

F −− =maxσ

The maximum shear stress on each bolt is given by:

bresb

nA

Vmaxmax =−τ

where: Nmin is the minimum vertical load calculated at the base of the section considered Vmax is the maximum shear load calculated at the base of the section considered Mmax is the maximum bending moment calculated at the base of the section considered Dcb is the bolt circle diameter nb is the total number of bolts considered on the flange Ares is the resistance section of the bolts considered The bolt are verified if

badmbbbid −−−− ≤+= στσσ 2max

2max 3

Page 33: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 33 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

The data and the results of the procedure applied to each intermediate flange are following listed:

Section Stack

Ext. Dia. Stack

Shell thk. Nr. of bolts on interm. flange

Bolt circle dia.

Bolt hole dia. on flange

Bolt nominal Dia.

Bolt resistance section

Dext ts Nb Db db M Ares

mm mm mm mm mm 0 mm2

II 1570 10 30 1662 30 27 459

III 1566 8 28 1662 27 24 353

Section

Min Vertical load on flange

Max shear load due to

wind or earthquake

Max moment at section base due

to wind or earthquake

Max axial load on worst

stressed bolt

Max axial

stress on bolts

Max shear

stress on bolts

Max ideal

stress on bolts

Check

PMin VMax Mmax FN-b smax-b tmax-b sid-b KN KN KNm KN N/mm2 N/mm2 N/mm2 II 169,8 74,0 746,2 54,2 118,1 5,4 118,5 OK III 81,0 37,6 188,2 13,3 37,6 3,8 38,2 OK

Page 34: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 34 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

CHECK OF CASING

With reference to the stack structure section, considering that the ratio between diameter (D) and thickness (t) is very high, in the following they will be used simplified formulas:

A = π*D*t

W = (π*D2*t)/4

I = (π*D 3*t)/8 Specific data for resistance check (thickness of corrosion = 2 mm)

Portion Wall thickness

corroded

External corroded diameter

A W I Corroded

casing weight

mm mm cm² cm 3 cm 4 KN I 10 1570 493 19.359 1.519.703 38,70 II 8 1566 394 15.409 1.206.494 30,88 III 6 1562 294 11.497 897.954 23,10

The overall structure stability value does not consider possible allowances due to fabrication, while the possible corrosion allowance value is deducted at checks of resistance. VERIFICATION Check on stability are performed in connection with admissible compression stresses, as per API 560 Par. 9.3. Admissible compression stress is the minimum value between:

σadm-1 = 0,5*Fy = 11,75 N/mm² or

σadm-2= 0,56*E*t/(D*(1+(0,004*E/Fy))) With values defined as follows: t = is the corroded shell plate thickness (mm) D = is the outside stack diameter (mm) E = 200000 N/mm² is the Elastic Young Modulus Fy = 235 N/mm² :is the material minimum yield strength at design temperature Following are listed the data considered in order to check the stress status of each shell section. The value of stress on each section is calculated with the vertical load coming from the weight calculation of each section considered with thickness corroded

Page 35: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 35 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Portion From

Elevation To

Elevation

Max Vertical Load at portion

base (N)

Max Moment at portion base

(Mmax)

Stress Calculated at base portion

σadm-2 Check

mm mm KN KNm cm4 KN/cm2 I 17200 27200 271 1.660 9,124 16,20 VERIFIEDII 27200 37200 170 746 5,275 12,99 VERIFIEDIII 37200 47200 81 188 1,912 9,77 VERIFIED

DYNAMIC CHECK ON WIND EFFECT

DYNAMIC CHECK Dynamic check is performed according to point 9.5 of API 560. Vc1 = 5*Dt*f Vc2 = 6*Vc1 Where: Dt = 1,562 m Diameter of stack top f = first mode frequency f = 0,5587*(E*I*g/W*H4)0,5 where: W = 46,33 lbs/in is the Weight per unit height of stack E = 29007548,8 psi is the Young Elastic Modulus g = 386 in/s2 is acceleration due to gravity I = 29023,3 inch4 is the medium moment of inertia H = 1181,1 in is the total stack height f = 1,061 Hz Vc1 = 5*Dt*f = 8,29 m/s ACCEPTABLE WITH STRAKES Vc2 = 6*Vc1 = 49,71 m/s ACCEPTABLE

Page 36: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 36 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

STIFFENING RING PRESENCE CHECK Dynamic check is performed according to point 9.5.5 of API 560 Stiffening ring are required to prevent ovalling if: fr/2*fv<1 calculated with the formulas: fr = 0.126*(tr*(E)0,5)/Dr2 fv = 13.2/Dr Where fr = natural frequency of the free ring (cycle per second) fv = vortex shedding frequency (cycle per second) tr = corroded plate thickness (inches) E = Young Elastic Modulus (psi) Dr = internal stack diameter (feet)

Portion From

Elevation To

Elevation Internal

Diameter

Shell Thickness corroded

Stiffening Spacing

fr fv fr/2fv Check

mm mm mm mm m

I 17200 27200 1.550 10 2,00 10,3372,60 1,99 RINGS NOT REQUIRED

II 27200 37200 1.550 8 2,00 8,269 2,60 1,59 RINGS NOT REQUIRED

III 37200 47200 1.550 6 2,00 6,202 2,60 1,19 RINGS NOT REQUIRED

Page 37: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 37 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

2.3 LOADING COMBINATIONS

2.3.1 Main Loads The following main loads have been considered Deads = SLF + ADUCT + BURN + EXTPLTF + EXTSTEEL + REFRACT ERECT = Deads + PPEMPT OPER = Deads + PPOPER TEST = Deads + PPTEST LT = TMP + LIVE1

Live Load LIVE1 Wind Load +X WLX Wind Load +Y WLY Earthquake Load +X EQX Earthquake Load +Y EQY Thermal Load TMP

2.3.2 Load Combinations

Combination with Erection conditions CB1E = ERECT + LIVE1 CB2E = ERECT + WX CB3E = ERECT - WX CB4E = ERECT + WY CB5E = ERECT - WY CB6E = ERECT + 0,714*EQX CB7E = ERECT -0,714*EQX CB8E = ERECT + 0,714*EQY CB9E = ERECT -0,714*EQY CB10E = 0,9*ERECT + 0,714*EQX CB11E = 0,9*ERECT -0,714*EQX CB12E = 0,9*ERECT + 0,714*EQY CB13E = 0,9*ERECT -0,714*EQY CB14E = ERECT + 0,75*LIVE1 + 0,75*WX CB15E = ERECT + 0,75*LIVE1 -0,75*WX CB16E = ERECT + 0,75*LIVE1 + 0,75*WY CB17E = ERECT + 0,75*LIVE1 -0,75*WY CB18E = ERECT + 0,75*LIVE1 + 0,535*EQX CB19E = ERECT + 0,75*LIVE1 -0,535*EQX CB20E = ERECT + 0,75*LIVE1 + 0,535*EQY CB21E = ERECT + 0,75*LIVE1 -0,535*EQY

Page 38: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 38 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Combination with Operating conditions

CB1O = OPER + LIVE1 CB2O = OPER + WX CB3O = OPER - WX CB4O = OPER + WY CB5O = OPER - WY CB6O = OPER + 0,714*EQX CB7O = OPER -0,714*EQX CB8O = OPER + 0,714*EQY CB9O = OPER -0,714*EQY CB10O = 0,9*OPER + 0,714*EQX CB11O = 0,9*OPER -0,714*EQX CB12O = 0,9*OPER + 0,714*EQY CB13O = 0,9*OPER -0,714*EQY CB14O = OPER + 0,75*LIVE1 + 0,75*WX CB15O = OPER + 0,75*LIVE1 -0,75*WX CB16O = OPER + 0,75*LIVE1 + 0,75*WY CB17O = OPER + 0,75*LIVE1 -0,75*WY CB18O = OPER + 0,75*LIVE1 + 0,535*EQX CB19O = OPER + 0,75*LIVE1 -0,535*EQX CB20O = OPER + 0,75*LIVE1 + 0,535*EQY CB21O = OPER + 0,75*LIVE1 -0,535*EQY CB1OT = OPER + LT CB14OT = OPER + 0,75*LT + 0,75*WX CB15OT = OPER + 0,75*LT -0,75*WX CB16OT = OPER + 0,75*LT + 0,75*WY CB17OT = OPER + 0,75*LT -0,75*WY CB18OT = OPER + 0,75*LT + 0,535*EQX CB19OT = OPER + 0,75*LT -0,535*EQX CB20OT = OPER + 0,75*LT + 0,535*EQY CB21OT = OPER + 0,75*LT -0,535*EQY

Page 39: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 39 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Combination with Test conditions

CB1T = TEST + LIVE1 CB2T = TEST + WX CB3T = TEST - WX CB4T = TEST + WY CB5T = TEST - WY CB6T = TEST + 0,714*EQX CB7T = TEST -0,714*EQX CB8T = TEST + 0,714*EQY CB9T = TEST -0,714*EQY CB10T = 0,9*TEST + 0,714*EQX CB11T = 0,9*TEST -0,714*EQX CB12T = 0,9*TEST + 0,714*EQY CB13T = 0,9*TEST -0,714*EQY CB14T = TEST + 0,75*LIVE1 + 0,75*WX CB15T = TEST + 0,75*LIVE1 -0,75*WX CB16T = TEST + 0,75*LIVE1 + 0,75*WY CB17T = TEST + 0,75*LIVE1 -0,75*WY CB18T = TEST + 0,75*LIVE1 + 0,535*EQX CB19T = TEST + 0,75*LIVE1 -0,535*EQX CB20T = TEST + 0,75*LIVE1 + 0,535*EQY CB21T = TEST + 0,75*LIVE1 -0,535*EQY

Page 40: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 40 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3 STRUCTURE SYSTEM

3.1 THE MODEL

Page 41: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 41 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2 BAR ELEMENTS NUMBERING 3.2.1 Frame numbering - Arch

Page 42: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 42 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2.2 Frame numbering - Convection

Page 43: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 43 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2.3 Frame numbering - Floor

Page 44: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 44 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2.4 Frame numbering - Platform el. 9000

Page 45: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 45 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2.5 Frame numbering - Platform el. 17203

Page 46: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 46 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2.6 Frame numbering - Radiant body

Page 47: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 47 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2.7 Frame Profiles - Radiant body

H-200x200

C-200x80

A-75x6

C-150x75 LL-150x100

2A-90x10

Page 48: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 48 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.2.8 Frame Profiles –Stack

Page 49: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 49 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3 PRIMARY LOADS APPLICATION

3.3.1 Burners weight distribution

Page 50: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 50 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3.2 Coil weight distribution on convection surface

Page 51: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 51 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3.3 Coil weight distribution on radiant anchor

Page 52: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 52 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3.4 External piping loads

Page 53: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 53 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3.5 Platform weight and live load distribution

Page 54: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 54 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3.6 Refractory & Extrasteel weight distribution

Page 55: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 55 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3.7 Wind load distribution in X direction

Page 56: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 56 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

3.3.8 Wind load distribution in Y direction

Page 57: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 57 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

4 STRUCTURAL ANALYSIS The Steel Structure is checked in accordance with ASC-ASD-1989. Automatic members check is carried out by means of SAP 2000 – Steel Stress Check according ASC-ASD-1989. Structural checks and frame analysis are based on 3-d structure model. The bars and the shells elements ave been designed for the worst loading combination cases.

5 BASE PLATE AND ANCHOR BOLTS CHECK

5.1 BASE PLATE CHECK

5.1.1 Base Plates stress check calculation procedure

In order to check the worst stress status of the plates at the base of the structure columns the following procedure has to be performed. The calculation of the maximum stress on the concrete plinths is performed considering the value of the eccentricity calculated as ratio between the value of the moment acting at the base of the columns (M) and the compression load perpendicular to the base plate (N).

N

Me =

The value of this ratio detects the position of the neutral axis with respect to the kernel of inertia of the section calculated as sixth part of the plate dimension perpendicular to the axis of the moment considered (a) as shown in the following picture (where the load N has not to be considered as a shear load but only an image for the position of the perpendicular load):

Picture 1

Page 58: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 58 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

According to the value of “e” calculated, the two following conditions have to be considered: Condition 1 for calculation of maximum stress on plinth:

6a

e ≤ : eccentricity internal to the kernel of inertia

in this case the plinth can be assumed to be forced by only a compression load, so the maximum compression stress on plinth is calculated as follows:

ccc

W

M

A

N +=σ

where: Ac : is the section area of the cement plinth Wc: is the elastic modulus of the plinth For conservative reasons both the geometric characteristics above listed are calculated considering the plinth with same dimensions and section of the base plate. The stress of the maximum compression on plinth is verified if :

ckc R*44,0≤σ

where Rck is the cubic admissible resistance of the concrete considered. From the value of σc, it is calculated for proportion the value of the stress acting on the base plate in correspondence of the section column flanges or stiffeners:

sc

ss

sc xaxx 2

σσ

σσ =⇒=

where assuming the neutral axis passing from the middle of the section: σs is the value of sigma at stiffeners level xs is the distance between stiffeners and neutral axis

Page 59: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 59 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Condition 2 for calculation of maximum stress on plinth:

6a

e > : eccentricity external to the kernel of inertia

this condition forces to the research of the position of the real neutral axis. The value of the position of the neutral axis is found by attempts with the following empirical equation:

0)()(26

23 =+−+++ hdhnAxhdnAxbd

xb

ff

Where (ref. to picture 1): b is the plate dimension parallel to the moment axis x is the position of the neutral axis with respect to the base edge d is the position of perpendicular load with respect the plate edge n = 15 is the homogenization coefficient between elastic modulus Af = Ab*nb is the total area of the bolts strengthen h is the distance between the base edge and the axis of the anchor bolts strengthen Once that the value of “x” is calculated the value of the maximum sigma acting on the cement plinth is calculated with the formula:

)(2

*2

xhnAx

b

xN

f

c

−−

The stress of the maximum compression on plinth is verified if :

ckc R*44,0≤σ

where Rck is the cubic admissible resistance of the concrete considered. From the value of σc, it is calculated for proportion the value of the stress acting on the base plate in correspondence of the section column flanges or stiffness:

sc

ss

sc xxxx

σσ

σσ =⇒=

where (ref. to picture 1): σs is the value of sigma at stiffness level xs = x- m1 is the distance between stiffness and neutral axis

Page 60: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 60 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Base Plate stress calculation Once that the values of σc and σs have been calculated from one of the procedures above described the stress check of the base plate continues as follows for both the conditions: The base plate is now considered as a beam rigidly joined at level of stiffness and uniformly loaded by a load “q” calculated as follows:

2*1 scmq

σσ +=

The maximum momentum given by this kind of restraint is:

22*

82* 22

mqlqM Max

−=

where l2 is the intermediate distance between the base plate stiffeners m2 is the distance between the flange of the column section and the plate edge The Maximum sigma acting on the flange is:

⎟⎟⎟

⎟⎟⎟⎟

⎟==

6

*1 2thkm

M

W

M MaxMaxpσ

Where: W is the resistance modulus of the section considered. thk is the thickness of the plate (assumed) Note: The procedures above described are referred to a moment with axis parallel to direction 2. In the case in which the moment considered is directed as axis 1 the related values of geometric dimensions as “a”, “b”, “l”, “m” etc have to be considered. In order to take into account the effect of both the moments acting at the base of the column, the procedures above described are performed considering one at time both the moments acting on the two main direction of the section. The value of stress so found it has to be lower than the admissible stress calculated as ratio between the yield stress of the material considered for the base plate and a safety coefficient. If the stress is verified the thickness assumed has not to be increased.

Page 61: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 61 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

5.1.2 Stress check on Base Plates A – B – C – D – E – F

Plinth Comb. Fn F1 F2 M1 M2

KN KN KN KNm KNm F CB7O 950,4 60,7 -15,1 5,8 25,4

Yield Stress of the material JIS SS400 = 235 N/mm² Admissible stress of the base plate material = 235 / 1,5 = 156,67 N/mm² Cement Plinth cubic resistance Rck = 21 N/mm² Admissible stress on cement plinth = 21 * 0,44 = 9,24 N/mm² Base Plate thickness assumed = 35 mm Considered 8 bolts M30

Page 62: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 62 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Action dominant

Plate dimension parallel to

Moment (b)

Plate dimension perpendicular to

Moment (a)

Plinth section (Ac)

Plinth Elastic

modulus (Wc)

Eccentricity (e)

eccentricity case

mm mm mm² mm³ mm M1 500 500 250000 20833333 6,12 Case 1: e<a/6M2 500 500 250000 20833333 26,71 Case 1: e<a/6

Action dominant

Distance of

normal force from edge (d)

Nr. of bolts strengthen on last row

(nb)

Total resistance section of

bolts strengthen

(Af)

Distance between

bolts strengthen and plate

edge (h)

Distance between Neutral axis and

plate edge (x)

Distance between stiffness perp. to moment

(l2)

Distance between stiffness and plate

edge perp. to moment

(m2)

Distance between stiffness and plate

edge parallel

to moment

(l1) mm mm mm² mm mm mm mm mm

M1 0 3 1683 425 0 200 138 150 M2 0 3 1683 425 0 176 150 138

Action dominant

Compression Stress on

Plinth (σσσσσσσσσc)

Plinth stress check

Sigma on stiffeness for proportion

(σσσσσσσσσf)

uniform load on plate

portion (q)

Maximum moment on

plate portion (ΜΜΜΜΜΜΜΜΜmax)

Resistance module with respect to the

moment (Wp)

N/mm² N/mm² N/mm Nmm mm³ M1 0,28 Sigma-c CLS OK 2,37 529,47 3906450,71 28175,00 M2 1,22 Sigma-c CLS OK 2,12 556,44 2516204,32 30625,00

Action dominant

Sigma on base plate for Moment effect (σσσσσσσσσp)

Sigma resultant from both moment action (σσσσσσσσσmax)

Plate stress check

N/mm² N/mm² M1 138,65 M2 82,16

138,65 Plate check OK

Page 63: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 63 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

5.2 ANCHOR BOLTS CHECK

5.2.1 Anchor bolts on plinth A B C D E F according to Chapter J of AISC-350-05

In order to perform the check resistance of the bolts following are listed the calculation made for the load combinations that make the higher stress on bolts in condition of maximum and minimum axial load, moment and resulting shear. According to this in order to calculate the axial and shear stress on worst stressed bolt the following equations have been considered:

Axial load on bolt due to Fn (in strength condition) ()bb

nFnt

An

Ff

⋅=−

Axial load due to moment in X direction ∑

=− 2max

***

ibbx

xMxt

yAn

yMf

Axial load due to moment in Y direction ∑

=− 2

max

**

*

ibby

yMt

xAn

xMf

y

Overall axial load on bolt MytMxtFtnt ffff

n−−− ++=

Overall Shear Load 22

yxtot VVV +=

Shear Load Acting on each bolt: b

totb

n

VV =

Required Shear stress on each bolt: b

bnv

A

Vf =

Where: nb : overall number of bolts Ab : Resistance section of each bolt ymax / xmax: Distance between the plate edge and the farest bolt line parallel to x / y axis yi / xi: Distance between the plate edge and each bolt line parallel to x / y axis nbx / nby: number of bolts on the farest bolt line parallel to x / y axis

Page 64: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 64 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Once that the axial and shear stresses on bolt are calculated as previous described the design procedure (according to Chapter J of AISC-350-05) can be applied as follows: Design procedure according to Chapter J of AISC-350-05 Specified minimum tensile strength of the type of steel being used Fu = 400 N/mm2

Nominal tensile Stress acc. AISC 350 cap.J Fnt = 0,75*Fu = 300 N/mm2 Nominal shear Stress acc. AISC 350 cap.J Fnv = 0,4*Fu= 160 N/mm2

For tensile stress check the values are: Ra = fnt * Ab

''

ntn FF = is the nominal tensile stress modified to include the effects of shearing stress

calculated with the equation:

2

' 1��

��

�Ω−=

nv

nvntnt

F

fFF

For combined tension and shear actions it has to be: Ω

=Ω≤ bnn

a

AFRR

'

Where: Ra : is the required strength (ASD) Rn is nominal strength Ω = 2 is the safety factor (ASD)

Total bolt number 8 Nominal bolt diameter 30 Section resistance 561 mm² Specified minimum tensile strength of the type of steel being used Fu = 400 N/mm² Nominal tensile Stress acc. AISC 350 cap.J Fnt =0,75*Fu 300 N/mm² Nominal shear Stress acc. AISC 350 cap.J Fnv =0,4*Fu 160 N/mm²

Page 65: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 65 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

According to the procedure above described following are listed the values calculated with the load combination that makes higher status of axial, moment and shear on anchor bolts:

Plinth Combo FN FX FY MX MY Max base shear KN KN KN KN-m KN-m KN Combination with Max vertical load at base F CB7O 950,4 60,7 -15,1 5,8 25,4 62,5

Combination with Min vertical load at base C CB11O -438,9 51,3 4,8 -1,8 24,8 51,6

Combination with Max moment Mx at base A CB15OT 545,9 -8,5 -44,2 25,5 -6,7 45,0

Combination with Min moment Mx at base D CB21OT 660,4 24,0 43,1 -24,7 9,8 49,3

Combination with Max moment My at base F CB15OT 840,3 68,3 -14,4 840,3 32,7 69,8

Combination with Min moment My at base C CB14OT 724,7 -47,7 3,6 -1,4 -27,5 47,8

Combination with Max resulting shear at base F CB19OT860,39 71,70 -15,21 5,87 32,25 73,30

Required tensile

stress on each bolt ft

Overall shear

load on plinth Vtot

Required shear

sterss on each bolt

fnv

nominal tensile stress modified to include the effects of shearing

stress F'nt

required strength

Ra

nominal strength

Rn/Ω check

Plinth Combo N/mm² KN N/mm² N/mm² N/mm² N/mm² Max Fz F CB7O 31,7 62,5 13,9 295,4 17771,4 82865,5 OK Min Fz C CB11O 124,8 51,6 11,5 296,9 70001,7 83278,0 OK Max Mx A CB15OT 32,8 45,0 10,0 297,6 18373,5 83485,9 OK Min Mx D CB21OT 35,0 49,3 11,0 297,2 19636,2 83353,0 OK Max My F CB15OT 38,8 69,8 15,6 294,3 21787,6 82544,4 OK Min My C CB14OT 29,4 47,8 10,6 297,3 16487,3 83401,1 OK Max shear F CB19OT 38,7 73,3 16,3 293,7 21709,6 82377,9 OK

Page 66: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 66 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6 RESULTS ANALYSIS

6.1 LOAD FOUNDATIONS

Page 67: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 67 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.2 DISPLACEMENTS CHECKING 6.2.1 Max Horizontal Joint displacement

Maximum horizontal displacement: 7.56 mm Column height: 5005 Load Combination: CB6E Joint : 803 Allowable displacement checking for column height: h0/500 = 5050/500 = 10.01 mm > 7.56 OK

Page 68: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 68 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.2.2 Max deflection of beam Maximum deflection : -6.63 mm Beam Span (L): 1800 Load Combination: CB10 Beam number : 572 Allowable deflection checking: L/250 = 1500/250 = 7.2 mm > 6.63 OK

Page 69: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 69 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3 STRESS CHECKING In the following pictures are the Design Stress Ratios Topography per line provided SAP. These ratios correspond to the design stress in the bars over the allowable stress.

6.3.1 Maximum stress in main elements Here below the maximum stress ratios in the main structural elements

Frame DesignSect DesignType Combo TotalRatio

211 C-150X75 Beam CB17O 0,970 112 H-200X200 Column CB3O 0,954 418 2A-75X9 Brace CB15OT 0,926

Here below the computer output detailed structural calculations of the main elements with the maximum stress above mentioned.

Page 70: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 70 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.2 Data for worst stressed beam

Page 71: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 71 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.3 Data for worst stressed column

Page 72: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 72 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.4 Data for worst stressed brace

Page 73: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 73 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.5 Stress Ratios - Arch

Page 74: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 74 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.6 Stress Ratios - Convection

Page 75: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 75 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.7 Stress Ratios - Floor

Page 76: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 76 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.8 Stress Ratios - Platform el. 9000

Page 77: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 77 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.9 Stress Ratios - Platform el. 17203

Page 78: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 78 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

6.3.10 Stress Ratios - Radiant Body

Page 79: STEEL STRUCTURAL CALCULATION REPORT - T.Q.D. · PDF fileSTEEL STRUCTURAL CALCULATION REPORT ... This report describes the calculation procedure and data considered in order to design

COMMESSA/Job N: XX DIS./Dwg n : XX

CLIENTE/Client : XX PAG./Page : 79 DI/of 79

IMPIANTO/Plant : XX REV. 00 DATA/Date: XX

Structural elements stress checking computer output table

TABLE: Steel Design 2 - PMM Details - AISC-ASD 01

Table: Steel Design 2 - PMM Details - AISC-ASD01 Frame DesignSect DesignType Combo TotalRatio PRatio MMajRatio MMinRatio

211 C-150X75 Beam CB17O 0,970486 0,033793 0,080941 0,855752

1456 A-75X6 Beam CB1OT 0,965219 0,161650 0,254303 0,549266 112 H-200X200 Column CB3O 0,953768 0,756447 0,196224 0,001097 600 A-75X6 Beam CB14OT 0,953275 0,165027 0,358192 0,430056 604 A-75X6 Beam CB5O 0,943607 0,084699 0,288275 0,570633 624 A-75X6 Beam CB15OT 0,942381 0,132440 0,242276 0,567665

1401 A-75X6 Beam CB15OT 0,937742 0,202521 0,308597 0,426625 1493 A-75X6 Beam CB16OT 0,937390 0,204937 0,291222 0,441231 421 C-150+A-90 Beam CB16OT 0,935003 0,035953 0,505647 0,393404

1478 A-75X6 Beam CB1OT 0,929110 0,147188 0,250400 0,531521 571 2A-90X10 Column CB5O 0,926956 0,358888 0,361460 0,206608 418 2A-75X9 Brace CB15OT 0,925765 0,034595 0,442762 0,448408

1480 A-75X6 Beam CB1OT 0,924432 0,147620 0,255147 0,521665 580 A-75X6 Beam CB14OT 0,923496 0,147784 0,275288 0,500425 649 A-75X6 Beam CB1OT 0,919039 0,033808 0,064643 0,820587 53 H-200X200 Column CB17OT 0,917472 0,472758 0,222467 0,222247 374 A-75X6 Beam CB1E 0,912147 0,042444 0,066102 0,803601 648 A-75X6 Beam CB1OT 0,909268 0,030118 0,018807 0,860343 182 H-200X200 Beam CB2T 0,908771 0,047580 0,860007 0,001183

1483 A-75X6 Beam CB14OT 0,908534 0,211617 0,303369 0,393549 256 H-200X200 Beam CB2T 0,903900 0,046547 0,856190 0,001163

1499 A-75X6 Beam CB14OT 0,901629 0,195460 0,294025 0,412145 426 C-150+A-90 Beam CB1OT 0,897453 0,047167 0,332158 0,518128 55 H-200X200 Column CB2T 0,896269 0,674066 0,220158 0,002045

1454 A-75X6 Beam CB14OT 0,894490 0,121424 0,216681 0,556385 1462 A-75X6 Beam CB1OT 0,892025 0,127468 0,236725 0,527831 222 H-200X200 Beam CB3O 0,891576 0,046060 0,844568 0,000948 413 C-150+A-90 Beam CB1OT 0,891378 0,045020 0,331550 0,514807 2 H-200X200 Column CB15OT 0,891066 0,499677 0,261598 0,129791

281 H-200X200 Beam CB3O 0,887922 0,043468 0,843420 0,001034 1430 A-75X6 Beam CB16OT 0,887220 0,102739 0,223223 0,561258 1489 A-75X6 Beam CB14OT 0,877898 0,107826 0,246853 0,523218 877 2A-75X9 Brace CB1OT 0,875967 0,288793 0,184038 0,403136 59 H-200X200 Column CB16OT 0,875616 0,461270 0,245492 0,168855 428 C-150+A-90 Beam CB1OT 0,872844 0,030797 0,347071 0,494976 57 H-200X200 Column CB14OT 0,872463 0,392222 0,218124 0,262117

1292 C-150X75 Beam CB2T 0,869653 0,047048 0,000246 0,822358 1473 A-75X6 Beam CB1OT 0,863535 0,115522 0,262514 0,485499 583 A-75X6 Beam CB14OT 0,861647 0,116420 0,225185 0,520041

1477 A-75X6 Beam CB14OT 0,861397 0,207367 0,287349 0,366681 1465 A-75X6 Beam CB17OT 0,860271 0,193673 0,160535 0,506063 378 A-75X6 Beam CB1OT 0,859413 0,024454 0,026175 0,808784

1437 A-75X6 Beam CB15OT 0,858939 0,181300 0,169390 0,508248 1466 A-75X6 Beam CB16OT 0,857086 0,087812 0,268493 0,500780 552 2A-90X10 Column CB16O 0,855683 0,325467 0,529317 0,000900 605 A-75X6 Beam CB2O 0,854839 0,050546 0,194234 0,610059

1270 C-150X75 Beam CB2T 0,854775 0,046878 0,000204 0,807693 623 A-75X6 Beam CB14OT 0,851941 0,132159 0,203057 0,516725