Statistical Analysis of Canopy Turbulence

36
Statistical Analysis of Canopy Turbulence

description

Statistical Analysis of Canopy Turbulence. Problem: Linking Measurements to Fluid Dynamics Equations. Turbulence is a stochastic phenomena Comparing measurements (e.g. time series) and model predictions can only be conducted statistically. - PowerPoint PPT Presentation

Transcript of Statistical Analysis of Canopy Turbulence

Page 1: Statistical Analysis of  Canopy Turbulence

Statistical Analysis of Canopy Turbulence

Page 2: Statistical Analysis of  Canopy Turbulence

Problem: Linking Measurements to Fluid Dynamics Equations Turbulence is a stochastic phenomena

Comparing measurements (e.g. time series) and model predictions can only be conducted statistically.

What are the appropriate assumptions in such comparisons in field experiments?

Page 3: Statistical Analysis of  Canopy Turbulence

Outline

Introduction: Linking eddy-sizes, averaging operations through the ergodic hypothesis.

Idealized setup: Model canopy in a flume as a case study to highlight the relevant eddy-sizes and the spatial-temporal averaging.

Real-world setup: Stable flows near the canopy-atmosphere interface. No unique canonical form for the integral length - but several possible canonical forms are examined depending on “external boundary conditions” and “inherent” length scales.

Conclusions:

Page 4: Statistical Analysis of  Canopy Turbulence

Introduction

Three types of averaging:

Spatial, Temporal, and Ensemble. Averaging equations of motion: proper

averaging operator is ensemble. Field experiments - typically provide temporal

averaging. Key assumption when linking equations to

measurements: Ergodic hypothesis

Page 5: Statistical Analysis of  Canopy Turbulence

Poor-Man’s version of the Navier-Stokes Equation

fxx

u

x

p

x

uu

t

ututututu

ii

i

ii

ii

i

2

2 1)()(2)()1(

Why Ensemble-Averaging is the appropriate operator?

Analogy borrowed from Frisch (1995)

Page 6: Statistical Analysis of  Canopy Turbulence

Sensitivity to Initial Conditions

Page 7: Statistical Analysis of  Canopy Turbulence

Solutions Statistically Identical

Page 8: Statistical Analysis of  Canopy Turbulence

Introduction:Averaging

Monin and Yaglom (1971):

ExperimentNumber

u(t)

Page 9: Statistical Analysis of  Canopy Turbulence

Weakly Stationary Process:

Ensemble Mean independent of time

Ensemble Variance independent of time

Ensemble covariance - only dependent on time lag

Note: Ensemble averaging is referred to as E

Page 10: Statistical Analysis of  Canopy Turbulence

Ergodic Hypothesis:

t

E(u) or E(u2)

E [u,u(t+ ) ]

For stationary process: Ensemble average = time average

T

T

dttuT

uEei0

)(1

)(..

If :1) Ensemble Autocovariance decays as2) Individual Autocovariance decays as

T

Page 11: Statistical Analysis of  Canopy Turbulence

Sampling Period and Eddy-sizes

A weaker version of these conditions:

Integral time scale of one realization is finite:

T

dttutuT

tutu0

)(')('1

)(')(')(

0

)(lim dI t ~ Energetic Scale

Lumley and Panofsky (1964): T>> tI

Page 12: Statistical Analysis of  Canopy Turbulence

LIDAR EXPERIMENTSLidar Experiments at UC Davis - 1991

Ground(Bare Soil)

LIDAR

LIDAR Sight

3m

Page 13: Statistical Analysis of  Canopy Turbulence

ERGODIC HYPOTHESIS FOR CANOPY TURBULENCE ASL: Ergodic hypothesis seems

reasonable.

CSL: Two types of averaging are employed - spatial and temporal. What are the canonical length scales and how they affect both averaging operations.

Page 14: Statistical Analysis of  Canopy Turbulence

FLUME EXPERIMENTS:

To understand the connection between energetic length scales, spatial and temporal averaging, start with an idealized canopy (Finnigan, 2000).

Vertical rods within a flume.

Repeat the experiment for 5 canopy densities (sparse to dense) and 2 Re

Page 15: Statistical Analysis of  Canopy Turbulence

FLUME DIMENSIONS

PLAN

Open channel

Test sectionFlow direction9 m

1 m

1m

Page 16: Statistical Analysis of  Canopy Turbulence

FLUME EXPERIMENTS

Weighted scheme

Rods positions

hw

dr

Canopy sublayer 2h

2 cm

1 cm

h

+++++++++++++++

SECTIONVIEW

• PLAN• VIEW

Page 17: Statistical Analysis of  Canopy Turbulence

Canonical Form of the CSL

THE FLOW FIELD IS A SUPERPOSITION OF

THREE CANONICAL STRUCTURES

d

Displaced wall

Real wall

REGION I

REGION II

REGION IIIBoundaryLayer

MixingLayer

Page 18: Statistical Analysis of  Canopy Turbulence

Vortex Pairing in Mixing Layers (Van Dyke, 1981)

Page 19: Statistical Analysis of  Canopy Turbulence

Structure of Turbulence in Model Plant Canopy Lowest Layers in the Canopy:

Flow Visualizations

Laser Sheet

Page 20: Statistical Analysis of  Canopy Turbulence

Flow Visualization

Flow visualization supports the hypothesis that the structure of turbulence in the deeper layers of the canopy is dominated by Von Karman streets periodically interrupted by sweep events from the top layers.

Page 21: Statistical Analysis of  Canopy Turbulence

Von Karman StreetsNASA’s EOS MODIS

Von Karman streets shedding off the Cape Verde Islands

Page 22: Statistical Analysis of  Canopy Turbulence

The flow field is dominated by small vorticity generated by von Kàrmàn vortex streets.

Strouhal Number = f d / u = 0.21 (independent of Re)

REGION I: FLOW DEEP WITHIN THE CANOPY

0.01 0.1 1 10 100fd€€€€€€€€€€€€€€€€

u� 0.21

5. ´ 10-7

1. ´ 10-6

5. ´ 10-6

0.00001

0.00005

FwHfL d€€€€€€€€€€€€€€€€€€€u� 3 - 2� 3

z � h<1

z� h=1.1

z� h=1.9

0.01 0.1 1 10 100fd

€€€€€€€€€€€€€€€€u� 0.21

1.´ 10-6

0.00001

0.0001

- 2� 3z� h<1

z� h=1.1

z� h=1.9

Spectra of w

Page 23: Statistical Analysis of  Canopy Turbulence

From Kaiman and Finnigan (1994)

Page 24: Statistical Analysis of  Canopy Turbulence

-0.5 0 0.5 1 1.5 2 2.5Hz- dL� h0.25

0.75

0.5

1

lffe�h

é

é é é ééé

é

é

éé

é é

ã

ã ã ã ããã

ãã

ãã

ã

ã

HaL

a=0.0

a=0.45

LV=dr � 0.21Canopy top

1 2 3 4 5 6 7aHm- 1L

0.2

0.4

0.6

0.8

1

a

ì

ì

ì

ìììììììììì

REGION II: Combine Mixing Layer and Boundary Layer

LBL= Boundary Layer Length = k(z-d) LML = Mixing Layer Length = Shear Length Scale l = Total Mixing Length Estimated from an eddy-

diffusivity

MLBL LLl )1(

Re1

Re2

Page 25: Statistical Analysis of  Canopy Turbulence

Spatial Averaging and Dispersive Fluxes:

Dispersive Fluxes =

wuwu /Consistent with: 1) Bohm et al. (2000)

2) Cheng and Castro (2002)

aa

% %

Roughness Density

Roughness Density

Roughness Density

Page 26: Statistical Analysis of  Canopy Turbulence

CSL Flows in Complex Morphology and Stability

CSL flows for simple morphology and canopy density does have well-defined length and time scales (~Ergodic).

CSL flows for stable conditions in real canopies??

Page 27: Statistical Analysis of  Canopy Turbulence

Uh

(m/s

)

0

1

2

3

4

- 1

- 0. 5

0

0. 5

1

w'

(m/s

)

T'

(K)

- 0. 6- 0. 4- 0. 200. 20. 40. 6

- 20

0

20

CO

2

T ime (minut es)

q' (

Kg/

m3)

- 0. 0001

0

0. 0001

0 2 4 6 8 10 12 14

u'w

' (m

/s)2

- 1. 2

- 0. 8

- 0. 4

0

0. 4

- 0. 3

- 0. 2

- 0. 1

0

0. 1

0. 2

w't

' (K

m/s

)

Fc

- 10- 505101520

- 4E- 005

- 2E- 005

0

2E- 005

4E- 005

6E- 005

w'q

'

T ime (minut es)

RN

(W

/m2)

- 35- 30- 25- 20- 15- 10- 5

0 2 4 6 8 10 12 14

Ramps: Stable Boundary Layer at z/h = 1.12 (Duke Forest)

Page 28: Statistical Analysis of  Canopy Turbulence

Ramps: Cross-spectra

cospectrum

quad-spectrum

coherence

phase

0. 0001 0. 001 0. 01 0. 1 1- 0. 05

- 0. 04

- 0. 03

- 0. 02

- 0. 01

0

0. 01

u'w

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

u'w

'

0 . 0001 0. 001 0. 01 0. 1 1f (H z)

- 180

- 90

0

90

180

u'w

'

0 . 0001 0. 001 0. 01 0. 1 1- 0. 008

- 0. 006

- 0. 004

- 0. 002

0

0. 002

w't

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

0. 8

w't

'0 . 0001 0. 001 0. 01 0. 1 1

f (H z)

- 180

- 90

0

90

180

w't

'

Page 29: Statistical Analysis of  Canopy Turbulence

Ramps: Cross-spectra

cospectrum

quad-spectrum

coherence

phase

0. 0001 0. 001 0. 01 0. 1 1- 0. 1

0

0. 1

0. 2

0. 3

w'c

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

w'c

'

0 . 0001 0. 001 0. 01 0. 1 1f (H z)

- 180

- 90

0

90

180

w'c

'

0 . 0001 0. 001 0. 01 0. 1 1- 2E- 007

- 1E- 007

0

1E- 007

2E- 007

3E- 007

4E- 007

w'q

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

0. 8

w'q

'

0 . 0001 0. 001 0. 01 0. 1 1f (H z)

- 180

- 90

0

90

180

w'q

'

Page 30: Statistical Analysis of  Canopy Turbulence

Gravity Waves: Stable Boundary Layer at z/h = 1.12 (Duke Forest)

Uh

(m/s

)

0

1

2

3

4

- 1

- 0. 5

0

0. 5

1

w'

(m/s

)

T'

(K)

- 0. 6- 0. 4- 0. 200. 20. 40. 6

- 50- 40- 30- 20- 10

01020304050

CO

2

T ime (minut es)

q' (

Kg/

m3)

- 0. 0006- 0. 0005- 0. 0004- 0. 0003- 0. 0002- 0. 000100. 0001

0 2 4 6 8 10 12 14

u'w

' (m

/s)2

- 1. 2

- 0. 8

- 0. 4

0

0. 4

- 0. 3

- 0. 2

- 0. 1

0

0. 1

0. 2

w't

' (K

m/s

)

Fc

- 10- 505101520

- 4E- 005

- 2E- 005

0

2E- 005

4E- 005

6E- 005

w'q

'

T ime (minut es)

RN

(W

/m2)

- 30

- 25

- 20

0 2 4 6 8 10 12 14

Page 31: Statistical Analysis of  Canopy Turbulence

Gravity Waves: Cross-spectra

cospectrum

quad-spectrum

coherence

phase

0. 0001 0. 001 0. 01 0. 1 1- 0. 0004

- 0. 0002

0

0. 0002

0. 0004

0. 0006

0. 0008

u'w

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

0. 8

u'w

'

0 . 0001 0. 001 0. 01 0. 1 1f (H z)

- 180

- 90

0

90

180

u'w

'

0 . 0001 0. 001 0. 01 0. 1 1- 0. 0004

0

0. 0004

0. 0008

0. 0012

0. 0016

w't

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

0. 8

1

w't

'

0 . 0001 0. 001 0. 01 0. 1 1f (H z)

- 180

- 90

0

90

180

w't

'

Page 32: Statistical Analysis of  Canopy Turbulence

Gravity Waves: Cross-spectra

cospectrum

quad-spectrum

coherence

phase

0. 0001 0. 001 0. 01 0. 1 1- 0. 06

- 0. 04

- 0. 02

0

0. 02

w'c

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

0. 8

1

w'c

'

0 . 0001 0. 001 0. 01 0. 1 1f (H z)

- 180

- 90

0

90

180

w'c

'

0 . 0001 0. 001 0. 01 0. 1 1- 1. 2E- 006

- 8E- 007

- 4E- 007

0

4E- 007

8E- 007

w'q

'

0 . 0001 0. 001 0. 01 0. 1 10

0. 2

0. 4

0. 6

0. 8

w'q

'

0 . 0001 0. 001 0. 01 0. 1 1f (H z)

- 180

- 90

0

90

180

w'q

'

Page 33: Statistical Analysis of  Canopy Turbulence

Net Radiation

Uh

(m/s

)

0

1

2

3

4

- 1

- 0. 5

0

0. 5

1

w'

(m/s

)

T'

(K)

- 2- 1 . 5- 1- 0 . 500 . 511 . 52

- 5 0- 4 0- 3 0- 2 0- 1 0

01 02 03 04 05 0

CO

2

T ime (minut es)

q' (

Kg/

m3)

- 0 . 0006- 0. 0004- 0. 000200. 00020. 00040. 00060. 0008

0 4 8 12 16 20 24 28

u'w

' (m

/s)2

- 1. 2

- 0. 8

- 0. 4

0

0. 4

- 0. 3

- 0. 2

- 0. 1

0

0. 1

0. 2

w't

' (K

m/s

)

Fc

- 10- 505101520

- 0. 0003

- 0. 0002

- 0. 0001

0

0. 0001

0. 0002

w'q

'

T ime (minut es)

RN

(W

/m2)

- 30

- 25

- 20

0 4 8 12 16 20 24 28

Page 34: Statistical Analysis of  Canopy Turbulence

Autocorrelation function of temperature

Ramps Gravity waves

Net Radiation

secsec

sec

Time lag

Time lag

Time lag

Page 35: Statistical Analysis of  Canopy Turbulence

RampsGravity Waves

Two End-members of stable CSL State

No TurbulenceWell-DevelopedTurbulence

Slightly Stable Flows

Page 36: Statistical Analysis of  Canopy Turbulence

Conclusions:

For ASL flows over uniform surfaces, the ergodic hypothesis is reasonable.

For neutral flows within the CSL of simple morphology, the ergodic hypothesis is also reasonable.

For stable CSL flows, too much “contamination” from boundary conditions (e.g. clouds or other disturbances) to sustain stationarity.