Stat Mech Notes

download Stat Mech Notes

of 418

Transcript of Stat Mech Notes

  • 8/6/2019 Stat Mech Notes

    1/417

    MIT OpenCourseWare

    http://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    2/417

    Language:

    Probability 1st Law

    Microcanonical ensemble

    2nd Law

    3rd Law

    Canonical ensemble

    T=0 Quantum gases

    Grand

    CanonicalEnsemble

    PhaseTransitions

    Transport

    Processes

    8.044 STATISTICAL PHYSICS I

    8.044 L1B1

  • 8/6/2019 Stat Mech Notes

    3/417

    PROBABILITY

    Random variable (ignorance and/or QM)Continuous, discrete, or mixed

    Probability density: p(x)px()Histogram

    (normalized)p(x)

    x

    PROB(x < + d) = px()d8.044 L1B2

  • 8/6/2019 Stat Mech Notes

    4/417

    px() 0,

    px()d=1 ,

    bPROB(ax < b) = px()da

    Cumulative probability: d

    Px() px()d px() = dPx()

    Either px() or Px() completely specifies the RV x.

    8.044 L1B3

  • 8/6/2019 Stat Mech Notes

    5/417

    Example Physical adsorption of a gas

    most of the time ( when hot)

    x

    small fraction of the time (when hot) leaving the surface

    y

    z

    nv

    8.044 L1B4

  • 8/6/2019 Stat Mech Notes

    6/417

    1

    p() p(v) v3 v2

    e 22

    2

    2

    3

    24

    = kTm

    vp() p( t )

    2sin()cos()

    /2 t

    e

    1

    t

    8.044 L 1B5a

  • 8/6/2019 Stat Mech Notes

    7/417

  • 8/6/2019 Stat Mech Notes

    8/417

    PROB = p()dp()d= 2 sin() cos()d(1/2)d

    d = sin()dd

    z

    x

    y

    d

    d

    d

    PROB/d = (1/) cos()

    8.044 L1B6

  • 8/6/2019 Stat Mech Notes

    9/417

    Gaussian density (memorize)

    p(x)

    (xx0)2

    1p(x) =

    22e

    22

    x x + x

    h

    he = 0.61 h12

    0 0

    2 parameters

    8.044 L1B7

  • 8/6/2019 Stat Mech Notes

    10/417

    MIT OpenCourseWare

    http://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    11/417

    Gaussian density (memorize)

    p(x)

    (xx0)2

    1p(x) =

    22e

    22

    x x + x

    h

    he = 0.61 h12

    0 0

    2 parameters

    8.044 L1B7

  • 8/6/2019 Stat Mech Notes

    12/417

    Example Atom escaping from a cavity

    AHole Atom escapes after nth wallencounter

    p(n) = (AH)(1 AH)nAT AT

    ATotaln

    = 0,

    1,

    2,

    8.044 L2B1

  • 8/6/2019 Stat Mech Notes

    13/417

    pn(x) =

    (AH)(1AH)n(xn)AT AT

    n=0

    Called a geometric or a Bose-Einstein density

    Pn(x)

    pn(x)

    0 2 4 x 0 2 4 x

    8.044 L2B2

  • 8/6/2019 Stat Mech Notes

    14/417

    Example Mixed, tdependent RV

    Chemical adsorption

    Physical adsorption

    x

    p(x)

    x

    e- t /

    P(x)1

    Given: atom on bottom at t= 0e- t /

    p(x) = et/ (x)+(1et/) f(x)

    8.044 L2B3

    x

  • 8/6/2019 Stat Mech Notes

    15/417

    Averages

    < f(x) > f(x)p(x) dx

    p(x)

    std.

    dev.

    x< x > is the mean< x2 > is the mean square< (x< x >)2 > = < (x2 2x < x > + < x >2) >

    = < x2 > 2 < x >2 + < x >2

    = < x2 > < x >2 is the variance (standard deviation)2

    8.044 L2B4

  • 8/6/2019 Stat Mech Notes

    16/417

  • 8/6/2019 Stat Mech Notes

    17/417

    Example Mean free path n

    d L=d/cos

    /2

    < L > = (d/cos )p() d0/2

    = (d/cos ) 2 sin cos d = 2d/2 sin d 0 0

    = 2d[/2(cos ) = 2d08.044 L2B6

  • 8/6/2019 Stat Mech Notes

    18/417

    Poisson density Events occur randomly along a line

    at a rate r per unit lengthL

    x

    x

    p(1)rxas x 0Events are statistically independent

    1p(n) = (rL)nerL= 1 < n >n e

    n! n!

    8.044 L2B7

  • 8/6/2019 Stat Mech Notes

    19/417

    Examples of Poisson probability densities0.6

    0.25

    0.5

    = 0.5 0.2 = 2.30.4

    0.15

    0.3

    0.2

    0.1

    0.10.05

    1 2 3 4 5 2 4 6 8 10

    0.12

    0.1 = 10

    0.08

    0.06

    0.04

    0.02

    5 10 15 20 25 30 10 20 30 40 50

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    = 30

    8.044 L2B8

  • 8/6/2019 Stat Mech Notes

    20/417

  • 8/6/2019 Stat Mech Notes

    21/417

  • 8/6/2019 Stat Mech Notes

    22/417

  • 8/6/2019 Stat Mech Notes

    23/417

    f(x, y)=

    f(, )px,y(, )dd

    NEW CONCEPTS:

    Reduction to a single variable

    px() =

    px,y(, )d

    Conditional probability density

    px( y)dprob.( < x + dgiven that = y)|8.044 L3B3

  • 8/6/2019 Stat Mech Notes

    24/417

  • 8/6/2019 Stat Mech Notes

    25/417

  • 8/6/2019 Stat Mech Notes

    26/417

    p(x, y) =p(x|y)p(y)p(x, y) =p(y|x)p(x)

    x and y are statistically independent ifp(x, y) =p(x)p(y) p(x y) = p(x) p(y|x) =p(y)

    |

    conditioned unconditioned

    8.044 L3B6

  • 8/6/2019 Stat Mech Notes

    27/417

  • 8/6/2019 Stat Mech Notes

    28/417

    1 2 2p(x|y) =2a2 2 |x|

    a y

    y

    2= 0 x >a2 y| |

    p(x|y)

    a

    2

    -y

    2

    a

    2

    -y

    2

    x

    8.044 L3B8

  • 8/6/2019 Stat Mech Notes

    29/417

    Derivation of Poisson density p(n;L)

    Given: p(n = 1;x)rx as x 0Start by findingp(n = 0;L)

    0 L

    x

    dL

    dL0p(0)p(1)p(n > 1)p(n = 0, dL) 1p(1) = 1r dL

    8.044 L3B9

  • 8/6/2019 Stat Mech Notes

    30/417

  • 8/6/2019 Stat Mech Notes

    31/417

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    32/417

    Poisson Random Variabler(x) S.I. events

    p(1) in x rxr is constant x

    p(n = 0;L) = erL 1st element ofp(n;L)

    8.044 L4B1

  • 8/6/2019 Stat Mech Notes

    33/417

    L L+Lx0

    p(n;L + L) p(n;L)p(0; L)+p(n1;L)p(1; L) (1rL) (rL)

    d p(n;L)p(n;L + L)p(n;L)= rp(n1;L)rp(n;L)

    L dL

    8.044 L4B2

  • 8/6/2019 Stat Mech Notes

    34/417

    d p(n; )Let rL +p(n; ) =p(n1; )

    d

    1st order, linear DE already known

    DE: is the variable and n is an index

    Probability: n is the variable and is a parameter

    1p(n; ) = n e

    n!

    8.044 L4B3

  • 8/6/2019 Stat Mech Notes

    35/417

  • 8/6/2019 Stat Mech Notes

    36/417

  • 8/6/2019 Stat Mech Notes

    37/417

    v1 v1 v1

    v2v2v21 = 0-1

    v2 and v2are S.I.

    8.044 L4B6

  • 8/6/2019 Stat Mech Notes

    38/417

  • 8/6/2019 Stat Mech Notes

    39/417

    p(v2 |v1)

    1

    0

    v2

    (v2-v1) when =1

    8.044 L4B8

  • 8/6/2019 Stat Mech Notes

    40/417

  • 8/6/2019 Stat Mech Notes

    41/417

    c

    t

    v( t )

    1

    -1

    ()

    c

    8.044 L4B10

  • 8/6/2019 Stat Mech Notes

    42/417

    Averages< v1v2 > =

    v1v2p(v1, v2) dv1 dv2

    =

    v1v2p(v2|v1)p(v1) dv1 dv2

    = v1p(v1)

    v2p(v2 v1) dv2 dv1 |

    conditional mean = ()v1

    2= ()

    v1p(v1) dv1 =< v1v2 > /2 =2

    8.044 L4B11

  • 8/6/2019 Stat Mech Notes

    43/417

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    44/417

    Functions of a random variable

    Given: px() and f(x)Find: pf()

    f(x)

    x

    8.044 L5B1

  • 8/6/2019 Stat Mech Notes

    45/417

    A. Sketch f(x). Find where f(x) <

    B. Integrate to find Pf().

    C. Differentiate to find pf().

    8.044 L5B2

  • 8/6/2019 Stat Mech Notes

    46/417

    Example Intensity of light

    I= aE2p(E) =

    2

    1

    2exp[E2/22]

    AI

    a

    a

    0

    a2

    B

    /aPI() = /apE() d8.044 L5B3

    g

  • 8/6/2019 Stat Mech Notes

    47/417

    g

    x

    a(y) b(y)

    da

    dy

    dy

    db

    dydy

    g

    ydy

    d b(y)

    a(y)g(y,x) dx=

    dyg(y,x= b(y))db(y)

    dy g(y,x= a(y))da(y)dy +b(y)

    a(y)g(y,x)

    y dx8.044 L5B4

  • 8/6/2019 Stat Mech Notes

    48/417

    C In general

    1 1pI() =

    2apE(

    /a)( 11

    2a

    ) pE(/a)

    = 1 12a[pE(

    /a) +pE(

    /a)]

    In our particular case

    1 Ip(I) = exp[

    2a

    2

    I 2a2] 1

    2

    3

    4

    5

    I/ a2

    a2 p(I)2

    0 1 2 3 48.044 L5B5

  • 8/6/2019 Stat Mech Notes

    49/417

  • 8/6/2019 Stat Mech Notes

    50/417

    Given = c/ and p()A

    Find p()

    B

    P() =p() d 0 c/

    =c/

    c/

    8.044 L5B7

  • 8/6/2019 Stat Mech Notes

    51/417

    C

    In general

    p() = (c/2) p(c/)

    In our casec 1 1 (c/0)2p() =2 2.404 0 exp[(c/0)]1

    Let 0 c/0, then1 1

    0

    4

    1p() =2.404 0 exp[(/0)1]1

    8.044 L5B8

    1As (/ ) 0 e(/0)1

  • 8/6/2019 Stat Mech Notes

    52/417

    As (/0)0 exp[(/0)1]1e (/0)

    1 1As (/0) exp[(/0)1]1 (1+(/0)11) (/0)

    p()(/

    0) -1

    (/0) -4 e

    (/0) -3

    8.044 L5B9

  • 8/6/2019 Stat Mech Notes

    53/417

  • 8/6/2019 Stat Mech Notes

    54/417

    Example Random number generator for programmers

    p(x) p(y)

    1 1

    0 1 x 0 1 y

    xand y are statistically independent

    8.044 L6B1

  • 8/6/2019 Stat Mech Notes

    55/417

    z MAX(x, y) Find p(z)

    p(x, y) = p(x)p(y)

    Where is MAX(x, y) = ?

    Where is MAX(x, y) < ?

    A

    0 1 x

    1

    y

    p(x,y)=1

    p(x,y)=0

    8.044 L6B2

  • 8/6/2019 Stat Mech Notes

    56/417

  • 8/6/2019 Stat Mech Notes

    57/417

    vExample Desorbing atom

    p(v,,) = p(v)p()p()p(v) = (1/24) v3 exp[

    v2/22]

    p() = 2 sin cos p() = 1/2Find p(vz)

    z

    x

    y

    n

    leaving the surface

    8.044 L6B4

  • 8/6/2019 Stat Mech Notes

    58/417

    Avz= v cos v

    vcos < v < / cos

    /2

    8.044 L6B5

    B

  • 8/6/2019 Stat Mech Notes

    59/417

    C

    B

    /2 /cos Pvz() = pv()p() dd0 0/2 /cos

    =

    p() pv() dd0 0

    dPvz() = /2

    p() 1 dpvz() = cos pv(cos )0

    d

    8.044 L6B6

  • 8/6/2019 Stat Mech Notes

    60/417

    0

    pvz() =

    (2 sin cos )cos

    /2 1 124

    cos 223exp[ 1 2

    cos2 ]d

    Let 122

    2

    cos2 X

    dX = 12

    2

    cos3 (sin )d

    = 0 X= 2/22; = /2 X=8.044 L6B7

  • 8/6/2019 Stat Mech Notes

    61/417

    pvz() = eXdX=

    2 [

    2 2/22 2/22 e

    X

    =

    2 exp[

    2

    /2

    2

    ] >0

    p(vz)

    0 vz

    8.044 L6B8

  • 8/6/2019 Stat Mech Notes

    62/417

  • 8/6/2019 Stat Mech Notes

    63/417

  • 8/6/2019 Stat Mech Notes

    64/417

    Results have a special meaning when

  • 8/6/2019 Stat Mech Notes

    65/417

    1) The means are finite (= 0)

    2) The variances are finite (=)

    3) No subset dominates the sum4) n is large

    width

    n

    1p(s)

    mean

    n

    n s

    8.044 L7B3

  • 8/6/2019 Stat Mech Notes

    66/417

    Given p(x,y), find p(sx+ y)

    A

    dx

    y = x

    x+y =

    x

    y

    BPs() =

    d

    d

    px,y(,

    )

    8.044 L7B4

  • 8/6/2019 Stat Mech Notes

    67/417

    C ps() =

    dpx,y(,)

    This is a general result; xand y need not be S.I.

    Application to the Jointly Gaussian RVs in Section 2

    shows that p(s) is a Gaussian with zero mean and a

    Variance = 22(1 + ).

    8.044 L7B5

  • 8/6/2019 Stat Mech Notes

    68/417

    In the special case that xand y are S.I.ps() =

    dpx()py() = dpx()py()

    The mathematical operation is called convolution.

    pq p(z)q(xz)dz= f(x).

    8.044 L7B6

    Example

  • 8/6/2019 Stat Mech Notes

    69/417

    p

    Given:

    1p(z) = (z/a)nexp(z/a)n!a

    1q(z) = (z/a)mexp(z/a)

    p(z)

    zn

    (z/a)n e-z/a

    zm!a

    0 < z and n,m= 0,1,2, Find: p q

    8.044 L7B7

  • 8/6/2019 Stat Mech Notes

    70/417

    q(z) q(-z)

    0

    z 0 z

    q(x-z)=q(-(z-x))

    z0 x

    q(x-z)

    z0 x

    p(z)

    finite product

    8.044 L7B8

  • 8/6/2019 Stat Mech Notes

    71/417

    x zn m1 1 xzez/ae(xz)/adz=pq

    n!m! a2 0 a a1 1=

    1

    n+m+1ex/a x zn(xz)mdz

    n!m! a a 01

    =

    1 xn+m+1ex/a 1

    n(1)

    mdn!m! a a 0

    n!m!(n+m+1)!

    8.044 L7B9

  • 8/6/2019 Stat Mech Notes

    72/417

    1

    xn+m+1

    ex/a1

    =pq(n+ m+ 1)! a a

    a function of the same class

    8.044 L7B10

    Example Atomic Hydrogen Maser

  • 8/6/2019 Stat Mech Notes

    73/417

    flask

    cavity

    beam

    0

    1

    RF out

    * = 1.4....... GHzH10 about 10 KHz

    |n stays) = ?p( twall

    8.044 L7B11

    ntwall =

    tn, Each stay is S.I.

  • 8/6/2019 Stat Mech Notes

    74/417

    i=1

    p(t|1) = (1/) et/

    p(t 2) = p(t 1) p(t 1) = (1/)(t/) et/| | |

    p(t 3) = p(t 2) p(t 1) = (1/2)(1/)(t/)2 et/| | |

    8.044 L7B12

    1 1 t n1et/p(t |n) =

  • 8/6/2019 Stat Mech Notes

    75/417

    5 10 15 20 25 30

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    ep(t|n)(n1)!

    0.15

    0.10

    0.05

    p(t | 12)

    t /0 10 20 30

    8.044 L7B13

    MIT OpenCourseWarehttp://ocw.mit.edu

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    76/417

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    Facts about sums of RVs

    http://ocw.mit.edu/termshttp://ocw.mit.edu/terms
  • 8/6/2019 Stat Mech Notes

    77/417

    Exact expressions for < s > and Var(s) ifS.I.

    p(s) = p(x)p(y) ifS.I.

    p(s) slightly more complicated if not S.I.

    8.044 L8B1

  • 8/6/2019 Stat Mech Notes

    78/417

    usually changes functional form

    But not always

    Fourier techniques are very useful

    8.044 L8B2

    Very important special case: Central Limit Theorem

  • 8/6/2019 Stat Mech Notes

    79/417

    RVs are S.I. All have identical densities p(xi) Var(x) is finite but < x > could be zero n is large

    p(s) Central Limit Theorem:p(s) is Gaussian

    n

    s n

    8.044 L8B3

    Ifx is continuous

  • 8/6/2019 Stat Mech Notes

    80/417

    1

    22e(s)

    2/22p(s) =

    < s >= n < x >

    2

    = n

    2

    x

    8.044 L8B4

  • 8/6/2019 Stat Mech Notes

    81/417

    Ifxis discrete in equal steps of x

    x

    22

    e(s)2/22 (six)p(s) =

    i combenvelope

    p(s)

    sx

    8.044 L8B5

  • 8/6/2019 Stat Mech Notes

    82/417

    3 directions, N atoms

  • 8/6/2019 Stat Mech Notes

    83/417

    E = total K.E.E = 3NK.E.x = 3N kT2U

    Variance(E) = 3N Variance(K.E.x) = 3N(kT)221

    exp[(E(3/2)N kT)2p(E) =2{(3/2)N(kT)2 2{(3/2)N(kT)

    2 ]} }

    3s.d. 2N kT 1

    = =3

    mean2N kT 32N

    8.044 L8B7

    MIT OpenCourseWarehttp://ocw.mit.edu

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    84/417

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/termshttp://ocw.mit.edu/terms
  • 8/6/2019 Stat Mech Notes

    85/417

    Some terms that must be understood

    Microscopic Variable

    Macroscopic Variable

    8.044 L9B1

    Extensive (N) Intensive (= f(N))

  • 8/6/2019 Stat Mech Notes

    86/417

    V volumeAareaL lengthP polarizationM magnetization

    P pressureS surface tensionF tensionE electric fieldH magnetic field

    T temperature

    U internal energy

    8.044 L9B2

    Adiabatic Walls

  • 8/6/2019 Stat Mech Notes

    87/417

    Diathermic Walls

    Equilibrium

    Steady State

    Complete Specification:

    Independent and Dependent Variables

    8.044 L9B3

  • 8/6/2019 Stat Mech Notes

    88/417

    Equation of State

    P V= N kTV = V0(1 + TKTP)M= cH/(TT0) T > T0

    In Equilibrium with Each Other

    8.044 L9B4

    OBSERVATIONAL FACTS

  • 8/6/2019 Stat Mech Notes

    89/417

    "0 th Law"

    equilibriumif A C and B

    equilibrium

    then A B

    Cequilibrium

    8.044 L9B5

    " Law 0.5 ? " Many macroscopic states of B can be

    in equilibrium with a given state of A

  • 8/6/2019 Stat Mech Notes

    90/417

    YA YBA B1 1 YB = f (XB)

    alsoXA, YA

    XA XB

    8.044 L9B6

    THEOREM A "predictor" of equilibrium h(X, Y, ...) exists

  • 8/6/2019 Stat Mech Notes

    91/417

    only in equilibrium

    state variable

    many states, same h different systems,

    different functional forms

    value the same ifsystems in equilibrium

    h(X, Y)

    Y

    X

    locus of

    constant h

    8.044 L9B7

    XA

    , YA

    XC

    , YC

  • 8/6/2019 Stat Mech Notes

    92/417

    A A C C

    XA , YA , XC , YC all free [ PA , VA , PC , VC ]

    XA , YA XC , YC

    equilibrium

    keep same adjust

    XC = f 1(YC , XA , YA ) [ PC = PA VA/ V C ]F1(XC , YC , XA , YA ) = 0 [ PC VC - PA VA = 0 ]

    8.044 L9B8

    XB

    , YB

    XC

    , YC

    equilibrium

  • 8/6/2019 Stat Mech Notes

    93/417

    B B C C

    keep sameadjust

    XB = g(YB , XC , YC )

    F2(XC , YC , XB , YB ) = 0

    solve for XC

    XC = f 2(YC , XB , YB )

    [ PB = PC VC/ V B ]

    [ PC VC - PB VB = 0 ]

    [ PC = PB VB/ V C ]

    same value as before

    8.044 L9B9

    f 1(YC , XA , YA ) = XC = f 2(YC , XB , YB ) 1

  • 8/6/2019 Stat Mech Notes

    94/417

    [ PA VA/ V C = PB VB/ V C ]

    XA , YA XB , YB

    equilibrium

    due to 0 th law

    F3(XA , YA , XB , YB ) = 0 2

    2 F3 factors+YC drops out

    8.044 L9B10

    1

    For this equilibrium condition

  • 8/6/2019 Stat Mech Notes

    95/417

    For this equilibrium conditionh( XA , YA ) = constant = h( XB , YB )

    [ PA VA = PB VB ]

    8.044 L9B11

    Isotherm at T1

  • 8/6/2019 Stat Mech Notes

    96/417

    YB B

    1

    YA A

    1

    Isotherm at T1

    T2 T2

    Isotherm at T1

    2

    2

    XA XB

    8.044 L9B12

    MIT OpenCourseWarehttp://ocw.mit.edu

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    97/417

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    THEOREM A "predictor" of equilibrium h(X, Y, ...) exists

    http://ocw.mit.edu/termshttp://ocw.mit.edu/terms
  • 8/6/2019 Stat Mech Notes

    98/417

    only in equilibrium

    state variable

    many states, same h different systems,

    different functional forms

    value the same ifsystems in equilibrium

    h(X, Y)

    Y

    X

    locus of

    constant h

    8.044 L9B7

    Empirical Temperature: t

  • 8/6/2019 Stat Mech Notes

    99/417

    P

    1

    Y

    1

    low density gas

    PV/N = constant2

    2

    PV/N = constant'

    X V

    8.044 L10B1

    we could possible alternative

  • 8/6/2019 Stat Mech Notes

    100/417

    Define t = cg PV/N t' = cg' (PV/N)

    Use to find isotherms

    in other systems Then in a simple paramagnet

    t = cm (M/H)-1 t ' = cm' (M/H) -

    Many possible choices for t

    8.044 L10B2a

    PV = Nkt t = PV/Nk

    P

  • 8/6/2019 Stat Mech Notes

    101/417

    8.044 L10B2b

    0 0.2 0.4 0.6 0.8 1

    0

    0. 2

    0. 4

    0. 6

    0. 8

    1

    P

    VPV = constant

    P

    V

    t

    t ' = (PV/Nk)2

    P

  • 8/6/2019 Stat Mech Notes

    102/417

    8.044 L10B2c

    PV = constant

    P

    V

    t '

    0 0.2 0.4 0.6 0.8 1

    0

    0. 2

    0. 4

    0. 6

    0. 8

    1P

    V

    t ' ' = PV/Nk

  • 8/6/2019 Stat Mech Notes

    103/417

    0 0.2 0.4 0.6 0.8 1

    0

    0. 2

    0. 4

    0. 6

    0. 8

    1

    8.044 L10B2d

    PV = constant

    P

    V

    t ' '

    P

    V

    1

    M = cH/t t = cH/M

    H

  • 8/6/2019 Stat Mech Notes

    104/417

    0.2 0.4 0.6 0.8 1

    0

    0. 2

    0. 4

    0. 6

    0. 8

    1

    8.044 L10B2e

    H

    MH/M = constant

    H

    M

    t

    1

    V = V0(1+t -P) t = (V-V0) /V0 +P/

    P

  • 8/6/2019 Stat Mech Notes

    105/417

    0 0.2 0.4 0.6 0.8 1

    0

    0. 2

    0. 4

    0. 6

    0. 8

    1

    8.044 L10B2f

    (V-V0) / V0 +P = constant

    t

    (V-V0)(V-V0)

    P P

    Workthe systemdW = differential of work done on

  • 8/6/2019 Stat Mech Notes

    106/417

    = - (work done b y the system)

    Hydrostatic system

    dW = -PdV F

    dx

    dW = Fdx = (PA)(-dV/A) = -PdV

    8.044 L10B3

    dW = FdL

    WireFF

    P pushes, Fpulls

  • 8/6/2019 Stat Mech Notes

    107/417

    2SL F constraint

    wire

    framefilm

    8.044 L10B4

    dW = Fdx = (SL)(dA/L) = SdA

    dW = SdA

    Surface

    dW = Fdx = (F)(dL) = FdL

    (2 surfaces)

    Chemical Cell (battery)dW = EEMF dZCHARGE

  • 8/6/2019 Stat Mech Notes

    108/417

    Electric charges Field in absence of matter

    dW = EdP as set up by externalsources. Does not include

    energy stored in the fielditself in the absence of

    Magnetic systems the matter.

    dW = HdM

    8.044 L10B5

    All differentials are extensive

  • 8/6/2019 Stat Mech Notes

    109/417

    Only -PdV has a negative sign Good only for quasistatic processes

    bW = dW depends on the path

    a

    W is not a state function

    8.044 L10B6

    Pisotherm PV= NkTA

    low density gas

  • 8/6/2019 Stat Mech Notes

    110/417

    V

    PY

    X

    isotherm PV NkT

    B

    V2

    P1

    P2

    V1

    a

    a

    b

    bc

    8.044 L10B7

    dW = YdX

    depends on Y(X)

    (a) W1 2 = P1(V2 V1) = P1(V1 V2)

  • 8/6/2019 Stat Mech Notes

    111/417

    (b) W1 2 =

    (c) W1 2 =

    =

    P2(V2 V1) = P2(V1 V2)2 2

    dV

    1P(V) dV = 2NkTdV = NkT

    V 1 V1

    NkTln V2 = NkTln V1 = P1V1 ln V1V1 V2 V28.044 L10B8

    MATH

    I) 3 variables, only 2 are independent

  • 8/6/2019 Stat Mech Notes

    112/417

    F(x,y,z) = 0x= x(y,z), y= y(x,z), z= z(x,y)

    x

    y ,

    x

    y1 y

    z

    z= 1=

    yx x x yz zz

    8.044 L10B9

    xz

    wand ifW(x,y,z), then x =

    y w yz w

  • 8/6/2019 Stat Mech Notes

    113/417

    II) State function of 2 independent variables

    S= S(x,y)

    S

    S

    dS= dx+ yx

    dy

    x y A(x,y) B(x,y)

    An exact differential

    8.044 L10B10

    2S 2S B= = x

    Ay = yx xy yx

  • 8/6/2019 Stat Mech Notes

    114/417

    yx

    necessary condition, but it is also sufficient

    Exact differential if and only if

    A

    y B=

    x yx2

    dS = S(x2, y2) S(x1, y1) is independent of1Thenthe path.

    8.044 L10B11

    III) Integrating an exact differential

  • 8/6/2019 Stat Mech Notes

    115/417

    dS= A(x,y) dx+B(x,y) dy1. Integrate a coefficient with respect to one variable

    S

    = A(x,y)x y

    S(x,y) = A(x,y) dx+f(y)y fixed

    8.044 L10B12

    2. Differentiate result with respect to other variable

    Sy

    d f(y)dy

    = B(x,y) A(x,y) dx +=y

  • 8/6/2019 Stat Mech Notes

    116/417

    y dyyx

    3. Integrate again to find f(y)B(x,y)

    A(x,y) dx

    d f(y) y

    =dy

    f(y) = {} dy

    done

    8.044 L10B13

    MIT OpenCourseWarehttp://ocw.mit.edu

    8 044 Statistical Physics I

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    117/417

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    Thermodynamics focuses on state functions: P,V,M,S, . . .

    http://ocw.mit.edu/termshttp://ocw.mit.edu/terms
  • 8/6/2019 Stat Mech Notes

    118/417

    Nature often gives us response functions (derivatives):

    1V 1 V 1 V

    V T P T V P T S V P adiabatic

    M

    T H T

    8.044 L11B1

    Example Non-ideal gas

    Given

  • 8/6/2019 Stat Mech Notes

    119/417

    Gas ideal gas for large T & VP Nk

    =T V VNb P NkT 2aN2= +V T (VNb)2 V3

    Find P8.044 L11B2

    P PdP

    dV + dT

  • 8/6/2019 Stat Mech Notes

    120/417

    dP = dV + dT

    V T T V P Nk

    P =T V dT+ f(V) = VNb dT+ f(V)

    NkT=(VNb) + f(V)

    8.044 L11B3

    P NkT NkT 2aN2=

    (V Nb)2+f(V)= (V Nb)2 +V T V 3

  • 8/6/2019 Stat Mech Notes

    121/417

    (VNb) (VNb)V T V

    2aN

    2

    aN2

    f(V) = dV = + cV3 V2NkT aN2

    P= (VNb) V + c2

    but c= 0 since PNkT/V as V 8.044 L11B4

    Internal Energy U

    Observational fact

  • 8/6/2019 Stat Mech Notes

    122/417

    final

    W

    initial

    isolated

    (adiabatic)

    Final state is independent of how W is applied.

    Final state is independent of which adiabatic path is

    followed.

    8.044 L11B5

    a state function Usuch that

    U W

  • 8/6/2019 Stat Mech Notes

    123/417

    U= WadiabaticU = U(independent variables)

    = U(T, V) or U(T, P) or U(P,V) for a simple fluid

    8.044 L11B6

    Heat

    If th th i t di b ti dU d/W

  • 8/6/2019 Stat Mech Notes

    124/417

    If the path is not adiabatic, dU= d/Wd /W/QdUd

    d/Q is the heat added to the system.

    It has all the properties expected of heat.

    8.044 L11B7

    First Law of Thermodynamics

    dU = d /W/Q + d

  • 8/6/2019 Stat Mech Notes

    125/417

    dU= d /W/Q+ d

    U is a state function

    Heat is a flow of energy

    Energy is conserved

    8.044 L11B8

    Ordering of temperatures

  • 8/6/2019 Stat Mech Notes

    126/417

    T1 T2

    dQ

    When d/W = 0, heat flows from high T to low T.

    8.044 L11B9

    Example Hydrostatic System: gas, liquid or simple

    solid

    Va iables ( ith N fi ed) P V T U

  • 8/6/2019 Stat Mech Notes

    127/417

    Variables (with N fixed): P,V,T,U.Only 2 are independent.

    /Q dd /Q

    CPCV

    dT V dT PExamine these heat capacities.

    8.044 L11B10

    dU= d/Q+ d/W = d/QPdV

  • 8/6/2019 Stat Mech Notes

    128/417

    d/Q= dU+ PdVd

    We want . We have dV.dT

    U U

    dU= dT+ dVT V V T

    8.044 L11B11

    U Ud/Q= dT+ + P dVT V V T

  • 8/6/2019 Stat Mech Notes

    129/417

    /Q U

    U

    dVd = + + P dT T V V T dT

    d/Q U =CV dT V T V

    8.044 L11B12

    CP

    d/QdT

    P=

    UT

    V+

    UV T + P

    VT

    PCV V U

  • 8/6/2019 Stat Mech Notes

    130/417

    U

    = + P VCPCVV

    T

    The 2nd law will allow us to simplify this further.

    UNote that CP = .

    T P8.044 L11B13

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    131/417

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    Paths Experimental conditions, not just math

    floatingfills bath insulation

    http://ocw.mit.edu/termshttp://ocw.mit.edu/terms
  • 8/6/2019 Stat Mech Notes

    132/417

    ~~~~~~~

    floating

    piston

    fills

    container

    bath insulation

    V=0 P=0 T=0 Q=0

    8.044L12B1

    Q = 0 could come from time considerationsExample Sound Wave

    ( )

  • 8/6/2019 Stat Mech Notes

    133/417

    (x) v

    x

    too fast for heat to flow out of compressed regions

    1v =

    S

    8.044L12B2

    Example Hydrostatic system: an ideal gas, PV=NkTU

    New information= 0 ,

    V T3 ibl

  • 8/6/2019 Stat Mech Notes

    134/417

    3 possible sources

    Experiment

    freeexpansion

    bath initially at T observe Tf

    = Ti i

    8.044L12B3

    No work done so W = 0Tf = TiQ= 0together U = 0 (U/V )T = 0

  • 8/6/2019 Stat Mech Notes

    135/417

    together U 0 (U/V)T 0

    here quasi-static changes

    Physics: no interactions, single particle energiesonly (U/V)T = 0Thermo: 2nd law + (PV= NkT)(U/V)T = 0

    8.044 L12B4

    Consequences

    U UdU = dT+ dVT V V T CV 0

  • 8/6/2019 Stat Mech Notes

    136/417

    CV 0

    TU = CV(T) dT+ constant0

    set=0

    3In a monatomic gas one observes CV = 2Nk.3Then the above result gives U= CVT = 2NkT.

    8.044 L12B5

    U VCPCV = (V T+P) T P

    0 ( / ) /

  • 8/6/2019 Stat Mech Notes

    137/417

    0T(NkT/P)P=Nk/P

    = Nk for any ideal gasApplying this to the monatomic gas one finds

    3 5CP = Nk +Nk = Nk

    2 25

    CP/CV =3

    8.044 L12B6

    Adiabatic Changes d/Q= 0Find the equation for the path.

    Consider a hydrostatic example.

  • 8/6/2019 Stat Mech Notes

    138/417

    U Ud/Q= dT+ + P dV = 0T V V T

    CV (CPCV)/V

    T CPCV) 1 (1) = =V Q=0 CV V V

    This constraint defines the path.

    8.044 L12B7

    Apply this relation to an ideal gas.

    1 V

    1

    N kT

    1 N k

    1 V

    1= = = =V T P V T P P V P V T TPath

  • 8/6/2019 Stat Mech Notes

    139/417

    Path

    dT T= (1)dV V

    dT dV T V= (1) V ln T0 = (1) lnT V0

    (1)

    T V =T0 V0

    8.044 L12B8

    Adiabatic Isothermal

    TV 1 = c

    P adiabatPV = c

  • 8/6/2019 Stat Mech Notes

    140/417

    TV 1 = cPV = c

    = 5/3 (monatomic)

    P V 5/3isotherm

    PV= cP V 1dP P

    =

    dV VdP 5P V

    =dV 3V

    8.044L12B9

    F

    insulation

    Expansion of an ideal gas

  • 8/6/2019 Stat Mech Notes

    141/417

    8.044L12B10

    rupture diaphragmadiabatic Q = 0

    not quasistatic

    W = 0

    U = 0

    slowly move pistonadiabatic Q = 0

    quasistatic

    W is negative

    U = is negative

    T

    V

    constant U

    T

    V

    adiabat

    Starting with a few known facts,

    1st /W, and state function math,law, done can find

    relations between some thermodynamic quantities,

  • 8/6/2019 Stat Mech Notes

    142/417

    a general expression for dU,and the adiabatic constraint.

    Adding models for the equation of state and the heatcapacity allows one to find

    the internal energy Uand the adiabatic path.

    8.044 L12B11

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    143/417

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    1. The System

    Fixed:

    E < energy < E+

  • 8/6/2019 Stat Mech Notes

    144/417

    8.044 L13B1

    Fixed:

    EV

    N

    M or H

    P or E

    A complete set of

    independent thermodynamic

    variables is fixed.

    Many micro-states

    satisfy the conditions.

    2. Probability Density

    All accessible microscopic states are equally probable.

  • 8/6/2019 Stat Mech Notes

    145/417

    Classical

    p({p,q}) = 1/ E < H({p,q}) E+ = 0 elsewhere

    accessible

    {dp,dq}= (E,V,N)

    8.044 L13B2

    Quantum

    p(k) = 1/ E < k|H|k E+

  • 8/6/2019 Stat Mech Notes

    146/417

    = 0 elsewhere

    (1) = (E,V,N) k,accessible

    8.044 L13B3

    Let X be a state of the system specified by a subset{p,q }of{p,q}

    p(X) =except {p,q}p({p,q}) {dp,dq}

  • 8/6/2019 Stat Mech Notes

    147/417

    =

    1

    except {p,q}{dp,dq} (consistent with X)

    =

    volume consistent with X

    =total volume of accessible phase space

    8.044 L13B4

    3. Quantities Related to

    (E,V,N) H({p,q})

  • 8/6/2019 Stat Mech Notes

    148/417

    (E,V,N)(E,V,N) E

    = density of states as a function of energy

    (E,V,N) = (E,V,N)

    8.044 L13B5

    Example Ideal Monatomic Gas

    qi= x,y,z in a box V = LxLyLz

  • 8/6/2019 Stat Mech Notes

    149/417

    y

    x,mpi= m y,mz < pi

  • 8/6/2019 Stat Mech Notes

    150/417

    y

    { p}

    0 0 0

    = VNE

  • 8/6/2019 Stat Mech Notes

    151/417

    This describes a 3N dimensional spherical surface inthe ppart of phase space with a radius R= 2mE.

    8.044 L13B8

    Math:

    Volume of an dimensional sphere of radius R is/2

    R(/2)!

  • 8/6/2019 Stat Mech Notes

    152/417

    Sterlings approximation for large Mln(M!) MlnMM

    MM! M

    e8.044 L13B9

    3N/2

    (E,N,V) = VN (2mE)3N/2(3N/2)!

    4emE 3N/2V N

  • 8/6/2019 Stat Mech Notes

    153/417

    VN 3N

    1(E,N,V) = 3

    2

    N

    E

    { }

    (E,N,V) = 3

    2

    N

    E

    { }

    8.044 L13B10

    1p(xi) =

    =

    VN1LyLz= 0 x < Lx

    VN Lx1 VN2LyLzLxLz

    = = p(xi)p(yj) S.I.p(xi, yj) =

    =VN LxLy

  • 8/6/2019 Stat Mech Notes

    154/417

    p(pxi) = p({p,q}){

    p , dq}=dp

    1/ = pxi

    Note that differs on each of the three lines, be-ing a generic symbol for the reduced phase volume

    consistent with some constraint.8.044 L13B11

    2 distributed over other variablespx/2m E(3N1)/23N1

    VN4em(E)=

    2 E 3N1

  • 8/6/2019 Stat Mech Notes

    155/417

    3N1 E 4em1/2=

    3N 3

    E1 1

    2

    3N 3N 11 2 +12 2(N3)

    (E)

    3N 3N

    N 2 E 2 A B

    8.044 L13B12

    3N1 1 1/2A= N 1 1

    32N

    =

    N 1 + 3 3N 3 3N/2

    2

  • 8/6/2019 Stat Mech Notes

    156/417

    but lim 1 + x = ex

    soA

    N e

    1/2

    8.044 L13B13

    3N1 21 2 1 2/ < > B=

    E1

    E

    3N

    = E 1 3N/2

  • 8/6/2019 Stat Mech Notes

    157/417

    where we have used < >E/3N and E= 3N < >.1

    so B 3N

    e

    /2

    8.044 L13B14

    p(px) =

    31/2 1

    N e1/2 /24m 3N < > e e

    1 /2=

  • 8/6/2019 Stat Mech Notes

    158/417

    4m < >

    / =e

    2Now use = p2/2mand < >=< px

    > /2m.x

    x xp(px) =1

    e

    p2/22

    2 < p >x

    8.044 L13B15

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    159/417

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    = (E,V,N. . .) Volume of the accessible regionof phase space

    http://ocw.mit.edu/termshttp://ocw.mit.edu/terms
  • 8/6/2019 Stat Mech Notes

    160/417

    of phase space.

    8.044 L14B1

    4. EntropyS(E,V,N) kln (E,V,N)

    kln (E,V,N) Differ only by lnNkln(E,V,N)

  • 8/6/2019 Stat Mech Notes

    161/417

    It is a state function.It is extensive.

    It is a logarithmic measure of the microscopic de-generacy associated with a macroscopic (that is, ther-

    modynamic) state of the system.

    k is Boltzmanns constant, units of energy per 0K.8.044 L14B2

    5. Statistical Mechanical Definition of Temperature

    1Total is microcanonical

  • 8/6/2019 Stat Mech Notes

    162/417

    1

    2

    dQd /W1 2 = 0 interaction between 1 &

    Find the most probable E1 2 is so small that can

    E be separated18.044 L14B3

    p(E1) =

    =

    1(E1)2(EE1) (E)

    lnp(E1) = ln1(E1)+ ln2(EE1)ln (E)

  • 8/6/2019 Stat Mech Notes

    163/417

    1= ( S1(E1) + S2(EE1)S(E) )

    k

    1 S1 S2 lnp(E1) =k E1d E2d = 0E1 /W1=0 /W2=0

    8.044 L14B4

    The condition for determining E1 is

    S1 S2 =/W1=0

    E2 dE1 d /W2=0

    1 2f of f of

  • 8/6/2019 Stat Mech Notes

    164/417

    f f

    But this also specifies the equilibrium condition. Thus

    S 1= f(T) (in equilibrium)

    E d/W=0 T8.044 L14B5

    6. Two Fundamental Inequalities What ifE1 = E1?

    1 as equilibrium is established.1p(E1) p(E1)

  • 8/6/2019 Stat Mech Notes

    165/417

    1(E1)2(EE1) 1(E 1)1)2(EE

    1(E

    1)1 1) 2(EE

    1(E1) 2(EE1)

    8.044 L14B6

    1) S1(E1)+S2(E E0 S1(E 1) S2(EE1)

    S1 S2

    S = S1 + S2 increases

  • 8/6/2019 Stat Mech Notes

    166/417

    S 0The total entropy of an isolated system always in-

    creases or, at equilibrium, remains constant.

    8.044 L14B7

    Now assume 1 T2 Tbath does not change.2

    /Q2 ddE2 d /Q1dS2 = = =T2 T2

    Tbath

  • 8/6/2019 Stat Mech Notes

    167/417

    d/Q1dS= dS1 + dS2 = dS1 Tbath 0d/Q1

    dS1 Tbath

    In particular, for systems in equilibrium with a bath

    dS= d/Q/T

    .

    8.044 L14B8

    Example Ideal Monatomic Gas

    VN 4emE

    3N

    3N/2=

    V

    4emE3N

    3/2

    N

    4emE3/2 S(E,N,V) = kNln V

    3N

  • 8/6/2019 Stat Mech Notes

    168/417

    3N2

    EVN 4emE

    3N

    3N/2

    4emE3/2 2 1 E S(E,N,V) = kNln

    V

    3N ln(

    3 N)

    8.044 L14B9

    The Energy Relation

    1 S Nk 3 1 (3/2)Nk =

    T E N,V {} 2 E{}= E

  • 8/6/2019 Stat Mech Notes

    169/417

    E= (3/2)NkT

    Here U= E so CV = U = (3/2)Nk.T V8.044 L14B10

  • 8/6/2019 Stat Mech Notes

    170/417

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    F i f ti b t iti th t i l T f U i it htt // it d /t

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    171/417

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    Microcanonical: E fixed + equal a priori probabilities

    microscopic probability densities [S.M.]

    http://ocw.mit.edu/termshttp://ocw.mit.edu/terms
  • 8/6/2019 Stat Mech Notes

    172/417

    Together with the definition of entropy

    temperature scale and 2ND law inequalities [Ther-modynamics]

    8.044 L15B1

    S 0 (3 4 7) 2ND Lawd dS1 /Q1 (3 6 5)T

  • 8/6/2019 Stat Mech Notes

    173/417

    Quasi-static means arbitrarily close to equilibrium.

    Necessary for work differentials to applyRequired for = in above 2ND law relations

    8.044 L15B2

    7. Entropy as a Thermodynamic Variable

    S 1/W=0 T gives us TE d

  • 8/6/2019 Stat Mech Notes

    174/417

    Other derivatives give other thermodynamic variables.

    PdV

    d/W = SdA Xidxi +HdM+ EdP+ iFdL

    8.044 L15B3

    We chose to use the extensive external variables (a

    complete set) as the constraints on . Thus

    Skln = S( E,V,M, )Now solve for E.

  • 8/6/2019 Stat Mech Notes

    175/417

    S(E,V,M, ) E(S,V,M, )We know

    dE|d /Q from the 1ST law/W=0 = ddE /W=0 TdS utilizing the 2ND lawd|

    8.044 L15B4

    Now include the work.

    dE = d /W/Q+ d

    dE T dS+ d/W

  • 8/6/2019 Stat Mech Notes

    176/417

    P dV dE T dS+ SdA + HdM+ EdP+

    FdL

    The last line expresses the combined

    1ST and 2N D laws of thermodynamics.8.044 L15B5

    Solve for dS.

    1 P HdS= dE+ dV dM

    EdP+T T T T

    Examine the partial derivatives of S

  • 8/6/2019 Stat Mech Notes

    177/417

    Examine the partial derivatives ofS.

    S S H1

    ==E V,M,P T M E,V,P T S P S Xj ==V E,M,P T xj E,xi=xj

    T8.044 L15B6

    INTERPRETATION

    S(E,V)

    S SdS =

    dE + dV

  • 8/6/2019 Stat Mech Notes

    178/417

    V

    dS = dE+ dVE V V E

    1 P= dE+ dV

    T TE

    8.044 L15B7

    UTILITY

    Internal Energy

    S(E,V,N)

    E

    V

    =1

    T T(E,V,N)E(T, V, N)

  • 8/6/2019 Stat Mech Notes

    179/417

    E V T

    Equation of State S(E,V,N)

    V E=PT P(E,T,V,N)P(T, V, N)

    8.044 L15B8

    Example Ideal Gas

    4 E3/2S(E,N,V) = kln = kNln V 3em N

    S kN {} kN P

  • 8/6/2019 Stat Mech Notes

    180/417

    SV E,N=

    kN{}

    {}

    V =kNV =

    PT

    PV= NkT

    8.044 L15B9

    COMBINATORIAL FACTS

    # different orderings (permutations) ofKdistinguish-able objects = K!

    # of ways of choosing L from a set of K:

  • 8/6/2019 Stat Mech Notes

    181/417

    # ofways ofchoosing L from a set ofK:K!

    if order matters(KL)!

    K!if order does not matter

    L!(KL)!8.044 L15B10

    EXAMPLE Dinner Table, 5 Chairs (places)

    Seating, 5 people 5 4 3 2 1 = 5! = 120

  • 8/6/2019 Stat Mech Notes

    182/417

    Seating, 3 people 5 4 3 = 5! =60 2!

    1Place settings, 3 people 5 4 3/6 = 5! = 10 2! 3!

    8.044 L15B11

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    183/417

    EXAMPLE 2 Level System

    Ensemble of N "independent" systems

    ENERGY

    | 1 >

    N = N0 + N1

  • 8/6/2019 Stat Mech Notes

    184/417

    |

    N N0 + N1

    E = N1

    |0 >

    0

    8.044 L16B1

    SURFACE MOLECULES IONS IN A CRYSTAL LOWEST LYING STATES

    0 0

    ENERGY

  • 8/6/2019 Stat Mech Notes

    185/417

    0

    E N1

    NO WORK POSSIBLE (JUST HEAT FLOW)

    8.044 L16B2

    1 when N1 = 0 or NN!(E) =N1!(NN1)! Maximum when N1 = N/2

    T= (or -S(E)

    )

  • 8/6/2019 Stat Mech Notes

    186/417

    E = N/2

    S(E) = kln (E)E = N

    T=0

    ET>0 T

  • 8/6/2019 Stat Mech Notes

    187/417

    1

    S S N1 k= = = [1ln N1 +1+ln(NN1)]T E N N1 E

    1/

    k NN1 k N = ln = ln N1 N1

    1

    8.044 L16B4

    NN11 = e/kT NN1 =

    e/kT + 1

    NE= N1 =e/kT + 1

    1.0 N1 /N or E/N

  • 8/6/2019 Stat Mech Notes

    188/417

    /kT~ e~0.5

    1 2 3 kT/4

    8.044 L16B5

    e/kTE 2

    = NkC(e/kT + 1)2T kT

    2 Nk 2Nk e/kT low T, high TkT 4 kT

    0 4

    0.5

    C/Nk

  • 8/6/2019 Stat Mech Notes

    189/417

    0.1

    0.2

    0.3

    0.4

    1 2 3 4kT/

    8.044 L16B6

  • 8/6/2019 Stat Mech Notes

    190/417

    p(n) =

    (N1)! N1! (NN1)!N! (N1 n)! (NN1 1 + n)!

    1/N 1 n= 0 NN1 n= 0N1 n= 1 1 n= 1

  • 8/6/2019 Stat Mech Notes

    191/417

    N1 p(0) = NN1 = 1

    N N

    p(0) +p(1) = 1N1 = [e/kT + 1]1 p(1) = N

    8.044 L16B8

    1

    p(n)

    0. 5

    0 1 n

    p(0)

    p(1)

    1 2 3 4kT/

    N

  • 8/6/2019 Stat Mech Notes

    192/417

    NE= (0)N p(0)+()N p(1) =

    e/kT + 1

    But we knew E, so we could have worked backwards

    to find p(1).

    8.044 L16B9

    MICROCANONICAL ENSEMBLEMODEL THE SYSTEM

    FIND (E,N,V ....)THERMODYNAMIC RESULTS MICROSCOPIC INFORMATION

  • 8/6/2019 Stat Mech Notes

    193/417

    FIND S(E,N,V ....) P(~~~) = '/

    1S =TE N,V

    PS =V E,N T

    etc.

    8.044 L16B10

  • 8/6/2019 Stat Mech Notes

    194/417

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    195/417

    ENTROPY AND THE 2nd LAW

    21 2

    1

  • 8/6/2019 Stat Mech Notes

    196/417

    Tbath

    dS 0 dS1 dQ

    1/Tbath

    8.044 L17B1

    S as a State Function

    Note: adiabatic ( d/Q = 0) constant S if thechange is quasistatic. This is the origin of the sub-

    script S on the adiabatic compressibility.

  • 8/6/2019 Stat Mech Notes

    197/417

    1 V

    1 V

    T V P T S V P S

    8.044 L17B2

    Example A Hydrostatic System

    S SdS =T V dT+ V TdV by expansion

    1 P=

    TdU+ TdV from dU= TdSPdV1

    U

    1

    U

  • 8/6/2019 Stat Mech Notes

    198/417

    1

    U 1 U

    = dT+ + P dVT T V T V T

    by expansion ofUBut the cross derivatives ofS must be equal.

    8.044 L17B3

    1 U 1 2U=V T T V T T VT

    1

    U1

    U1

    2U1

    P+ P =

    T2 V T + P + +T T V T V T VT T T Equating these two expressions gives

    U P+ P = T

  • 8/6/2019 Stat Mech Notes

    199/417

    +V T T VU P

    = TVPV T T

    New Information! Does not contain S!

    8.044 L17B4

    CONSEQUENCES a) U Ud/Q= dU+ PdV= dT+ + P dVT V V T

    CV T PT V

    d/Q P V

  • 8/6/2019 Stat Mech Notes

    200/417

    d/Q P V = CV + TdT

    PCP

    T V T PV

    1 V 1 VUse and T .

    V TP

    V PT

    8.044 L17B5

    =

    P 1 (1) V T P = = T V T V V TV P P T P T

    T 2V T 2V

    CPCV = TT

    V = 1 =T TCV

    For an ideal gas P V= N kT = 1/T and T = 1/P.

  • 8/6/2019 Stat Mech Notes

    201/417

    Thus

    V /T= =N kCPCV 1/P

    This holds for polyatomic as well as monatomic gases.

    8.044 L17B6

    CONSEQUENCES b) Ideal Gas: CVNkT U Nk

    P = = T P = PP = 0 V V T VU U

    dU= dT

    + dV

    = CV dTT V V T

    CV 0

  • 8/6/2019 Stat Mech Notes

    202/417

    CV 0

    TU= CV(T, V) dT+ constant0(U/V)T = 0 for all T CV is not f(V); CV = CV(T).

    8.044 L17B7

    CONSEQUENCES c) Ideal Gas: SS S

    dS= dT+ dVT V V T

    d/Q

    S

    d/Q= T dS = TdT

    VCV

    T V

  • 8/6/2019 Stat Mech Notes

    203/417

    dU PdU= T dSP dV dS= + dV

    T TS 1 U P

    = + .V T T V T T

    0 Nk/V

    8.044 L17B8

    CV(T) N k dS= dT+ dVT V

    T ) VS(T, V) = CV(T dT+ N k ln( ) + S(T0, V0)T0 T V0

    For a monatomic gas CV = (3/2)N k.

  • 8/6/2019 Stat Mech Notes

    204/417

    T VS(T, V)S(T

    0, V

    0)= ( 3/2)N k ln( ) + N k ln( )

    T0 V0

    V T 3/2

    = N k ln V0 T0

    8.044 L17B9

    V T3/2

    isentropic (adiabatic)

    V2/3

    T

    are constant

    V 5/3P

  • 8/6/2019 Stat Mech Notes

    205/417

    V5/3P

    8.044 L17B10

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    206/417

    Maxwell Relations

    E

    E

    dE(S, V) =S V

    dS+V S

    dV expansion

    = TdSPdV 1st and 2nd laws

  • 8/6/2019 Stat Mech Notes

    207/417

    T P

    V S

    = S V

    8.044 L18B1

    TdE(S,L) = TdS+ FdL = F

    L S S L

    T HdE(S,M) = TdS+ HdM =

    M S S M

    Observe:

  • 8/6/2019 Stat Mech Notes

    208/417

    Observe:

    d(TS) = TdS+ SdTd(PV) = PdV+ V dP

    8.044 L18B2

    Helmholtz Free Energy FETS

    S

    P

    dF= SdTPdV V T

    =T V

    Enthalpy HE+ PV

  • 8/6/2019 Stat Mech Notes

    209/417

    T V

    dH= TdS+ V dP P S

    =S P

    8.044 L18B3

  • 8/6/2019 Stat Mech Notes

    210/417

    The Magic Square Mnemonic

    -V

    S

    xE F

    dE= TdS+ Xdx-T

    S V

  • 8/6/2019 Stat Mech Notes

    211/417

    S V(1) = (1)(1)

    H P G P T

    (+1) T PX

    8.044 L18B5

    Homework problem 6-2, A Strange Chainl

    F

    F

  • 8/6/2019 Stat Mech Notes

    212/417

    L = Nl tanh(lF/kT)For small extensions

    1 =

    T8.044 L18B5b

    Example Elastic Rod

    Given F= (a + bT) (L L0) and CL = T3+ for stability

    Find E(T, L) and S(T, L).

  • 8/6/2019 Stat Mech Notes

    213/417

    S S dE= TdS

    d/Q +

    FdL = T T LdT+ T L T +F dL

    CL bT(LL0)

    8.044 L18B6

    E F

    GH

    L

    -T

    -F

    S S

    (1) =

    F= b(LL0)L T T L

    dE= T3dT+ a(LL0)dL

  • 8/6/2019 Stat Mech Notes

    214/417

    E=T4 + f(L)

    4

    af(L) = a(LL0) f(L) = (LL0)2 + c1

    2

    8.044 L18B7

  • 8/6/2019 Stat Mech Notes

    215/417

    bS(T, L) =

    T3

    2(LL0)2 + c2

    3

    A rubber band has a negative thermal expansion coef.dF= (a+ bT)dL+ b(LL0)dT set = 0

    + when extended

    L

    b (LL0)

    < 0 for rubber

  • 8/6/2019 Stat Mech Notes

    216/417

    T

    F = (a+ bT)

    < 0 for rubber

    + for stability

    b > 08.044 L18B9

  • 8/6/2019 Stat Mech Notes

    217/417

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    218/417

    Heat Engine

    Takes a substance around a closed cycle Heat is put into the substance and taken out

    Work is taken out

  • 8/6/2019 Stat Mech Notes

    219/417

    Efficiency, (work out) / (heat in)

    8.044 L19B1

    Closed cycle U= Q+W = 0Q= W

    Q /QPHEAT IN

    d1

    (HOT RESERVOIR)

    2 1= d /Q/Q+ d

    1 2

  • 8/6/2019 Stat Mech Notes

    220/417

    HEAT OUT

    /Q/Q +

    1 22

    |QH| |QC|(COLD RESERVOIR)V

    8.044 L19B2

    Most General Case

    Wout = W = Q= |QH| |QC|Wout

    = |QH| |QC|= 1 |QC||QH| |QH| |QH|

    Very Special Case Example: Carnot Cycle

  • 8/6/2019 Stat Mech Notes

    221/417

    Any substance Isothermal and adiabatic changes

    8.044 L19B3

    PT

    1 1'

    22 '

    Q=0

    1'

    2

    2 '

    1

    TH

    TC

    Q=0

    S V

  • 8/6/2019 Stat Mech Notes

    222/417

    /Q< TdSUse the second law: d

    8.044 L19B4a

    PT

    2' 2

    1 1 '

    S

    1'

    22 '

    1TH

    TC

    Q=0

    Q=0

    V

  • 8/6/2019 Stat Mech Notes

    223/417

    DRAWN TO SCALE FOR AN IDEAL GAS: PV=NkT

    T H = 1.5 TC S HIGH - SLOW = (3/2) Nk ln2

    8.044 L19B4b

    1

    dS|QH| TH1

    2

    2 1dS, use dS=

    1dS|QC| TC

    2 2

    1 TC TC1

    dS |QC| TC1

    1

    dS and |QC||QH|

    TH

  • 8/6/2019 Stat Mech Notes

    224/417

    |QH| TH

    TC= 1 |QC|

    |QH| 1

    TH8.044 L19B5

    Arbitrary Engine Cycle

    d/QTdSfor each element along the path.

    2 2 2d/Q

    1TdS Tmax dS

    1 1

  • 8/6/2019 Stat Mech Notes

    225/417

    /

    11 1

    positive|QH|

    8.044 L19B6

    2

    1 1d/Q

    2TdS, both sides are negative

    1 1TdS| Tmin|QC| | 2 | 2 dS|

    2Tmin | 1 dS| since dS= 0

    T|Q |

  • 8/6/2019 Stat Mech Notes

    226/417

    Tmin|QC||QH| Tmax

    Tmin= 1 |QC| 1 Tmax|QH|

    8.044 L19B7

    Carnot cycle in a pure thermodynamic approach

    QC TCUsed to define temp. = 1 |QH| | | 1 TH

    Used to define the entropy

  • 8/6/2019 Stat Mech Notes

    227/417

    /Q dd0 /Q is an exact differential

    T T8.044 L19B8

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    228/417

    Refrigerator Run cycle backwards, extract heat at cold

    end, dump it at hot end

    HEAT EXTRACTED (COLD END)=

    |QC|= |QC|WORK DONE ON SUBSTANCE W |QH| |QC|

    For the special case of a quasi-static Carnot cycle

  • 8/6/2019 Stat Mech Notes

    229/417

    TC=TH TC

    8.044 L20B1

    As with engine, can show Carnot cycle is optimum.

    Practical: increasingly difficult to approach T = 0.

    Philosophical: T = 0 is point at which no more

  • 8/6/2019 Stat Mech Notes

    230/417

    heat can be extracted.

    8.044 L20B2

    Heat Pump Run cycle backwards, but use the heat

    dumped at hot end.

    HEAT DUMPED (HOT END)=

    |QH|= |QH|WORK DONE ON SUBSTANCE W |QH| |QC|

    For the special case of a quasi-static Carnot cycle

  • 8/6/2019 Stat Mech Notes

    231/417

    TH=TH TC

    8.044 L20B3

    55o F subsurface temp. at 40o latitudeTC

    = 286K70o F room temperature

    TH = 294K

  • 8/6/2019 Stat Mech Notes

    232/417

    294|QH| 37W 8

    8.044 L20B4

    3rd law lim S= S0T 0

    At T = 0 the entropy of a substance approaches aconstant value, independent of the other thermody-

    namic variables.

    Originally a hypothesisN lt f t h i

  • 8/6/2019 Stat Mech Notes

    233/417

    Now seen as a result of quantum mechanicsGround state degeneracy g (usually 1)

    S kln g (usually 0) 8.044 L20B5

    S

    Consequences = 0x T=0

    Example: A hydrostatic system

    1V

    1

    S

    V T P

    = V P T

    0 as T0V T 2

    CP CV = 0 as T0

  • 8/6/2019 Stat Mech Notes

    234/417

    P VKT

    S(T)S(0) = TT=0

    CV(TT

    )dTCV(T)0 as T0

    8.044 L20B6

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    235/417

    3 1/21

    /2 ep(px) = e

    4m 1/2

    N e

    3N < >

    1= e

    4m < > /2

    2Now use = p2/2mand < >=< px > /2m.x

  • 8/6/2019 Stat Mech Notes

    236/417

    p(px) =

    1

    ep2/2x x

    2 < p2 >x

    8.044 L13B15

    Homework problem on classical harmonic oscillators

    1p(pi, qi) =

    (2/) < > exp[/< >]1 2=

    (2/)kTexp[pi/2mkT] exp[(m2/2kT)qi]2

  • 8/6/2019 Stat Mech Notes

    237/417

    =

    Ensembles

    Microcanonical: E and N fixedStarting point for all of statistical mechanics

    Difficult to obtain results for specific systems

    Canonical: N fixed, T specified; E variesWorkhorse of statistical mechanics

    G d C i l d ifi d d

  • 8/6/2019 Stat Mech Notes

    238/417

    Grand Canonical:T

    and

    specified;E

    andN

    varyUsed when the the particle number is not fixed

    8.044 L21B1

    2

    1

    1 IS THE SUBSYSTEM OF INTEREST.2, MUCH LARGER, IS THE REMAINDER OR THE "BATH".

  • 8/6/2019 Stat Mech Notes

    239/417

    ENERGY CAN FLOW BETWEEN 1 AND 2.THE TOTAL, 1+2, IS ISOLATED AND REPRESENTED BY AMICROCANONICAL ENSEMBLE.

    8.044 L21B2

    For the entire system (microcanonical) one has

    volume of accessible phase space consistent with Xp(system in state X) =

    (E)

    In particular, for our case

    p({p1, q1}) p(subsystem at {p1, q1}; remainder undetermined)

  • 8/6/2019 Stat Mech Notes

    240/417

    1({p1, q1})2(EE1)=(E)

    8.044 L21B3

    klnp({p1, q1}) = k

    ln 1 + k

    ln 2(E

    E1)

    k

    ln (E)

    kln 1 = 0 S2(EE1) S(E)

    S2(E2)E1S2(EE1) S2(E)

    E2

    evaluated at E E

  • 8/6/2019 Stat Mech Notes

    241/417

    evaluated at E2

    = E

    8.044 L21B4

  • 8/6/2019 Stat Mech Notes

    242/417

    In all cases, including those where the system is too

    small for thermodynamics to apply,

    p({p1, q1}) exp[H1({p1, q1})]kT

    exp[H1({p1, q1})]

    kT=

  • 8/6/2019 Stat Mech Notes

    243/417

    exp[H1({p1, q1})]{dp1, dq1}

    kT

    8.044 L21B6

    If thermodynamics does apply, one can go further.

    S(E) = S1(< E

    1>) + S

    2(< E

    2>)

    S2(E)S(E) =S2(E)S2(< E2 >) S1(< E1 >)

    (S2(E2)/E2) < E1 >=< E1 > /T < E1 >k lnp({p1, q1}) = H1({p1, q1}) + S1

    T T

  • 8/6/2019 Stat Mech Notes

    244/417

    T Tp({p1, q1}) = exp[

    (< E1 >T S1)] exp[H1({p1, q1})]kT kT

    1/Z8.044 L21B7

    < E1 >T S1 = U1 T1S1 = F1p({p,q}) = Z

    1

    exp[

    H({p,q})]kT

    Z is called the partition function.

    ZN(T, V) = exp[H({p,q})]{dp,dq}kT

  • 8/6/2019 Stat Mech Notes

    245/417

    = exp[(ET S) F(T, V, N)] = exp[ ]kT kT

    8.044 L21B8

    In the canonical ensemble, the partition function is

    the source of thermodynamic information.

    F(T, V, N) = kTlnZN(T, V)

    FS(T, V, N) = T V,NF

  • 8/6/2019 Stat Mech Notes

    246/417

    FP(T, V, N) = V T,N

    8.044 L21B9

  • 8/6/2019 Stat Mech Notes

    247/417

    Canonical Ensemble

    p(E)

    p(E) eE/kT NOT!

    E

  • 8/6/2019 Stat Mech Notes

    248/417

    p({p,q}) eH({p,q})/kT

    8.044 L22B1

    ADVANTAGES OF CANONICAL OVER MICROCANONICAL ENSEMBLE

    MICROCANONICAL CANONICAL

    1) ONE INTEGRATES OVER ALL PHASE SPACE

  • 8/6/2019 Stat Mech Notes

    249/417

    8.044 L22B2

    SURFACE OFCONSTANT E

    2) SEPARATION

    eH/kT = eHa/kTeHb/kTlet H= Ha+Hb , then

    p({p,q}) = p({p,q}a) p({p,q}b) (a & b are SI)

  • 8/6/2019 Stat Mech Notes

    250/417

    Z= ZaZbF = Fa+ FbS= Sa+ Sb etc.

    8.044 L22B3

    For N similar, non-interacting systems

    Z= (Z1)N , F = N F1 , S = N S1

    For N indistinguishable particlesN

  • 8/6/2019 Stat Mech Notes

    251/417

    (Z1)Z= , correct Boltzmann countingN!

    8.044 L22B4

    Example Non-interacting classical monatomic gas

    N

    pipi= i=1Hi

    N

    Z=(Z1)

    NN!H = i=1 2m

    2p2 +py+p2zH

    1( r) =

    x

    p,

    2m

    p, 2+py+pz)/2mkT/Z1xp1( r) = e(p 2 2

  • 8/6/2019 Stat Mech Notes

    252/417

    Gaussian px p 2< p >=< p2 +py+p2 >= 3mkTx z= 3/2 kT

    8.044 L22B5

    Z1 = 2 2 2e(px+py+pz)/2mkT dpxdpydpzdxdydz

    h3

    3/2= (2mkT)3/2LxLyLz/h3 = V2mkTh2

    N3N/2 3/21 V

    2mkT

    Z(T, V, N) = 1 VN2mkT =N! h2 N! h2

    units of cm3

  • 8/6/2019 Stat Mech Notes

    253/417

    3/2 N1 V 2mkT

    =

    N! v0 h2 v08.044 L22B6

    F = kTlnZ

    = kT

    2/303N 2mkTv

    NlnN+N+Nln(V/v0)+ l n2 h2

    3Nuse N= Nln e= ln(e2/3)2

    V 3N 2e2/3mkTv2/3

  • 8/6/2019 Stat Mech Notes

    254/417

    kTNln + lnNv0 2 0h2=

    8.044 L22B7

    1 1F NkT

    = (1)(kTN)P = = VNv0

    V Nv0 VT,N

    3N 1 ()2 () T

    F= k[ ] + kTS =

    T V,Nk+ k

    Nln

    ln

    2(ev0)

    2/3mkTh2

    3N2

    V 3N+

    Nv0 2=

  • 8/6/2019 Stat Mech Notes

    255/417

    3E = F+ TS= NkT

    2 8.044 L22B8

    Find the adiabatic path, S= 0.

    V V0 3lnN v0

    ln = (ln Tln T0)N v0

    2

    V 3 T Vln = =

    V0

    2ln

    T0

    V0

    TT0

    3/2

  • 8/6/2019 Stat Mech Notes

    256/417

    V0 2 T0 V0

    T0

    8.044 L22B9

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    257/417

    Canonical Ensemble

    CLASSICAL QUANTUM

    p({p,q}) = e

    H({p,q})/kT

    /Z p(state) = eEstate/kT /Z

    Z= eH/kT{dp,dq} Z= eEstate/kTstates

  • 8/6/2019 Stat Mech Notes

    258/417

    8.044 L23B1

    EXAMPLE 2 LEVEL SYSTEM: STATES OF AN IMPURITY IN A SOLID

    E = 1

    g

    g-FOLD

    DEGENERACY

    * EXCITED

    E = 0GROUNDSTATE

  • 8/6/2019 Stat Mech Notes

    259/417

    LOCATION INTERNAL

    ENERGY LEVELS PHYSICAL DIFFERENCE

    8.044 L23B2

    STATES: |0>, |1 >, g > | E=0 E=

    eEstate/kT = 1 e0 + g e/kT = 1 + ge/kTZ1 = states

    p(state) = eEstate/kT

    /Z1

    1=

    1 +/kT for |0 >

  • 8/6/2019 Stat Mech Notes

    260/417

    1 + ge

    =e/kT

    1 + ge/kT for |i > i = 1, g8.044 L23B3

  • 8/6/2019 Stat Mech Notes

    261/417

    AssumeN impurities (N1)

    0

    = 0(V/V0)V0 V

    Z= ZN F(T, V, N) = kTlnZ= NkTlnZ11

    g(kT2)e

    /kT

    SF Nk l Z +NkT

  • 8/6/2019 Stat Mech Notes

    262/417

    g(kT2)e /kTS= F = Nk lnZ1 +NkT1 + ge/kT

    T V

    8.044 L23B5

    e/kTS= Nk ln(1 + ge/kT) + gNk

    kT 1 + ge/kT

    g e/kTU= F+ TS= N1 + ge/kT = N p(E= )

    F F P = =V T,N T V TV

    ) /kT

    U( g

  • 8/6/2019 Stat Mech Notes

    263/417

    kT) e/kT = U= NkT( g

    1 + ge/kT V V8.044 L23B6

    ALTERNATIVE WAY OF FINDING U

    Usually (but not always) U= .

    If so, U= H({p,q})p({p,q}) {dp,dq}But Z= c eH({p,q}){dp,dq} 1/kT

  • 8/6/2019 Stat Mech Notes

    264/417

    8.044 L23B7

    1

    1

    Z H({p,q})eH({p,q}){dp,dq}= c N,V

    eH({p,q})Z= H({p,q}) {dp,dq}

    eH({p,q}

    ){dp, dq}

    p({p,q})

    Z N,V

    Z= U

    Z N V

  • 8/6/2019 Stat Mech Notes

    265/417

    Z N,V8.044 L23B8

    Example Monatomic Gas

    1VN

    2mkT3N/2

    Z= = 3N/2N! h2

    1 3N 1

    U=

    3N/

    2 2

    3N/2 =

    3NkT

    2

  • 8/6/2019 Stat Mech Notes

    266/417

    N/

    2

    2

    8.044 L23B9

    Example 2 Level System

    NZ = 1 + ge

    U = 1 + ge NN1 + ge N1 ge

    gN e/kT

    =/kT

  • 8/6/2019 Stat Mech Notes

    267/417

    gNe1 + ge/kT

    8.044 L23B10

    Background Classical Harmonic Oscillator

    H(p,x) = p2 + 1Kx22m 2

    1 x2

    p(p,x) = exp[ p2

    ] 1 ]2mkT 2mkT 2(kT/K) exp[2(kT/K)

    Z = 2m

    kT 1 U = 1

    K Z

    Z

    = kT, CV = Nk T

  • 8/6/2019 Stat Mech Notes

    268/417

    Z 2m kT U 1K ZZ

    kT, CV Nk T

    8.044 L23B11

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    269/417

    Polyatomic Gases

    1

    Non-interacting, identical Z= N! ZN Find Z11Each molecule has # atoms 3# position coordi-nates

    3# = 3 + nr + (3#3nr)

    C.M. rotation nv, vibration

  • 8/6/2019 Stat Mech Notes

    270/417

    nv, vibration

    8.044 L24B1

    MONATOMIC DIATOMIC LINEAR TRI. NON-LINEAR TRI.Xe HS CO

    2H

    2O

    3

    3

    3

    2

    3

    2

    3

    0

  • 8/6/2019 Stat Mech Notes

    271/417

    39

    49

    16

    03

    8.044 L24B2

    C.M. Motion:

    Particle in a box Es kT classicalRotation:

    (H2 rot = 3.651012 Hz 175 K ) Q.M.Vibration:

    (H2 vib = 1.321014 Hz 6,320 K ) Q.M.

  • 8/6/2019 Stat Mech Notes

    272/417

    HCM +Hvib +Hrotproblem separatesH=

    8.044 L24B3

    Vibration

    nv

    1 2 1 Ki Hvib =

    + 2 i2 aiKiai

    2

    i=1 2

    nv 1 dimensional harmonic oscillators, use Q.M.

    2)Hn= nn n= (n+ 1 h n= 0,1,2,

    The energy levels are non degenerate

  • 8/6/2019 Stat Mech Notes

    273/417

    The energy levels are non-degenerate.

    8.044 L24B4

    2)h/kT/ en/kTp(n) = e(n+1

    n=0

    h e(n+

    1 h/kT 1h/kT e 2) = e2 h/kT nn=0 n=0

    h

    h

    h

    h 1

    1

    1

    1

    1 h/kT/ h/kT1e= e2h/kT ep(n) = 1e h/kT n= (1b)bn

    72

    5

    2

    32

    12

  • 8/6/2019 Stat Mech Notes

    274/417

    8.044 L24B5

    Geometric or Bose-Einstein

    p(n)

    n

    b 1< n > = =

    1b eh/kT1e hh/kT when kT

  • 8/6/2019 Stat Mech Notes

    275/417

    e hwhen kT

    8.044 L24B6

    1For kTh 2 h 1 + h+ 1

    kT 2 kT 1kT 1 kT 1 h= 12 h h kTh 1 + 1 2 kTkT 1= 2h

    2 ) h (Classical)< >= (< n > + 1 h kT kT

    h kT 1 h (Ground state)

  • 8/6/2019 Stat Mech Notes

    276/417

    h kT1 h (Ground state)28.044 L24B7

    3

    2

    1

    0

    -1

    1 2 3

    kT/h

    T

    kT

    h1

    2

  • 8/6/2019 Stat Mech Notes

    277/417

    8.044 L24B8

    < > d < n > CV = N = Nh

    T V

    dT

    h/kTh2 e

    = N k kT eh/kT12

    h2 h/kT kTN k e h (energy gap behavior)kT

    N k kT h

  • 8/6/2019 Stat Mech Notes

    278/417

    N k kT h8.044 L24B9a

  • 8/6/2019 Stat Mech Notes

    279/417

    High and low temperature behavior without solving thecomplete problem Consider first the high T limit.

    e-/kT

    contains stateshkT h

    Z1 =

    en/kTn=0

    1 E/kT kT y kT 1

  • 8/6/2019 Stat Mech Notes

    280/417

    1 eE/kTdE kT= eydy= kT

    0 h 0 h h1

    8.044 L24B10

    Zvib = ZNN1

    1 Z

    = N(N)N1 = NkTUvib = Z

    NCvib = Nk

    Next, consider the low T limit.e -/kT

    kT consider only 2 states

  • 8/6/2019 Stat Mech Notes

    281/417

    h12

    32h

    8.044 L24B11

    32 h/kTe 1 h/kTp(n= 1)

    e1 h/kT + e3 = h/kT + 1 e

    2 h/kT e2h/kTp(n= 0) 1e

    < E >= 2N h/kT + 3N h/kT1 h 1e he2= 1N heh+ N h/kT2 < E > h h/kT = N k h2 h/kTCV = = N h e e2

  • 8/6/2019 Stat Mech Notes

    282/417

    N k CV Nh e e

    T kT2 kT8.044 L24B12

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    283/417

    Angular Momentum in 3 Dimensions

    CLASSICAL, 3 numbers: (Lx, Ly, Lz); (|L|, , )

    QUANTUM, 2 numbers: magnitude and 1 component

    h2 l,m l= 0,1,2L L l,mL2 l,m = l(l+ 1)

    Lzl,m = mh l,m m= l,l 1, l2l+1 values

  • 8/6/2019 Stat Mech Notes

    284/417

    2l+1 values

    8.044 L25B1

    Specification: 2 numbers l & m l,m or l,m>|

    Molecular rotation

    In generalI3

    = 01 L2 1 L2 1 L2Hrot =

    2I11 +

    2I22 +

    2I33

    L3 = I3 3

    = 0 For a linear molecule

    1 I1 = I2 I1 + L

    2Hrot = (L2

    2) =1

    L L 2I 2I

  • 8/6/2019 Stat Mech Notes

    285/417

    1( 2)2I 2I

    8.044 L25B2

    1

    L2

    Hrot = 2IHrot l, m> = l l, m>| |

    h2= l(l + 1) l, m>

    2I|

    l depends on l only;it is 2l + 1 fold degenerate.

    l= kR l(l + 1)h2

    20R

    12R

    6R

    2R0

    /k

    9 l = 4

    7 l = 3

    5 l = 2

    3 l = 1l = 01

  • 8/6/2019 Stat Mech Notes

    286/417

    h2R (rotational temp.)

    2I k8.044 L25B3

    < >= =

    p(l,m) = 1 el(l+1)R/TZR

    ZR= el(l+1)R/T = (2l+ 1)el(l+1)R/Tl,m l

    For TR ZR1 + 3e2R/T = 1 + 3e2Rk1 Z 6R k e2Rk

    6R k e2R/T

    Z 1 + 3e2Rk

  • 8/6/2019 Stat Mech Notes

    287/417

    8.044 L25B4

    < > CV|rot = N = 6RN k 2R

    e2R/T

    T T22R2 e2R/T= 3N k (energy gap behavior)

    T

    For TR, convert the sum to an integral.

    ZR (2l+ 1)el(l+1)R/T dl0

  • 8/6/2019 Stat Mech Notes

    288/417

    8.044 L25B5

    x(l2 + l)R/T dx= (2l+ 1)R/Tdl

    1TZRR

    exdx= T = 10 R kR

    1 Z

    (1)(1)Z/

    < >= Z= = 1 = kTZ

    < > CV|rot = N N k (classical result)T

  • 8/6/2019 Stat Mech Notes

    289/417

    8.044 L25B6a

    Image removed due to copyright reasons.

    Figure 22-1 from

    Morse, P. M. Thermal physics. 2nd ed. New York, NY: W. A. Benjamin, 1969. ISBN: 0805372024.

  • 8/6/2019 Stat Mech Notes

    290/417

    8.044 L25B6b

    H= HCM +Hrot +Hvib

    CV(T) = CV|CM + rot vib C V| + C V| all T appears at modest T only at highest T

    8 044 L25B7

  • 8/6/2019 Stat Mech Notes

    291/417

    8.044 L25B7a

    Image removed due to copyright reasons. Image removed due to copyright reasons.

    Figure 12-16 from Figure 12-2 from

    F. W. Sears, and G. L. Salinger. F. W. Sears,and G. L. Salinger. Thermodynamics, Kinectic Theory, and Statistical Physics. 3rd ed. Thermodynamics, Kinectic Theory, and Statistical Physics. 3rd ed.Reading, MA: Addison-Wesley Pub. Co., 1975

    .

    ISBN: 020106894X. Reading, MA: Addison-Wesley Pub. Co., 1975. ISBN: 020106894X.

  • 8/6/2019 Stat Mech Notes

    292/417

    8.044 L25B7b

    Raman ScatteringBEFORE AFTER

    i

    f

    i

    f

    = f - i = h(i - f )

    FREQUENCY CHANGES IN THE SCATTERED LIGHT CORRESPOND TOENERGY LEVEL DIFFERENCES IN THE SCATTERER.

  • 8/6/2019 Stat Mech Notes

    293/417

    WHICH ENERGY LEVEL CHANGES OCCUR DEPEND ON SELECTION

    RULES GOVERNED BY SYMMETRY AND QUANTUM MECHANICS

    8.044 L25B8

  • 8/6/2019 Stat Mech Notes

    294/417

    ROTATIONAL RAMAN SPECTRUM OF A DIATOMIC MOLECULE

    LEVEL DEGENERACY

    BOLTZMANN FACTOR

    I()

    0

  • 8/6/2019 Stat Mech Notes

    295/417

    4(kR /h)

    -6(kR /h)

    0

    8.044 L25B10

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    296/417

    Thermal Radiation Radiation in thermal equilibrium

    with its surroundings

    k

    E0

    B0E= E0 ei( rt) k = c|k| k B= B0 ei( rt) B0 = 1kE0 /c

  • 8/6/2019 Stat Mech Notes

    297/417

    8.044 L26B1

    1 2Time average energy density u= 20|E0|Time average energy flux jE = (cu)1kTime average pressure ( to k) P = uThermal radiation has a continuous distribution of

    frequencies.

    u(,T)

    Peaks near h= 3kBT(h/kB51011 K-sec)

  • 8/6/2019 Stat Mech Notes

    298/417

    8.044 L26B2

    Spectral Region (Hz) T (K) Thermal Rad.Radio 106 5105

    Microwave 1010 0.5 cosmic background

    Infrared 1013 5102 room temp.Visible 12 1015 2104 suns surface

    Ultraviolet 1016 5105

    X ray 10

    18

    5

    10

    7

    black holes

    ray 1021 51010

  • 8/6/2019 Stat Mech Notes

    299/417

    8.044 L26B3

    ENERGY ABSORBEDABSORPTIVITY (,T)

    ENERGY INCIDENT

    ISOTROPIC

    ENERGY EMITTEDEMISSIVE POWER e(,T)

    AREA

    ISOTROPIC

  • 8/6/2019 Stat Mech Notes

    300/417

    8.044 L26B4

    THERMAL RADIATION: PROPERTIES2 ENERGY FLUXES,

    IN AND OUT OF CAVITY B

    FILTER: FREQUENCY

    OR POLARIZATION

    CAVITY A

    CAVITY B

    TA

    TB

  • 8/6/2019 Stat Mech Notes

    301/417

    OR POLARIZATION

    ASSUME TA = TB AND THERMAL EQUILIBRIUM8.044 L26B5

    CONCLUSIONS:

    u(,T) is independent of shape and wall material

    u(,T) is isotropic

    u(,T) is unpolarized

  • 8/6/2019 Stat Mech Notes

    302/417

    8.044 L26B6

    CONSIDER AN OBJECT IN THE CAVITY,IN THERMAL EQUILIBRIUM

    dA

    COMPUTE THE ENERGY FLUX

    T

    n

    A

    ct

  • 8/6/2019 Stat Mech Notes

    303/417

    8.044 L26B7

    E = (E in cylinder)p(,) dd

    sin 1 = (u A cos ct) dd

    2 2/2 cos sin 2 1= c u At d d0 2 0 2

    1/4 1

    1energy flux onto dA= 4c u(,T)

  • 8/6/2019 Stat Mech Notes

    304/417

    8.044 L26B8

    Momentum Flux

    u Plane wave momentum density p=c1k

    p = 2|p| since poutpin = | |

    8 044 L26B9

  • 8/6/2019 Stat Mech Notes

    305/417

    8.044 L26B9

    2 cos |p = (E in cylinder)p(,) dd|

    c/2= u(,T)At cos2 sin d 2 1 d0 0 2

    1/3 1

    1

    = 3u(,T)At

    P(T) = 1 u(,T) d3 0

  • 8/6/2019 Stat Mech Notes

    306/417

    8.044 L26B10

    Apply detailed balance to the object in the cavity.

    Eout = Ein

    e dA = (14c u(, T)) dA

    e(, T) 1= 4c u(, T) (, T)

    This ratio has a universal form for all materials.The result is known as KIRCHOFFS LAW.

  • 8/6/2019 Stat Mech Notes

    307/417

    8.044 L26B11

    Black Body Radiation

    If1 BlackThen e(, T) = 14c u(, T)

    OVEN

    CAVITY

    AT

    T

    Measure e(, T)

    and obtain u(, T)

  • 8/6/2019 Stat Mech Notes

    308/417

    8.044 L26B12

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics I

    Spring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    309/417

    Thermodynamic Approach

    u(T)

    u(, T) d0

    Then

    E(T, V) = u(T)V1P(T, V) = 3u(T)

  • 8/6/2019 Stat Mech Notes

    310/417

    8.044 L27B1

    This is enough to allow us to findu(

    T).

    dE = T dSP dVE

    TS

    TP TP

    = = V PV T V T1= 1T u(T)3u(T)3

    also = u(T)4

    u(T) = u(T)

    Tu(T) = AT4

  • 8/6/2019 Stat Mech Notes

    311/417

    8.044 L27B2

    Emissive Power of a Black (= 1) Body

    4c u(,T)e(T) = 1e(,T) = 1 4c u(T) = 1AcT44e(T) T4

    This is known as the STEFAN-BOLTZMANN LAW.

    = 56.7109 watts/m2K4

  • 8/6/2019 Stat Mech Notes

    312/417

    8.044 L27B3

    Statistical Mechanical Approach

    Single normal mode (plane standing wave) in aH?

    rectangular conducting cavity.

    Ex

    z

    0 L

    ( 1xr,t) = E(t) sin(nz/L)E0,0,n,

    1x

    1y( 1yB0,0,n, r,t) = (nc2/L)1E (t) cos(nz/L)

  • 8/6/2019 Stat Mech Notes

    313/417

    8.044 L27B4

    Energy density = 10E E+ 1 B B [no 1 r or t average]2 20

    V

    = 10E2(t) + 11

    (nc2/L)2E2(t)2H 2 2 0V 0

    = E2(t) + (nc/L)2 E2(t)

    2 2

    Each mode corresponds to a harmonic oscillator.

  • 8/6/2019 Stat Mech Notes

    314/417

    8.044 L27B5

    Count the modes.

    Enx,ny,nz = |E jsin(nxx/L) sin(nyy/L) sin(nzz/L)eit

    |

    The unit polarization vector j has 2 possible orthog-onal directions and ni= 1,2,3 .

    2 E 2 2 22 2E= 0 2 = c2 (n + ny+ nz)L xt2 c

  • 8/6/2019 Stat Mech Notes

    315/417

    8.044 L27B6

    nz

    nx

    ny

    GRID SPACING

    1 UNIT

    R

    If the radian frequency <

    n2 2 2L

    R= x+ ny+ nz = c# modes (freq. < )

    = 2 1 483R33= L 33 c

    8.044 L27B7

  • 8/6/2019 Stat Mech Notes

    316/417

    3d# V 2D() = = L 2 =

    2c3d c

    D()

  • 8/6/2019 Stat Mech Notes

    317/417

    8.044 L27B8

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics I

    Spring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    318/417

    Normal modes of the radiation field in a rectangularcavity with conducting walls

    r,t) =L nx+ ny+ nzEnx,ny,nz,(

    c 2 2 2

    Harmonic oscillators

    VD() = 2c3 2, 0

  • 8/6/2019 Stat Mech Notes

    319/417

    8.044 L28B1

    Classical Statistical Mechanics

    < () >= kBT u(,T) =< () > D() = kBT 2V 2c3

    u(T) =

    u(,T) d=0

    u(, T)CLASSICAL

    MEASURED

  • 8/6/2019 Stat Mech Notes

    320/417

    8.044 L28B2

    Quantum Statistical Mechanics

    h< () >= +

    e

    h/kT1 h/2D() h 3

    u(,T) =< () > =2c3 eh/kT1 + z. p. termV

    du(,T)To find the location of the maximum, set = 0.

    dThe maximum occurs at h/kT2.82.

  • 8/6/2019 Stat Mech Notes

    321/417

    8.044 L28B3

    h/2kT(1eh/kT)1Z= Zi Zi= estates i

    The first factor in the expression for Zi comes fromthe zero-point energy.

    F(V,T) = kTlnZ= kT lnZistates i

    = kTD() [lnZi] d0

  • 8/6/2019 Stat Mech Notes

    322/417

    8.044 L28B4

    h/kT)F(V,T) = kT D() ln(1 e d+0

    kTV h/kT) d= 2 ln(1 e2c3 0

    V

    =h3

    (kT)4 x2 ln(1 ex) dx2c3 0 4

    45

    1

    2

    = h3 (kT)4 V 45 c3

  • 8/6/2019 Stat Mech Notes

    323/417

    8.044 L28B5

    F 1 2P =

    V T = 45 h)3 (kT)4(cF 4 2 k4T3 VS = =

    h)3

    T V 45 (c1 4 1 2

    E = F+ TS= + ) = h)3 (kT)4 V45 45 ( 15 (c

    1 1Note: P = 3E/V = 3 u(T) independent ofV.

  • 8/6/2019 Stat Mech Notes

    324/417

    8.044 L28B6

    NOTE: THE ADIABATIC PATH IS T3V=CONSTANT

    T ADIABATIC

    T/T0 = (V/V0)-1 / 3

    V

  • 8/6/2019 Stat Mech Notes

    325/417

    8.044 L28B7

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics I

    Spring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    326/417

  • 8/6/2019 Stat Mech Notes

    327/417

    n( s) often factors into space and spin parts.r, s) = space r)spinr, n ( n (n( s)

    space

    (x) ex2/2

    Hn( x) H.O. in 1 dimensionn

    r) e kspace( ir free particle in 3 dimensionsn

    8.044 L29B2

  • 8/6/2019 Stat Mech Notes

    328/417

    spin

    s)n (Spin is an angular momentum so for a given value of

    the magnitude Sthere are 2S+ 1 values ofmS.

    For the case ofS= 1/2 the eigenfunctions of the z

    s are 1/2( s)component of s) and 1/2(

    hSz 1/2( s) s) = 1/2(

    2

    hSz 1/2( s) s) = 1/2(2

  • 8/6/2019 Stat Mech Notes

    329/417

    8.044 L29B3

    spin s) is not necessarily an eigenfunction ofSz. Forn (example one might have

    spin s) = 12

    1/2( s)s) +1 1/2(n ( 2

    In some cases n( s) may not factor into space andr, spin parts. For example one may find

    s) = f(x)1/2( s)n(x, s) + g(x)1/2(

    8.044 L29B4

  • 8/6/2019 Stat Mech Notes

    330/417

    Many Distinguishable Particles, Same Potential,No Interaction

    Lump space and spin variables together

    r1, r2, s1 1 s2 2 etc.H0(1) + N) = H0(2) + H0(N)H(1, 2,

    In this expression the single particle Hamltonians all

    have the same functional form but each has arguments

    for a different particle.

  • 8/6/2019 Stat Mech Notes

    331/417

    8.044 L29B5

    The same set of single particle energy eigenstates isavailable to every particle, but each may be in a dif-

    ferent one of them. The energy eigenfunctions of the

    system can be represented as products of the single

    particle energy eigenfunctions.

    {n}(1,2, N) = n1(1)n2(2) nN(N) nN}. There are N #s, but each ni{n} {n1, n2,

    could have an infinite range.

    H(1,2, N){n}(1,2, N) = E{n}{n}(1,2, N)

  • 8/6/2019 Stat Mech Notes

    332/417

    8.044 L29B6

    Many Distinguishable Particles, Same Potential,

    Pairwise Interaction

    N

    H(1,2, N) =

    H0(i) +1 2

    Hint(i, j)

    i=1 i=j

    The {n}(1,2, N) are no longer energy eigenfunc- tions; however, they could form a very useful basis set

    for the expansion of the true energy eigenfunctins.

  • 8/6/2019 Stat Mech Notes

    333/417

    8.044 L29B7

    Indistinguishable Particles

    i iPij f( j ) f( j )Pij)

    2 = eigenvalues of( I Pij are + 1,1It is possible to construct many-particle wavefunctions

    which are symmetric or anti-symmetric under this in-

    terchange of two particles.

    Pij (+) = (+) Pij

    () = ()

  • 8/6/2019 Stat Mech Notes

    334/417

    8.044 L29B8

    Identical no physical operation distinguishes be-tween particle i and particle j. Mathematically, this

    means that for all physical operators OO, [ Pij] = 0

    eigenfunctions ofOmust also be eigenfunctions ofPij.

    energy eigenfunctions E must be either (+) orE()E .

  • 8/6/2019 Stat Mech Notes

    335/417

    8.044 L29B9

    states differing only by the interchange of the spa-tial and spin coordinates of two particles are the same

    state.

    Relativistic quantum mechanics requiresinteger spin E(+) [Bosons]

    half-integer spin E() [Fermions]

  • 8/6/2019 Stat Mech Notes

    336/417

    8.044 L29B10

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    337/417

    Composite Particles

    Composite Fermions and Composite Bosons

    Count the number of sign changes as all the con-stituents are interchanged

    Well defined statistics (F-D or B-E) as long as theinternal degrees of freedom are not excited

  • 8/6/2019 Stat Mech Notes

    338/417

    8.044 L30B1

    The constitutents of nuclei and atoms are e,p& n.Each has S= 1/2.

    N even even # of exchanges.(+) B-Ealso N even integer spinN odd odd # of exchanges.() F-Dalso N odd half-integer spin

    8.044 L30B2

  • 8/6/2019 Stat Mech Notes

    339/417

    Particle Nuclear Spin Electrons Statistics

    1H (H1) 2 1 B-E

    D (H2) 1 1 F-D1

    T (H

    3

    ) 2 1 B-E1He3 2 2 F-D

    He4 0 2 B-E

    Li6 1 3 F-D

    Li7 32 3 B-E

    H2 0 or 1 2 B-Ex2 integer ()2 B-E

    8.044 L30B3

  • 8/6/2019 Stat Mech Notes

    340/417

    Let ( s), ( s), be single particle wavefunctions.r, r, A product many-particle wavefunction, (1)(2), does

    not work.

    Instead, use a sum of all possible permutations:

    (+)2 =

    12((1)(2) + (2)(1))

    (+) 1 1= N!

    n!

    permutations

    ((1)(2)(3)N )

    8.044 L30B4

  • 8/6/2019 Stat Mech Notes

    341/417

    The antisymmetric version results in a familiar form,

    a determinant.

    1()

    = ((1)(2) (2)(1))2 2

    states

    (1) (1) (1)

    1 (2) (2) (2)()

    =

    particlesN

    N! (3) (3) (3) . . ... ... .

    8.044 L30B5

  • 8/6/2019 Stat Mech Notes

    342/417

    () = 0 if 2 states are the same since 2 columnsNare equal: Pauli Principle.

    ()

    = 0 if 2 particles have the same ssincerand N2 rows are equal.

    Specification: indicate which s.p. s are used.} An # ofentries, each ranging{n, n, n,

    from 0 to N but with n= N.

    8.044 L30B6

  • 8/6/2019 Stat Mech Notes

    343/417

    Fermi-Dirac|1,0,1,1,0,0, Bose-Einstein|2,0,1,3,6,1,

    n= E Prime indicates n=NExample Atomic configurations

    (1S)2(2S)2(2P)6 Ne(1S)2(2S)2(2P)6(3S)1 Na(1S)1(2S)1 He*

    8.044 L30B7

  • 8/6/2019 Stat Mech Notes

    344/417

    =

    Statistical Mechanics Try Canonical Ensemble

    Z(N,V,T) = eE(state)/kTstates

    eE({n})/kT{n}

    = en/kT

    {n}

    This can not be carried out. One can not interchange

    the over occupation numbers and the over statesbecause the occupation numbers are not independent

    (n= N).

    8.044 L30B8

  • 8/6/2019 Stat Mech Notes

    345/417

    T=0 LOWEST POSSIBLE TOTAL ENERGYBOSE: ALL N PARTICLES IN LOWEST SINGLE PARTICLE STATE

    n(

    ) N()

    FERMI: LOWEST N SINGLE PARTICLE STATES EACH USED ONCE

    < F, F CALLED THE FERMI ENERGY

    n() 1

    F

  • 8/6/2019 Stat Mech Notes

    346/417

    8.044 L30B9

    Free Particle in a Box

    ( s) = V ei

    rspin( h2k2 r, 1 k s) = 2m if B= 0 k

    Use periodic boundary conditions.

    ( x+ nyLy z, r,r+ nxLx y+ nzLz s) = ( s)

    Lxx+ m

    y22Ly

    y+ mz2k= m

    x

    Lzz

    8.044 L30B10

  • 8/6/2019 Stat Mech Notes

    347/417

    2/ L x

    2/ L y

    ky

    kx

    D(k) = (2Lx)1 (2Ly)1 (2Lz)1

    = V(2)3

    wave vectors only!

    N= 2D(k)43k

    3F

    kF =

    32(N/V)1/3

    kz

    kx

    ky

    radius kF

    8.044 L30B11

  • 8/6/2019 Stat Mech Notes

    348/417

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.044 Statistical Physics ISpring 2008

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 8/6/2019 Stat Mech Notes

    349/417

    2/ L x

    2/ L y

    ky

    kx

    D(k) = (2Lx)

    1 (2Ly)

    1 (2Lz)

    1

    = V(2)3

    wave vectors only!

    N= 2D(k)43k

    3F

    kF =

    32(N/V)1/3

    kz

    kx

    ky

    radius kF

    8.044 L30B11

  • 8/6/2019 Stat Mech Notes

    350/417

    Fermions: Non-interacting, free, spin 1/2, T= 0

    kz

    kx

    ky

    kF

    Fermi sea

    Fermi surface

    Fermi wave vector

    kF = 32(N/V)1/3Fermi energy

    h2k2F = F/2m

    8.044 L