Statisticalmodelingofscanningtransmission...

15
Statistical modeling of scanning transmission electron microscopy images of crystal interfaces with atomic resolution Jenny Jonasson 1 Joint work with Mats Rudemo 1 , Nikolina Ljustina 2 and Eva Olsson 2 1 Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg 2 Applied Physics, Chalmers University of Technology

Transcript of Statisticalmodelingofscanningtransmission...

Page 1: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Statistical modeling of scanning transmission

electron microscopy images of crystal interfaces

with atomic resolution

Jenny Jonasson1

Joint work with Mats Rudemo1, Nikolina Ljustina2 and Eva Olsson2

1Mathematical Sciences, Chalmers University of Technology and the

University of Gothenburg2Applied Physics, Chalmers University of Technology

Page 2: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Crystal structure

B-siteA-site

Oxygen

Unit cell

Page 3: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

High-Angle Annular Dark Field Scanning Transmission

Electron Microscopy

Annular detector

Crystal specimen

Electron beam

Scattered electrons

LaSr

Intensity proportional to atomic number (and number of atoms ina column).

Page 4: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Example

InterfaceLaAlSrTi

LaAlO3 in the film on the substrate SrTiO3

Page 5: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Detail

Page 6: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Goals

• Characterization of a particular crystal, grown with specificenvironmental conditions

• The position of the interface and its width, that is the degreeof intermixing between atoms across the interface in a narrowregion.

• The positions of atoms in the B-sites relative to the atoms inthe A-sites. Are they affected in the vicinity of the interface?

Page 7: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Problems

• Physical models are (too) complex

• Imaging. Not constant background. Row-wise dependence.

• A-site atoms have fixed positions in corners of a cube. Not soin images

Page 8: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Preliminary analysis

To the left, LaAlO3 in the film, to the right SrTiO3 in thesubstrate.

Page 9: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Preliminary analysis

0

10

20

30

40

010

2030

4050

0

0.2

0.4

0.6

0.8

0

10

20

30

40

500

10

20

30

40

50

0

0.2

0.4

0.6

0.8

Bilinear transformation of each unit cell giving A-site atoms incorners of square. Average unit cell.

Page 10: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Preliminary analysis

0

10

20

30

40

010

2030

4050

0.2

0.25

0.3

0.35

0

10

20

30

40

50

010

2030

4050

0.1

0.2

0.3

0.4

0.5

Gaussian function fitted to each A-site atom, then removed.Smoothed average unit cell.

Page 11: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Preliminary analysis

A-site atoms removed.

Page 12: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Preliminary analysis

Gaussian function fitted to B-site atoms.

Page 13: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Image

0 50 100 150 200 2500.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Vertical averaging. Logistic function fit to A-site atoms.

Page 14: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

Modeling ideas

1. Image results from a convolution of an object function (atomcolumn as seen by electrons) with a probe intensity profile

2. Probe intensity profile - ”known”.

3. Object function - possibly Gaussian. (Want to estimateposition and height for each atom)

4. Incorporate function describing the interface.

5. Estimate with maximum likelihood.

1-3 already in van Aert et al. (2009)

Page 15: Statisticalmodelingofscanningtransmission ...aila/smogen10jenny.pdfStatisticalmodelingofscanningtransmission electronmicroscopyimagesofcrystalinterfaces withatomicresolution Jenny

More future work

• More than one image of each sample with different rotationsin x-y plane

• Images with higher resolution. Possible to see oxygen atoms?

• Testing. Is there a significant difference of atom positions forcrystals grown at different oxygen pressure?