Status of the EKV3.0 MOS Transistor ModelA. Bazigos -- MOS-AK Workshop, September 22, 2006 20...

21
Status of the EKV3.0 MOS Transistor Model Matthias Bucher, Technical University of Crete e-mail: [email protected] MOS-AK/ESSDERC/ESSCIRC Workshop Compact Modelling for Emerging Technologies Friday, 22 September 2006 Montreux Switzerland Antonios Bazigos, National Technical University of Athens François Krummenacher, École Polytechnique Fédérale de Lausanne

Transcript of Status of the EKV3.0 MOS Transistor ModelA. Bazigos -- MOS-AK Workshop, September 22, 2006 20...

  • MOS AK

    Status of the EKV3.0 MOS Transistor Model

    Matthias Bucher, Technical University of Crete

    e-mail: [email protected]

    MOS-AK/ESSDERC/ESSCIRC WorkshopCompact Modelling for Emerging Technologies

    Friday, 22 September 2006Montreux Switzerland

    Antonios Bazigos,National Technical University of Athens

    François Krummenacher,École Polytechnique Fédérale de Lausanne

  • 2A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Presentation Outline

    �About EKV3�Model Code in Verilog-A�Physical Effects & Parameters

    � Parameter Extraction Basic Methodology�Modelling Results�Summary

  • 3A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    About EKV3

    � A Design-Oriented, Charge-Based Model � Moderate and Weak Inversion� Special Attention to Analog/RF IC Design Requirements

    � High Frequency Operation, Noise� All Pertinent Effects to 45nm CMOS

    � Scaling over Technologies, Geometry, Temperature, Bias� Validated on Various CMOS Technologies.

    � TOSHIBA, Infineon, Cypress, Atmel.� Used for Commercial IC Design.

  • 4A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    EKV: Charge Based Modelling

    Inversion Charge

    Drain Current

    Transconductances

    Transconductance-to-Current Ratio

    Capacitances & Charges

    Short-Channel Thermal Noise

    Induced Gate Noise……

    2 2s s d di q q q q= + − −

    1

    1/ 2 1/ 4m

    d sat

    g

    i i=

    + +

    ms s

    md d

    s dm

    g q

    g q

    q qg

    n

    ∝∝

    −∝

    1,

    O O

    L L

    D i S i

    XXY

    Y

    x xQ W q dx Q W q dx

    L LQ

    CV

    −∝ ∝

    ∂= ±∂

    ∫ ∫

    ( ); ,i i S s dq q q q= Ψ

  • 5A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    EKV3 in Verilog-A

    � The Verilog-A Code of EKV3.0� Hierarchical Structure

    � 18 files� one main file� many smaller� In Total: 83KB

    � Compatible with (at least) ELDO, ADS, SPECTRE, ADMS, …

    � Used as the Reference Code for all Model Implementations

    � ADMS provides “standard” C-code Various Simulators.

    ekv3.va“include statements”

    ekv3_extrinsic.va

    ekv3_overlap.va

    ekv3_gate_current.va

    ekv3_noise.va

  • 6A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    EKV3 and ADMS

    � EKV3 Verilog-A Code Tested with ADMS (v2.1)� Current version: ADMS v2.2.4

    � Tested with XML Interface for SPICE3� Different XML Interfaces for Different Simulators

  • 7A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    EKV3 “Design Kit” in ADS

    � Tiburon: A Verilog-A Compiler in ADS� An EKV3 “Design Kit” for ADS has been developed

    � Design Kit contains 8 Elements, only MOSFET� QS / NQS� NMOS / PMOS� MODEL-CARD / INSTANCE

    � 120nm CMOS Design Kit has been used to Design� Base-Band Elements (OP-AMPs) � LNA

  • 8A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    EKV3 in ELDO (C-code)

    � In ELDO a Hand-Written C-code Version of the Model exists

    � Verilog-A Code: Simpler but less Efficient� Not always Efficiently handled by the Simulators

    � Generally “Verilog-A + ADMS” and C-code have the same Functionality

  • 9A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Phenomena covered by EKV3.0 --Associated Parameters 1/2

    [Channel Segmentation]NQS

    [Appropriate Scaling of RG, RSUBswith W, L and NF]

    RF ModelExternal Sub-Circuit

    IBA, IBB, IBNImpact Ionization Current

    KG, XB, UBGate Current (IGS, IGD, IGB)

    LOV, GAMMAOV(NOV), VFBOVBias-Dependent Overlap Capacitances

    KP(U0), E0, E1, ETA

    ZC, THC

    Mobility (Reduction due to Vertical Field Effect) Surface Roughness-, Phonon-, Coulomb Scattering

    COX(TOX), PHIF, GAMMA(NSUB), VTO(VFB), GAMMAG(NGATE)

    Physical Modelling of Charges Including Accumulation RegionPolysilicon Depletion, Quantum Mechanical Effects

    Modelled effect Related Parameters / Comments

  • 10A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Phenomena covered by EKV3.0 --Associated Parameters 2/2

    WEDGE, DGAMMAEDGE, DPHIEDGEEdge Conduction

    AF, KFNoiseFlicker Noise, Short-Channel Thermal Noise,Induced Gate and Substrate Noise

    LETA0Halo/Pocket implant effects

    Various ParametersTemperature Effects

    Various Parameters (DL, WQLR, … )Geometrical Effects, Width scaling

    LETA, {LETA2}, WETASource and Drain Charge Sharing

    LR, QLR, NLRReverse Short Channel Effect

    WR, QWR, NWRInverse Narrow Width Effect

    ETAD, SIGMADDrain Induced Barrier Lowering

    UCRIT(VSAT), LAMBDA,

    DELTA

    Longitudinal Field EffectVelocity Saturation, Channel Length Modulation

    TOTAL

    Modelled effect Related Parameters / Comments

  • 11A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Basic Parameter Extraction Methodology

    CGG vs VG:COX, VTO,

    GAMMA, PHIF, GAMMAG

    CGG vs VG:COX, VTO,

    GAMMA, PHIF, GAMMAG

    gm vs VG (lin):DL, RSX

    (fixing RSCE for correct VTO)gm vs VG (lin):DL, RSX(fixing RSCE for correct VTO)ID vs VG (lin):LETA, [ETAD]ID vs VG (lin):LETA, [ETAD]

    VTO vs L:LR, QLR, NLR

    {RSCE},[LETA, LETA2,

    ETAD]

    VTO vs L:LR, QLR, NLR

    {RSCE},[LETA, LETA2,

    ETAD]

    CGG vs VG:LOV, GAMMAOV,[VFBOV], DLC

    CGG vs VG:LOV, GAMMAOV,[VFBOV], DLC

    Wide Long CVWide Long CV

    Wide Long IVWide Long IV

    Wide Short IVWide Short IV Wide All Lengths IV

    Wide All Lengths IV Wide Short CV

    Wide Short CV

    Narrow channel similar procedureNarrow channel

    similar procedure

    Narrow shortcombined effects

    [fine tuning]

    Narrow shortcombined effects

    [fine tuning]

    END

    gm vs VG (lin):KP, E0, E1,

    [ETA]

    gm vs VG (lin):KP, E0, E1,

    [ETA]

    Width scaling:All lengths w.r.t.

    width

    Width scaling:All lengths w.r.t.

    width

    ID vs VG (sat):ETAD, [LETA]

    ID vs VG (sat):ETAD, [LETA]

    Id, gds vs VD [strong inversion]:

    UCRIT,LAMBDA, DELTA

    [weak inversion]:ETAD

    Id, gds vs VD [strong inversion]:

    UCRIT,LAMBDA, DELTA

    [weak inversion]:ETAD

    Temperature analysis

    Temperature analysis

  • 12A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Short-Channel Characteristics

    � Correct Weak & Moderate Inversion Behaviour� Smoothness and Correct Asymptotic Behaviour� Correct Weak Inversion Slope and DIBL Modeling

    � Transconductance-to-Current Ratio vs. Drain Current (log. axis)

    L=70nm VD=1.5V

    0.0E+00

    1.0E-01

    2.0E-01

    3.0E-01

    4.0E-01

    5.0E-01

    6.0E-01

    7.0E-01

    8.0E-01

    1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02

    ID [A]

    GM

    *UT

    /ID [

    -]

    measuredEKV3.0

    L=70nm VD=1.5V

    1.0E-10

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

    VG [V]

    ID [

    A]

    measuredEKV3.0

    L = 70nm

    weak

    moderate

    strong

  • 13A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Short-Channel Output Characteristics

    L=70nm VB=0V

    0.0E+00

    1.0E-03

    2.0E-03

    3.0E-03

    4.0E-03

    5.0E-03

    6.0E-03

    7.0E-03

    8.0E-03

    9.0E-03

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

    VD [V]

    ID [

    A]

    measuredEKV3.0

    L=70nm VB=-1V

    0.0E+00

    1.0E-03

    2.0E-03

    3.0E-03

    4.0E-03

    5.0E-03

    6.0E-03

    7.0E-03

    8.0E-03

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

    VD [V]

    ID [

    A]

    measuredEKV3.0

    L=70nm VB=0V

    1.0E-04

    1.0E-03

    1.0E-02

    1.0E-01

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

    VD [V]

    gds

    [A

    /V]

    measured

    EKV3.0

    L=70nm VB=-1V

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    1.0E-01

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

    VD [V]

    gd

    s [A

    /V]

    measuredEKV3.0

    L = 70nm

  • 14A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    NQS Model @ RF [Re(Y21), Im(Y21)]

    Multifinger Devices @ Various VG Values, Saturation

    NMOS Lg=80nm NMOS Lg=2um

  • 15A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Edge Conduction Effect on ID and gm/ID

    NMOS 10um/10um

    0.0001

    0.001

    0.01

    0.1

    1

    10

    100

    -20 0 20 40 60 80 100vgb[-]

    id[-

    ]

    NMOS 10um / 80nm VD = 1V

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100

    id[-]

    gm

    /id[-

    ]

    NMOS 10um/10um VD=1V

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.0001 0.001 0.01 0.1 1 10 100

    id[-]

    gm

    /id[-

    ]

    NMOS 10um / 80nm VD=1V

    0.000001

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    10

    100

    -20 0 20 40 60 80 100

    vgb[-]

    id[-

    ]

    L=10um L=80nm

  • 16A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Gate Current & Edge Conduction

    � Gate Current is also affected by Edge Conduction� EKV3.0 gives reasonable fits to ID, gm/ID, IG even in

    case of presence of Edge Conduction Effect� Edge Conduction affects gm/id dramatically in Weak-

    Moderate Inversion

    NMOS 10um / 10um VD = 50mV

    1.0E-14

    1.0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-9

    1.0E-8

    1.0E-7

    1.0E-6

    -0.5 0 0.5 1 1.5 2 2.5

    VGB[V]

    IG [

    A]

    NMOS 10um / 80nm VD = 50mV

    1.0E-14

    1.0E-13

    1.0E-12

    1.0E-11

    1.0E-10

    1.0E-9

    1.0E-8

    -0.5 0 0.5 1 1.5 2 2.5

    VGB[V]

    IG[A

    ]

    L=10um L=80nm

  • 17A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Temperature Scaling

    � ID – VG and ID (gds) - VD vs. Temperature

    L = 150nm

  • 18A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    EKV3 and Industries

    � TOSHIBA Semiconductors� 140nm� 110nm� 80nm

    � Infineon Technologies� 120nm� 90nm� 65nm

    � Cypress Semiconductors� 150nm

    � Atmel Corporation� 350nm� 130nm

    � AustriaMicroSystems� 350nm� 180nm

    � XFAB� 350nm

    � Various Co-Operations� Tektronix

  • 19A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Developments underway (EKV3.1)

    � Vertical Non-Uniform Doping.� Accounting for Carrier Heating/Velocity Saturation in

    Induced Gate Noise.� A. S. Roy and C. C. Enz, WCM 2006

    � Mobility Effect to Improve Flexibility for Short-Channel Back-Bias

    � Output Conductance Effects in Long Channel Halo/Pocket Implanted Devices

    � Layout Dependent Stress Effects� …� EKV3.1 Release expected: 2007.

  • 20A. Bazigos -- MOS-AK Workshop, September 22, 2006MOS AK

    Summary

    � EKV3.0: a design-oriented, charge-based, compact model for Next Generation CMOS� Moderate and Weak Inversion, Analog/RF IC Design� Validated on Various CMOS Technologies to 65nm.

    � Used for Commercial IC Design.� Developed in Verilog-A

    � Verilog-A Code is Available to CAD Vendors.� Specific Simulators require Specific XML interface in ADMS� MOS Design Kits developed.

    � Implementation ongoing for: � ELDO, Smash, GoldenGate, … � Spectre, HSPICE, …

  • Thank you very much for your time and attention