Steel Ch4 - Beams Movies

download Steel Ch4 - Beams Movies

of 80

Transcript of Steel Ch4 - Beams Movies

  • 8/17/2019 Steel Ch4 - Beams Movies

    1/80

    68402 Slide # 1

      esign of Beams for Flexure

    Monther waikat

    Assistant Professor

    epartment of Building Engineering

    An-Najah National Uniersit!

    "#$%&' (tru)tural Design of Buildings **

    "+$&%' Design of (teel (tru)tures"&,&,' Ar)hite)tural (tru)tures **

  • 8/17/2019 Steel Ch4 - Beams Movies

    2/80

      68402 Slide # 2

    Introduction

    Moment Curvature Response

    Sectional Properties

    Serviceability Requirements !e"lections

    Compact$ %on&compact and Slender Sections

    'ateral (orsional )uc*lin+

    !esi+n o" )eams

    Design of Beams for Flexure

  • 8/17/2019 Steel Ch4 - Beams Movies

    3/80

      68402 Slide # ,

    Beams under Flexure

    Members sub-ected principally

    to transverse +ravity loadin+

    . /irders important "loor beams$ide spacin+

    . Joists less important beams$closely spaced

    . Purlins roo" beams$ spannin+beteen trusses

    . Stringers lon+itudinal brid+ebeams

    . Lintels s1ort beams aboveindodoor openin+s

  • 8/17/2019 Steel Ch4 - Beams Movies

    4/80

      68402 Slide # 4

    Design for Flexure

    'imit states considered

    . 3ieldin+

    . 'ateral&(orsional )uc*lin+

    . 'ocal )uc*lin+. Compact

    . %on&compact

    . Slender  

  • 8/17/2019 Steel Ch4 - Beams Movies

    5/80

      68402 Slide #

    Design for Flexure ./FD (pe)0

    Commonly 5sed Sections

    . I 7 s1aped members sin+ly& and doubly&symmetric

    . Square and Rectan+ular or round SS

    . (ees and !ouble 9n+les

    . Rounds and Rectan+ular )ars

    . Sin+le 9n+les

    . 5nsymmetrical S1apes

    :ill not be coveredin t1is course

  • 8/17/2019 Steel Ch4 - Beams Movies

    6/80

      68402 Slide # 6

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment

    2M

    P

    3  A beam is astructural member

    that is subjected

    primarily to

    transverse loads andnegligible axial

    loads.

    The transverse loads

    cause internal SFand BM in the beams

    as shown in Fig. 1 

    w P

    V(x)

    M(x)

    x

    w P

    V(x)

    M(x)

    x

    Fig. 1 SF ! BM in a SS Beam

  • 8/17/2019 Steel Ch4 - Beams Movies

    7/80  68402 Slide # ;

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2M

    P

    3

    (1ese internal S< = )M cause lon+itudinal a>ial stresses

    and s1ear stresses in t1e cross&section as s1on in t1e

  • 8/17/2019 Steel Ch4 - Beams Movies

    8/80  68402 Slide # 8

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2M

    P

    3

    Steel material "ollos a typical stress&strain be1avior as

    s1on in

  • 8/17/2019 Steel Ch4 - Beams Movies

    9/80  68402 Slide # B

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2M

    P

    3

    I" t1e steel stress&strain curve is appro>imated as a bilinear

    elasto&plastic curve it1 yield stress equal to σy$ t1en t1esection Moment & Curvature M&φ response "ormonotonically increasin+ moment is +iven by

  • 8/17/2019 Steel Ch4 - Beams Movies

    10/80

      68402 Slide # 0

    Moment-4urature 2NE53

    . )eam curvature φ is related to its strain and t1us to t1eapplied moment

     EI 

     M 

     y

    == ε 

    φ 

    φ

     

     y y

    (1)(1) (2)(2) (3)(3) (4)(4)

  • 8/17/2019 Steel Ch4 - Beams Movies

    11/80

      68402 Slide #

    Moment-4urature 2NE53

     x x F S  M  =

    . :1en t1e section is it1in elastic ran+e

     y x y  F S  M   =

     y x p  F  Z  M    = a A Z  x )2(=

     x x

     xS 

     M 

     I 

     y M  F    ==

    Where S is the elastic section modulus

    . :1en t1e moment e>ceeds t1e yield moment My

    . (1en

    Where Z is the plastic section modulus 1.1 S≈

    a

  • 8/17/2019 Steel Ch4 - Beams Movies

    12/80

      68402 Slide # 2

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2

    M

    P

    3

    My

    M p

    A: Extreme fiber reaches εy B: Extreme fiber reaches 2εy C: Extreme fiber reaches εy!: Extreme fiber reaches "#εy E: Extreme fiber reaches i$fi$ite strai$

    A

    B C E!

    Cur%ature& φ

       '  e  c   t   i  (  $   M  (  m  e

      $   t &

       M

    σy

    σy

    σy

    σy

    εy

    εy

    σy

    σy

    σy

    σy

    σy

    σy

    2εy

    2εy

    5εy

    5εy

    10εy

    10εy

    A B C ! E

    My

    M p

    A: Extreme fiber reaches εy B: Extreme fiber reaches 2εy C: Extreme fiber reaches εy!: Extreme fiber reaches "#εy E: Extreme fiber reaches i$fi$ite strai$

    A

    B C E!

    Cur%ature& φ

       '  e  c   t   i  (  $   M  (  m  e

      $   t &

       M

    σy

    σy

    σy

    σy

    εy

    εy

    σy

    σy

    σy

    σy

    σy

    σy

    2εy

    2εy

    5εy

    5εy

    10εy

    10εy

    A B C ! E

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    εy

    εy

    εy

    εy

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    σy

    2εy

    2εy

    2εy

    2εy

    5εy

    5εy

    5εy

    5εy

    10εy

    10εy

    10εy

    10εy

    A B C ! E

    Fig. % Mφ

     response o& a beam section

  • 8/17/2019 Steel Ch4 - Beams Movies

    13/80

      68402 Slide # ,

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2M

    P

    3

    Calculation o" MP Cross&section sub-ected to eit1er Eσy  or & σy att1e plastic limit? See

  • 8/17/2019 Steel Ch4 - Beams Movies

    14/80

      68402 Slide # 4

    Moment-4urature

    . :1en t1e 1ole section is yieldin+ a plastic 1in+eill be "ormed

    plastic hinge

    . Structural analysis by assumin+ collapsin+ mec1anisms o"a structure is *non as FPlastic analysisG

    . (1e plastic moment Mp is t1ere"ore t1e moment needed att1e section to "orm a plastic 1in+e

  • 8/17/2019 Steel Ch4 - Beams Movies

    15/80

      68402 Slide #

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2M

    P

    3

    (1e plastic centroid "or a +eneral cross&section

    corresponds to t1e a>is about 1ic1 t1e total area is

    equally divided$ i?e?$ 9C @ 92 @ 92

    . (1e plastic centroid is not t1e same as t1e elastic centroid orcenter o" +ravity c?+? o" t1e cross&section?

    .  9s s1on belo$ t1e c?+? is de"ined as t1e a>is about 1ic1 9y @ 92y2?

    c*,* = eastic -*A*

    A"& y"

    A2& y2Abut the c*,* A"y" = A2y2

    y"

    y2c*,* = eastic -*A*

    A"& y"

    A2& y2Abut the c*,* A"y" = A2y2

    y"

    y2

  • 8/17/2019 Steel Ch4 - Beams Movies

    16/80

      68402 Slide # 6

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2M

    P

    3

    . is o" symmetry$ t1eneutral a>is corresponds to t1e centroidal a>is in t1e elastic

    ran+e? oever$ at Mp$ t1e neutral a>is ill correspond to t1e

    plastic centroidal a>is?

    92 > yCEy2

     9s s1on in

  • 8/17/2019 Steel Ch4 - Beams Movies

    17/80

      68402 Slide # ;

    (e)tion For)e- eformation

    /esponse 1 Plasti) Moment 2M

    P

    3

     92 > yEy2 is called () t1e plastic section moduluso" t1e cross&section? Halues "or are tabulated "orvarious cross&sections in t1e properties section o"t1e 'R

    ∀φbMp @ 0?B0

  • 8/17/2019 Steel Ch4 - Beams Movies

    18/80

      68402 Slide # 8

    Ex0 $0+ (e)tional Properties

    !etermine t1e elastic section modulus$ S$ plastic sectionmodulus$ $ yield moment$ My$ and t1e plastic moment

    MP$ o" t1e cross&section s1on belo? :1at is t1e desi+n

    moment "or t1e beam cross&section? 9ssume 9BB2 steel?

    "2 i$*

    ". i$*

    " i$*

    #* i$*

    "*# i$*

    F"

    +

    F2

    t0 = #* i$*

    "2 i$*

    ". i$*

    " i$*

    #* i$*

    "*# i$*

    F"

    +

    F2

    "2 i$*

    ". i$*

    " i$*

    #* i$*

    "*# i$*

    F"

    +

    F2

    t0 = #* i$*

    ,00 mm

    mm

    0 mm

    2 mm

    400 mm

    400 mm

  • 8/17/2019 Steel Ch4 - Beams Movies

    19/80

      68402 Slide # B

     9+ @ ,00 > E 400 & & 2 > 0 E 400 > 2 @ 800 mm2 9" @ ,00 > @ 400 mm2

     9"2 @ 400 > 2 @ 0000 mm2

     9 @ 0 > 400 & & 2 @ ,600 mm2

    distance o" elastic centroid "rom bottom @

    I> @ 400>2,2 E00002?&4?,2 E 0>,60,2 E,60020&4?,2 E ,00>,2 E400,B2?&4?,2 @ 0,?;>06 mm4

    S> @ 0,?;>06  400&4?, @ B;;?>0, mm,

    My&> @  @ 680?2 *%&m?

    S  x  - elastic section modulus

    Ex0 $0+ (e)tional Properties

     y

    1##(1## " / 2) .## 2# "#### "2*"1*

    "3"## y mm

    − + × + ×= =

  • 8/17/2019 Steel Ch4 - Beams Movies

    20/80

      68402 Slide # 20

    Ex0 $0+ (e)tional Properties

    distance o" plastic centroid "rom bottom @

    y @ centroid o" top 1al"&area about plastic centroid

    @ mm

    y2 @ centroid o" bottom 1al"&area about plas? cent?

    @ mm

    > @ 92 > y E y2 @ B00 > 26?; E ?, @ 242400 mm,

    > & plastic section modulus

    "3"##1## 4##

    2

    22*.

     p

     p

     y

     y mm

    ∴ × = =

    ∴ =

     py py py

     py

    "3"## "1* 4## 22*. / 222*. 2.*

    4##

    × − × − =

    22*. / 2 ""*=

  • 8/17/2019 Steel Ch4 - Beams Movies

    21/80

      68402 Slide # 2

    Ex0 $0+ (e)tional Properties

    Mp&> @ >  ,4406 @ 8,4?, *%?m

    !esi+n stren+t1 accordin+ to 9ISC Spec? 8,4?,@ ;0?B *%?m

    C1ec* @ Mp ≤ ? My

    (1ere"ore$ 8,4?, *%?m J ? > 680?2 @ 020?, *%?m

    & KL

  • 8/17/2019 Steel Ch4 - Beams Movies

    22/80

      68402 Slide # 22

    Flexural efle)tion of Beams -

    (eri)ea6ilit!

     

    Steel beams are desi+ned "or t1e "actored desi+n loads?(1e moment capacity$ i?e?$ t1e "actored moment stren+t1

    φbMn s1ould be +reater t1an t1e moment Mu causedby t1e "actored loads?

     9 serviceable  structure is one t1at per"orms

    satis"actorily$ not causin+ discom"ort or perceptions o"

    unsa"ety "or t1e occupants or users o" t1e structure?

    . imum de"lection o" t1e desi+ned beam is c1ec*ed at t1eservice&level loads? (1e de"lection due to service&level loads

    must be less t1an t1e speci"ied values?

  • 8/17/2019 Steel Ch4 - Beams Movies

    23/80

      68402 Slide # 2,

    (eri)ea6ilit! /e7uirements

    . Steel beams need to satis"y S'S in addition to 5'S

    . Serviceability limit states are usually c1ec*ed usin+ non&"actoredloads?

    . !e"lection under live loads s1all be limited to ',60

    . !ead load de"lections can be compensated by camberin+ beams?

    . S'S mi+1t also include limitin+ stresses in bottom or top "lan+es i""ati+ue is a concern in desi+n :ill be "urt1er discussed it1 plate

    +irders?

    . Standard equations to calculate de"lection "or di""erent load cases

  • 8/17/2019 Steel Ch4 - Beams Movies

    24/80

      68402 Slide # 24

    Flexural efle)tion of Beams -

    (eri)ea6ilit!

    (1e 9ISC Speci"ication +ives little +uidance ot1er t1an astatement$ FServiceability Design Considerations$G t1at

    de"lections s1ould be c1ec*ed? 9ppropriate limits "or

    de"lection can be "ound "rom t1e +overnin+ buildin+ code

    "or t1e re+ion? (1e "olloin+ values o" de"lection are typical ma>?

    alloable de"lections?

    '' !'E''

    . Plastered "loor construction ',60 '240

    . 5nplastered "loor construction '240 '80

    . 5nplastered roo" construction '80 '20

    . !' de"lection 7 normally not considered "or steel beams

  • 8/17/2019 Steel Ch4 - Beams Movies

    25/80

      68402 Slide # 2

    Flexural efle)tion of Beams -

    (eri)ea6ilit!

    In t1e "olloin+ e>amples$ e ill assume t1at

    local buc*lin+ and lateral&torsional buc*lin+ are

    not controllin+ limit states$ i?e$ t1e beam section is

    compact and laterally supported alon+ t1e len+t1?

  • 8/17/2019 Steel Ch4 - Beams Movies

    26/80

      68402 Slide # 26

    Ex0 $0& - Defle)tions

    !esi+n a B m lon+ simply supported beam sub-ected to5!' o" 6 *%m dead load and a 5!' o" 8 *%m live load?

    (1e dead load does not include t1e sel"&ei+1t o" t1e

    beam?

    . Step *. Calculate t1e "actored desi+n loads it1out sel"&ei+1t?u @ ?2 ! E ?6 ' @ 20 *%m

    Mu @ u '2  8 @ 20 > B2  8 @ 202? *%?m SS beam

    . Step **. Select t1e li+1test section "rom t1e 9ISC Manual desi+ntables?

    > @ Muφb060?B>,44 @ 64>0,  select +1, x ", made "rom 9BB2 steel it1 φbMp @ 224 *%?m

  • 8/17/2019 Steel Ch4 - Beams Movies

    27/80

      68402 Slide # 2;

    Ex0 $0& - Defle)tions

    . Step ***. 9dd sel"&ei+1t o" desi+ned section and c1ec* desi+ns @ 0?,8 *%m

    (1ere"ore$ ! @ 6?,8 *%m

    u @ ?2 > 6?,8 E ?6 > 6 @ 20?46 *%m

    (1ere"ore$ Mu @ 20?46 > B2  8 @ 20;?2 *%?m J φbMp o"

    :6 > 26?-/

    . Step *0. C1ec* de"lection at service loads? @ 8 *%m! @ '4  ,84 A I

    > @ > 8 >0, > B4  ,84 > 200>2

    ! @ 2;?, mm N ',60 & "or plastered "loor construction

    . Step 0.  Redesi+n it1 service&load de"lection as desi+n criteria' ,60 @ 2 mm N '4,84 A I>

    (1ere"ore$ I> N ,6?;>06 mm4

  • 8/17/2019 Steel Ch4 - Beams Movies

    28/80

      68402 Slide # 28

    Ex0 $0& - Defle)tions

    Select t1e section "rom t1e moment of inertia  selection "romSection Property (ables 7 select +1, x $1 it1 *x @ 6>06 mm4

    %ote that the ser&iceability design criteria controlled the design

    and the section

  • 8/17/2019 Steel Ch4 - Beams Movies

    29/80

      68402 Slide # 2B

    Ex0 $0,  Beam Design

    !esi+n t1e beam s1on belo? (1e un"actored dead and live loadsare s1on in 0 E ?6 > 40 @ 64 *%

    Mu @ 5 '2  8 E P5 ' 4 @ 2BB?; E 44 @ 44,?; *%?m

    #*. 5/ft* (dead load)"# 5ips (live load)

    # ft*

    " ft*

    #* 5/ft* (live load)

    40 *%0 *%m

    *%m

    4? m

    B m

  • 8/17/2019 Steel Ch4 - Beams Movies

    30/80

      68402 Slide # ,0

    Ex0 $0,  Beam Design

    Step **. Select +"1 x %%  > @ 6,>0, mm,φbMp @ 0?B>6,>0,>,44000000 @ 48,?B *%?mSel"&ei+1t @ s @ 0?64 *%m?

    Step ***. 9dd sel"&ei+1t o" desi+ned section and c1ec* desi+n

    ! @ 0 E 0?64 @ 0?64 *%m

    u @ ?2 > 0?64 E ?6 > @ ,0?4 *%m

    (1ere"ore$ Mu @ ,0?4 > B28 E 44 @ 4?8 J φbMp o":2 > 44?

    -/ Step *0. C1ec* de"lection at service live loads?

    Service loads

    . !istributed load @ @ *%m

    . Concentrated load @ P @ ' @ 40 *%

  • 8/17/2019 Steel Ch4 - Beams Movies

    31/80

      68402 Slide # ,

    Ex0 $0,  Beam Design

    !e"lection due to uni"orm distributed load @ ∆d @ '4  ,84 AI!e"lection due to concentrated load @ ∆c @ P ',  48 AI

    There&ore) serviceload de&lection d 2 c

    ∆ @ >>B4

    >0B

    ,84>,>06

    >200 E40>B,

    >0B

    48>,>06

    >200∆ @ ,?4 E 8?; @ 22? mm' @ B m?

     9ssumin+ unplastered "loor construction$ ∆ma> @ '240 @ B000240 @,;? mm

    (1ere"ore$ ∆ J ∆ma>  -/

  • 8/17/2019 Steel Ch4 - Beams Movies

    32/80

      68402 Slide # ,2

    .o)al Bu)kling of Beam (e)tion

    4ompa)t and Non-)ompa)t 

    Mp$ t1e plastic moment capacity "or t1e steel s1ape$ iscalculated by assumin+ a plastic stress distribution E or & σyover t1e cross&section?

    (1e development o" a plastic stress distribution over t1e cross&

    section can be 1indered by to di""erent len+t1 e""ects. Local buckling   o" t1e individual plates "lan+es and ebs o" t1e

    cross&section be"ore t1ey develop t1e compressive yield stress σy?

    . Lateral-torsional buckling   o" t1e unsupported len+t1 o" t1e beam member be"ore t1e cross&section develops t1e plastic moment Mp?

    (1e analytical equations "or local buc*lin+ o" steel plates it1various ed+e conditions and t1e results "rom e>perimentalinvesti+ations 1ave been used to develop limitin+ slendernessratios "or t1e individual plate elements o" t1e cross&sections?  

  • 8/17/2019 Steel Ch4 - Beams Movies

    33/80

      68402 Slide # ,,

    M

    M

    M

    M

    Figure 3. 'ocal buc*lin+ o" "lan+e due to compressive stress s

    .o)al Bu)kling of Beam (e)tion

    4ompa)t and Non-)ompa)t

  • 8/17/2019 Steel Ch4 - Beams Movies

    34/80

      68402 Slide # ,4

    Steel sections are classi"ied as compact$ non&compact$ orslender dependin+ upon t1e slenderness l ratio o" t1e

    individual plates o" t1e cross&section? 

    . Compact section i" all elements o" cross&section 1ave λ ≤ λp 

    . Non-compact sections i" any one element o" t1e cross&section 1as λp ≤ λ ≤ λr 

    . Slender section i" any element o" t1e cross&section 1as λr  ≤ λ

    It is important to note t1at

    . I" λ ≤ λp$ t1en t1e individual plate element can develop and sustain σy "orlar+e values o" e be"ore local buc*lin+ occurs?

    . I" λp ≤ λ ≤ λr $ t1en t1e individual plate element can develop σy at somelocations but not in t1e entire cross section be"ore local buc*lin+ occurs?

    . I" λr  ≤ λ$ t1en elastic local buc*lin+ o" t1e individual plate element occurs? 

    .o)al Bu)kling of Beam (e)tion

    4ompa)t and Non-)ompa)t

  • 8/17/2019 Steel Ch4 - Beams Movies

    35/80

      68402 Slide # ,

    4lassifi)ation of (e)tions

    . Classi"ications o" bendin+ elements are based on limits o" local buc*lin+

    . (1e dimensional ratio l represents 

    . (o limits e>ist λp and λr  

     λp represents t1e upper limit "or compact sections

     λr  represents t1e upper limit "or non&compact sections

     f  

     f  

    b

    2=λ 

    wt 

    h=λ 

     f  b

    hwt 

     f  t 

    compact  P 

    λ λ  ≤compact nonr  P    −≤≤   λ λ λ 

     slender r λ λ  ≥

  • 8/17/2019 Steel Ch4 - Beams Movies

    36/80

      68402 Slide # ,6

    ompact 

     !on"ompact 

    Slender 

    σ

    y

       C  (  m  p  r  e  s  s   i  %  e

      a  x   i  a   )  s   t  r  e  s  s &     σ

    Effecti%e axia strai$& ε

    ompact 

     !on"ompact 

    Slender 

    σ

    y

       C  (  m  p  r  e  s  s   i  %  e

      a  x   i  a   )  s   t  r  e  s  s &     σ

    Effecti%e axia strai$& ε

    Figure 4. Stress&strain response o" plates

    sub-ected to a>ial compression and local

    buc*lin+?

    (1us$ slendersections cannot

    develop Mp due to

    elastic local

    buc*lin+? %on&compact sections

    can develop My but

    not Mp be"ore local

    buc*lin+ occurs?

    Knly compact

    sections can

    develop t1e plastic

    moment Mp?

    .o)al Bu)kling of Beam (e)tion

    4ompa)t and Non-)ompa)t

  • 8/17/2019 Steel Ch4 - Beams Movies

    37/80

      68402 Slide # ,;

     9ll rolled ide&"lan+e s1apes are compact  it1 t1e"olloin+ e>ceptions$ 1ic1 are non&compact?

    . :2>48$ :40>;4$ :4>BB$ :4>B0$ :2>6$ :0>2$ :8>0$:6> made "rom 9BB2

    .o)al Bu)kling of Beam (e)tion

    4ompa)t and Non-)ompa)t

  • 8/17/2019 Steel Ch4 - Beams Movies

    38/80

      68402 Slide # ,8

    4lassifi)ation of (e)tions

    . (1e limits are  f  b

    hwt 

     f  t 

     f 

     f 

    b

    2=λ 

    wt 

    h=λ 

     y

     p F 

     E .*=λ 

     y

     p F 

     E 3*#=λ 

    4*.33*#

    −=

     y

    r  F 

     E λ y

    r FE#*=λ

    WebFlange

  • 8/17/2019 Steel Ch4 - Beams Movies

    39/80

      68402 Slide # ,B

    .ateral-8orsional Bu)kling

    2.8B3

    M

    M

    M

    M

    (a)

    (b)

    M

    M

    M

    M

    M

    M

    M

    M

    (a)

    (b)

    • (1e laterally unsupportedlen+t1 o" a beam&membercan under+o '() due tot1e applied "le>uralloadin+ )M?

    Figure 5. 'ateral&torsionalbuc*lin+ o" a ide&"lan+e beamsub-ected to constant moment?

     

  • 8/17/2019 Steel Ch4 - Beams Movies

    40/80

      68402 Slide # 40

    .ateral-8orsional Bu)kling

    2.8B3

    '() is "undamentally similar to t1e "le>ural buc*lin+ or"le>ural&torsional buc*lin+ o" a column sub-ected to a>ial

    loadin+? 

    . (1e similarity is t1at it is also a bi"urcation&buc*lin+ typep1enomenon?

    . (1e di""erences are t1at lateral&torsional buc*lin+ is caused by"le>ural loadin+ M$ and t1e buc*lin+ de"ormations are coupled int1e lateral and torsional directions?

    (1ere is one very important di""erence?  ial load causin+ buc*lin+ remains constant alon+ t1elen+t1? )ut$ "or a beam$ usually t1e '() causin+ bendin+moment M> varies alon+ t1e unbraced len+t1?

    . (1e orst situation is "or beams sub-ected to uni"orm )M alon+ t1eunbraced len+t1? :1yO

  • 8/17/2019 Steel Ch4 - Beams Movies

    41/80

      68402 Slide # 4

    .ateral-8orsional Bu)kling

    2.8B3

    Uniform BM

    Consider a beam t1at is simply&supported at t1e ends andsub-ected to "our&point loadin+ as s1on belo? (1e beamcenter&span is sub-ected to uni"orm )M M? 9ssume t1atlateral supports are provided at t1e load points?

    'aterally unsupported len+t1 @ 'b?

    I" t1e laterally unbraced len+t1 'b is less t1an or equal to a

    plastic len+t1 'P  t1en lateral torsional buc*lin+ is not a

    problem and t1e beam ill develop its plastic stren+t1 MP?

    6 b

    PP

  • 8/17/2019 Steel Ch4 - Beams Movies

    42/80

      68402 Slide # 42

    .ateral-8orsional Bu)kling

    2.8B3

    Uniform BM

    'p @ ?;6 r y > & "or I members = c1annels I" 'b  is +reater t1an 'P  t1en lateral torsional buc*lin+ ill

    occur and t1e moment capacity o" t1e beam ill be

    reduced belo t1e plastic stren+t1 MP as s1on in

  • 8/17/2019 Steel Ch4 - Beams Movies

    43/80

      68402 Slide # 4,

    .ateral-8orsional Bu)kling 2.8B3

    Uniform BM

    Mn @ Mcr  @

    M n - moment capacity 

    'b - laterally unsupported length.

    M cr  - critical lateral-torsional buc(ling moment.) * + !a

    * // !a

    # y  - moment of inertia about minor or y-axis 0mm1 2

    3 - torsional constant 0mm1 2 from the Section !roperty 4ables.

    $ w  - warping constant 0mm5  2 from the Section !roperty 4ables.

    (1is Aq? is valid "or A'9S(IC '() only li*e t1e Auler equation? (1is

    means it ill or* only as lon+ as t1e cross&section is elastic and no

    portion o" t1e cross&section 1as yielded?

    2 2

    2 2

     y   w

    b b

     EI    E #$  % %

    π    π   + ÷  

  • 8/17/2019 Steel Ch4 - Beams Movies

    44/80

      68402 Slide # 44

    .ateral-8orsional Bu)kling 2.8B3

    Uniform BM

    Fig. 16 #ateral Torsional Buc7ling 89ni&orm Bending:

    Plastic

    %o

    Instability

    Inelastic

    '() Alastic

    '()

    6r 

       M  (  m  e  $   t   C  a  p  a  c   i   t  y &   M

      $

    7$braced e$,th& 6 b

    M$ =

    +2

    2

    2

    2

    b

    w

    b

     y

     %

     E #$ 

     %

     EI    π π 

       

      

     

    −−−=

     pr 

     pb

    r  p pn % %

     % % M  M  M  M  )(

    M$ = M p

    8x Fy= M p

    'x (Fy 9 "#) = Mr 

    6 p 6r 

       M  (  m  e  $   t   C  a  p  a  c   i   t  y &   M

      $

       M  (  m  e  $   t   C  a  p  a  c   i   t  y &   M

      $

       M

      $

    7$braced e$,th& 6 b7$braced e$,th& 6 b

    M$ =

    +2

    2

    2

    2

    b

    w

    b

     y

     %

     E #$ 

     %

     EI    π π M$ =

    +2

    2

    2

    2

    b

    w

    b

     y

     %

     E #$ 

     %

     EI    π π 

    +2

    2

    2

    2

    b

    w

    b

     y

     %

     E #$ 

     %

     EI    π π 

       

      

     

    −−−=

     pr 

     pb

    r  p pn % %

     % % M  M  M  M  )(

    M$ = M p

    8x Fy= M p

    'x (Fy 9 "#) = Mr 

    6 p

    (#*Fy)

  • 8/17/2019 Steel Ch4 - Beams Movies

    45/80

      68402 Slide # 4

    .ateral-8orsional Bu)kling 2.8B3

    Uniform BM

     9s soon as any portion o" t1e cross&section reac1es t1eyield stress

  • 8/17/2019 Steel Ch4 - Beams Movies

    46/80

      68402 Slide # 46

    .ateral-8orsional Bu)kling

    Uniform BM

    2

    #

    #

    *#.*.""

    *#4*"   

     

      

     ++=

     $c

    hS 

     E 

     F 

    hS 

     $c

     F 

     E r  %   x

     y

     x y

    tsr 

      

      

       −−−−=  pr 

     pbr  p pn

     % % % % M  M  M  M  )(. I" 'p ≤ 'b ≤ 'r $ t1en

    . (1is is linear interpolation beteen 'p$ Mp and 'r $ Mr 

    . See

  • 8/17/2019 Steel Ch4 - Beams Movies

    47/80

      68402 Slide # 4;

    Moment 4apa)it! of Beams

    (u6je)ted to Non-uniform BM 

     9s mentioned previously$ t1e case it1 uni"orm bendin+moment is orst "or lateral torsional buc*lin+?

  • 8/17/2019 Steel Ch4 - Beams Movies

    48/80

      68402 Slide # 48

    Moment 4apa)it! of Beams

    (u6je)ted to Non-uniform BM

    ;b  is alays +reater t1an ?0 "or non&uni"orm bendin+moment? 

    . ;b is equal to ?0 "or uni"orm bendin+ moment?

    . Sometimes$ i" you cannot calculate or "i+ure out ;b$ t1en it can be

    conservatively assumed as ?0? "or doubly and sin+ly symmetricsections

     ma!  - magnitude of ma!imum bending moment in Lb

      " - magnitude of bending moment at #uarter point of Lb

     $ - magnitude of bending moment at half point of Lb

     C  - magnitude of bending moment at three-#uarter point of Lb

    . 5se absolute values o" M

    #*1*2

    *"2

    max

    max <+++

    =c & A

    b M  M  M  M 

     M  

    Fl l (t th f 4 t

  • 8/17/2019 Steel Ch4 - Beams Movies

    49/80

      68402 Slide # 4B

    Flexural (trength of 4ompa)t

    (e)tions

    #*1*2

    *"2

    max

    max <+++

    =  & A

    b M  M  M  M 

     M  

    Mmax

    MA

    MB

    MC' ()arter 

    ' mid 

    ' three"()arter 

    Moments determined between bracing

    points

  • 8/17/2019 Steel Ch4 - Beams Movies

    50/80

      68402 Slide # 0

    9alues of 4 6 

    $1

  • 8/17/2019 Steel Ch4 - Beams Movies

    51/80

      68402 Slide #

    Moment 4apa)it! of Beams

    (u6je)ted to Non-uniform Bending

    Moments

    (1e moment capacity Mn "or t1e case o" non&uni"ormbendin+ moment

    . Mn @ ;b > Mn "or t1e case o" uni"orm bendin+ momentQ ≤ M p

    . Important to note t1at t1e increased moment capacity "or t1e non&uni"orm moment case cannot possibly be more t1an M p. 

    . (1ere"ore$ i" t1e calculated values is +reater t1an M p$ t1en you1ave to reduce it to M p

  • 8/17/2019 Steel Ch4 - Beams Movies

    52/80

      68402 Slide # 2

    Moment 4apa)it! of Beams

    (u6je)ted to Non-uniform BM

    6r 6 p

    Mr 

    M p

    C b = "*#C b = "*2

    C b = "*

       M  (  m  e  $   t   C  a  p  a  c   i   t  y &

       M  $

    7$braced e$,th& 6 b

    Figure 11. Moment capacity versus 'b "or non&uni"orm moment case 

    5ni"orm )M5ni"orm )M

    %on&uni"orm )M%on&uni"orm )M

    Cb

     @ ?0 means uni"orm )M 

  • 8/17/2019 Steel Ch4 - Beams Movies

    53/80

      68402 Slide # ,

    (tru)tural Design of Beams

    . Steps "or adequate desi+n o" beams Compute t1e "actored loads$ "actored moment and s1ear 

    2 !etermine unsupported len+t1 'b and Cb

    , Select a :< s1ape and c1oose > assumin+ it is a compact section

    it1 "ull lateral support

    4 C1ec* t1e section dimension "or compactness and determine φbMn

    5se service loads to c1ec* de"lection requirements

     yb

    ) x

     F 

     M  Z 

    φ =

    nb)  M  M    φ ≤

     ynb)

     y pn

     ZF  M  M 

     ZF  M  M 

    4*#=≤

    ==

    φ 

  • 8/17/2019 Steel Ch4 - Beams Movies

    54/80

      68402 Slide # 4

    Ex0 $0$ Beam esign

    5se /rade 0 steel to desi+n t1e beam s1on belo? (1eun"actored uni"ormly distributed live load is equal to 40

    *%m? (1ere is no dead load? 'ateral support is provided at

    t1e end reactions? Select :6 section?

    21 ft*

    !

     " # $ips%&t.

    6atera supprt / braci$,

    '' @ 40 *%m@ 40 *%m

    ;? m;? m

  • 8/17/2019 Steel Ch4 - Beams Movies

    55/80

      68402 Slide #

    Ex0 $0$ Beam esign

    . Step *. Calculate t1e "actored loads assumin+ a reasonable sel"&ei+1t? 9ssume sel"&ei+1t @ s @ ?46 *%m?

    !ead load @ ! @ 0 E ?46 @ ?46 *%m?

    'ive load @ ' @ 40 *%m?

    5ltimate load @ u @ ?2 ! E ?6 ' @ 6?8 *%m?

  • 8/17/2019 Steel Ch4 - Beams Movies

    56/80

      68402 Slide # 6

    Ex0 $0$ Beam esign

    m F  E r  %  y y p "*""###

    112#####1*1#.*"/.*"   =

    ×==

    mmS 

      I r 

     x

    w y

    ts "*13"#"2

    "#."#"#*"

    4.

    ×××==

    . Step ***. Select a ide&"lan+e s1ape. Compute > @ 462?,060?B,44 @ 4B,>06 mm,?. Select :6 > 0 steel section

    . > @ 08>0, mm, S> @ ,2;>0, mm,  r y @ 40?4 mm

    . C @ 60>0B

     mm6

    Iy @ ?>06

     mm4

      @ 0?6,>06

     mm4

    .  

    .  

    .  

    2

    #

    #

    *#.*.""

    *#4*"   

     

     

     

     ++=

     $c

    hS 

     E 

     F 

    hS 

     $c

     F 

     E r  %   x

     y

     x y

    tsr 

  • 8/17/2019 Steel Ch4 - Beams Movies

    57/80

      68402 Slide # ;

    Ex0 $0$ Beam esign

    m %r 

    2.*3"*2"43"#"2

    ""#.*#

    11*#

    2#####

    "###

    "*134*"

    .

    =+××

    ××

    ×××=

    3"*2""#.*#

    43"#"2

    2#####

    11*#.*."

    *#.*."

    2

    .

    2

    # =   

      

     ××

    ×××+=  

     

      

     +

     $c

    hS 

     E 

     F  x y

    .10 @ ! & (

  • 8/17/2019 Steel Ch4 - Beams Movies

    58/80

      68402 Slide # 8

    . Step *0. C1ec* i" section is adequate. Mu N φMn %ot KL

    . Step 0. (ry a lar+er section?.  9"ter "e trials select :6 > 6; φMn @ 4B;?; N Mu -

    . Step 0*. C1ec* "or local buc*lin+?λ @ )"   2("  @ ;?;T Correspondin+ λp @ 0?,8 A

  • 8/17/2019 Steel Ch4 - Beams Movies

    59/80

      68402 Slide # B

    Ex0 $0: Beam esign

    !esi+n t1e beam s1on belo? (1e concentrated liveloads actin+ on t1e beam are s1on in t1e

  • 8/17/2019 Steel Ch4 - Beams Movies

    60/80

      68402 Slide # 60

    Ex0 $0: Beam esign

    . Step *.  9ssume a sel"&ei+1t and determine t1e "actored desi+nloads'et$ s @ ? *%m

    P' @ , *%

    Pu @ ?6 P' @ 26 *%

    u @ ?2 > s @ ?8 *%m

    (1e reactions and bendin+ moment dia+ram "or t1e beam are

    s1on belo?

  • 8/17/2019 Steel Ch4 - Beams Movies

    61/80

      68402 Slide # 6

    Ex0 $0: Beam esign

    s " '.1( $ips%&t.

    "2 ft* 3 ft* "# ft*

    )* $ips )* $ips

    )+.+ $ips ,# $ips

    ,,'.+ $ip-&t. ,() $ip-&t.

    A

    B C

    A B C

     

    6atera supprt / braci$,

     

    2". -2". - 2". -2". -"*3 -/m"*3 -/m

    *# m*# m*. m*. m 2*1 m2*1 m2#4* 5-2#4* 5- 23* 5-23* 5-

    1*4 5-*m1*4 5-*m "* 5-*m"* 5-*m

  • 8/17/2019 Steel Ch4 - Beams Movies

    62/80

      68402 Slide # 62

    Ex0 $0: Beam esign

    . Step **. !etermine 'b$ Cb$ Mu$ and MuCb "or all spans?

    Span !b

    /m0

    Cb

    Mu

    /$-m0

    Mu%C

    b

    /$-m0

    AB *. "*. 1*4 12*3BC 2*1 "*#

    (assume)1*4 1*4

    C! *# "*. "* 124*2

    It is important to note t1at it is possible to 1ave di""erent 'b andC

    b values "or di""erent laterally unsupported spans o" t1e same

    beam?

    Cb 7 (able ,&

  • 8/17/2019 Steel Ch4 - Beams Movies

    63/80

      68402 Slide # 6,

    Ex0 $0: Beam esign

    .Step ***. !esi+n t1e beam and c1ec* all laterally unsupported spans

     9ssume t1at span B;  is t1e controllin+ span because it 1as t1e

    lar+est Mu  @ ;4?B060?B,44 @ 24,8>0, mm,

    A&ter &ew trials select +"1 x ,4 &rom section property Table.

    'p @ ?B4 m 'r  @ ?;, m

  • 8/17/2019 Steel Ch4 - Beams Movies

    64/80

      68402 Slide # 64

    Ex0 $0: Beam esign

    (1us$ "or span 9)$ φbMn @ 8?8 *%?m N Mu & KLample demonstrates t1e met1od "or desi+nin+ beams it1several laterally unsupported spans it1 di""erent 'b and Cb values?

  • 8/17/2019 Steel Ch4 - Beams Movies

    65/80

      68402 Slide # 6

    Ex0 $0" Beam esign

    !esi+n t1e simply&supported beam s1on belo? (1euni"ormly distributed dead load is equal to *%m andt1e uni"ormly distributed live load is equal to ,0 *%m? 9concentrated live load equal to 40 *% acts at t1e mid&span?'ateral supports are provided at t1e end reactions and at

    t1e mid&span? 5se /rade 0 steel? " 1.' $ips%&t.

    "2 ft* "2 ft*

    1' $ips

    A

    B

    C

    ! " (.' $ips%&t.

     

    6atera supprt / braci$,

     

    1# 5-" 5-/m# 5-/m

    *. m *. m

  • 8/17/2019 Steel Ch4 - Beams Movies

    66/80

      68402 Slide # 66

    Ex0 $0" Beam esign

    . Step *. 9ssume t1e sel"&ei+1t and calculate t1e "actored desi+n loads?'et$ s @ ? *%m

    ! @ E ? @ 6? *%m

    ' @ ,0 *%m

    u @ ?2 ! E ?6 ' @ 6;?8 *%m

    Pu @ ?6 > 40 @ 64 *%(1e reactions and t1e bendin+ moment dia+ram "or t1e "actored loadsare s1on belo?

    +(.() $ips +(.() $ips

    u " ).,( $ips%&t.

    "2 ft* "2 ft*

    1+ $ips

    B

    x M/x0 " +(.() x - ).,( x(%(

    .1 5-

    .*3 5-/m

    *. m *. m2.*" 5- 2.*" 5-

    M(x) = 2.*"(x) ; .*3(x)2/2

  • 8/17/2019 Steel Ch4 - Beams Movies

    67/80

      68402 Slide # 6;

    . Step **. Calculate 'b and Cb "or t1e laterally unsupported spans?Since t1is is a symmetric problem$ need to consider only span 9)

    'b @,?6 m$ M> @ 2;6? > 7 6;?8 >22

    (1ere"ore$

    M 9 @ M> @ 0?B m @ 22 *%?m & quarter&point alon+ 'b @ ,?6 m

    M) @ M> @ ?8 m @ ,8; *%?m  & 1al"&point alon+ 'b @ ,?6 m

    MC @ M> @ 2?; m @ 4B8 *%?m  & t1ree&quarter point alon+ 'b@ ,?6 m

    Mma> @ M> @ ,?6 m @ 4?6 *%?m & ma>imum moment alon+ 'b @,?6 m(1ere"ore$ Cb @ ?,6

    Ex0 $0" Beam esign

  • 8/17/2019 Steel Ch4 - Beams Movies

    68/80

      68402 Slide # 68

    Ex0 $0" Beam esign

    . Step ***. !esi+n t1e beam sectionMu @ Mma> @ 4?6 *%?m

    'b @ ,?6 m$ Cb @ ?,6

    Required > @ 4?6060?B,44 @ ;B>0, mm,

     9"ter "e trials$ select :2 > ; steel section

    'p @ ?46 m 'r  @ 4?,; m

    'p J 'b J 'r 

    φbMn @ 6BB *%?m N φbMp @ 6,B?, *%?mφbMn@ 6,B?, NMu KL

  • 8/17/2019 Steel Ch4 - Beams Movies

    69/80

      68402 Slide # 6B

    Ex0 $0" Beam esign

    . Step 0. C1ec* "or local buc*lin+?)"   2("  @ ;?8;T Correspondin+ λp @ 0?,8 A

  • 8/17/2019 Steel Ch4 - Beams Movies

    70/80

      68402 Slide # ;0

    (hear 4apa)it!

    3he shear capacity o& the beam is

    nv)  + +    φ ≤ vw yn   A F +  .*#=

    For 4-shaped sections5 the &actors ;2 and φ2 are &unctions o& the shear

    buc$ling o& the eb and thus the ration h%t

     yw

     F 

     E t hif   21*2/   ≤

    #*"=v 

    representing the case o& no eb instability.

     9 @ dt

     

    4*#=vφ 

    #*"=vφ 

  • 8/17/2019 Steel Ch4 - Beams Movies

    71/80

      68402 Slide # ;

    (hear 4apa)it!

    4*#=vφ 

     y

    vw

     y

    v

     F 

     E * t h

     F 

     E * *"/"#*"   ≤<

    ( )   yw

    vv

     F t h

     E*  

    2/

    "*"=

    3he second case represents inelastic eb buc$ling

     y

    vw

     F 

     E * t h *"/   ≥

     y

    vw

     F 

     E * t h "#*"/   ≤ #*"=v 

    3he last case represents elastic eb buc$ling

    For all other doubly and singly sym. sections and channels except

    round 6SS

    4*#=vφ w

     yvv

    t h

     F  E *  

    "#*"=

    3he &irst case represents the case o& no eb instability. 

    4*#=vφ 

    4*#=vφ 

  • 8/17/2019 Steel Ch4 - Beams Movies

    72/80

      68402 Slide # ;2

    (hear 4apa)it!

    .  9 @ dt

    . (1e eb plate buc*lin+ coe""icient$ *v$ is +iven. cept "or t1e stem o" tee s1apes$

    *v @?2

    . >

    +

    =2

    2

    2.##*&

    w

    v

    t hhaor ha

    ha* 

  • 8/17/2019 Steel Ch4 - Beams Movies

    73/80

      68402 Slide # ;,

    Beam Bearing Plates

    esign o& a beam bearing plate ould re7uire chec$ing8

     &   ! 

    1- Web 9ielding and Web crippling to determine

    (- Bearing capacity to determine B

    #- Plate moment capacity to determine t

     AISC Specifications: Chapter K

  • 8/17/2019 Steel Ch4 - Beams Movies

    74/80

      68402 Slide # ;4

    Beam Bearing Plates

    When a bearing plate is used at beam end5 to limit states shall beconsidered

    1. Web Yielin! 

    3his represents yield o& the eb at the 2icinity o& the &lange due

    to excessi2e loading

    *  !   ≥w yn   t  F  ! *  , )*2(   +=

    CAS" 1: At S#pport 

     ,

     ,

    w yn   t  F  ! *  , )(   +=

    CAS" 2: Interior $oa 

    n , ,   φ ≤ #*"=φ 

  • 8/17/2019 Steel Ch4 - Beams Movies

    75/80

      68402 Slide # ;

    Beam Bearing Plates

    Web crippling represent the possible buc$ling o& the eb

    2. Web Cripplin! 

    n , ,   φ ≤ *#=φ 

    w

      f   y

      f  

    w

    wn t 

    t  F  E 

     ! 

    t  ,

       

     

     

     

       

      

    +=

    *"

    2"1*#

    CAS" 1: At S#pport 

    CAS" 2: Interior $oa 

    2*#≤d  ! 

    w

      f   y

      f  

    wwn

    t  F  E 

     ! t  ,

       

      

        

       −+=

    *"

    22*#

    1"1*# 2*#≥

     ! 

    w

      f   y

      f  

    wwn

    t  F  E 

     ! t  ,

       

      

        

      +=

    *"

    2"3*#

  • 8/17/2019 Steel Ch4 - Beams Movies

    76/80

      68402 Slide # ;6

    Ex0 $0; Beam esign

    C1ec* t1e beam s1on in t1e "i+ure belo "or. S1ear capacity?. :eb yieldin+?. :eb cripplin+?.  9ssume t1e idt1 o" t1e bearin+ plate is 00 mm? 5se /rade 0

    steel?

     " 1.' $ips%&t.

    "2 ft* "2 ft*

    1' $ips

    A

    B

    C

    ! " (.' $ips%&t.

    1# 5-"# 5-/m2 5-/m

    2 m 2 m

    :6>26

  • 8/17/2019 Steel Ch4 - Beams Movies

    77/80

      68402 Slide # ;;

    Ex0 $0; Beam esign

    .Step *. (1e section used "rom A>ample 4?6 is :2>;?

    (1e sel"&ei+1t s @ 0?8, *%m

    ! @ 0 E 0?,8 @ 0?,8 *%m

    ' @ 2 *%m

    u @ ?2 ! E ?6 ' @ 2? *%m

    Pu @ ?6 > 40 @ 64 *%(1e reactions and t1e bendin+ moment dia+ram "or t1e "actored loadsare s1on belo?

    +(.() $ips +(.() $ips

    u " ).,( $ips%&t.

    "2 ft* "2 ft*

    1+ $ips

    B

    x M/x0 " +(.() x - ).,( x(%(

    .1 5-

    2* 5-/m

    2 m 2 m" 5- " 5-

     Hu @ ,; *%

  • 8/17/2019 Steel Ch4 - Beams Movies

    78/80

      68402 Slide # ;8

    Ex0 $0; Beam esign

    . Step **. 1t @ 6?8

     9ssume unsti""ened eb$ 1t J260$ *v @

     

     9ssume unsti""ened eb$ 1t J260$ *v @

    φHn @ 0?B0?6,44,BB6?4>0&, @ 4;4?4 *%N Hu

    3*.111

    2#####21*221*2   =

  • 8/17/2019 Steel Ch4 - Beams Movies

    79/80

      68402 Slide # ;B

    Ex0 $0; Beam esign

    . Step ***. :eb yieldin+ critical is support* @ B mm

    φR @ 2?* E %2?>B E 00>,44>6?4000 @ ,24?; *%

    φR N reaction @ ,; *% KL. Step *0. :eb cripplin+ critical is support

    d @ ,BB mm t @ 6?4 mm t"  @ 8?8 mm

    %d @ 00,BB @ 0?2 N 0?2

    w

     f  y

     f 

    wwn

    t  F  E 

     ! t  ,

       

      

        

       −+=

    *"

    2 2*#1

    "1*#

  • 8/17/2019 Steel Ch4 - Beams Movies

    80/80

    Ex0 $0; Beam esign

    φR @ ;B *% N reaction @ ,; *% KL

    *!  ,n *23"#1*.

    3*3112#####

    3*3

    1*.2*#

    44

    "##1"1*.1*#

    *"2 =×××

       

       

      

       −×+×=   −