Stable isotope anomalies and early Solar System chronology

56
Stable isotope anomalies and early Solar System chronology F. Albarède, M. Arnould, R. Carlson, N. Dauphas, T. Fujii, S.Jacobsen, Q. Yin, E. Young

description

Stable isotope anomalies and early Solar System chronology. F. Albarède, M. Arnould, R. Carlson, N. Dauphas, T. Fujii, S.Jacobsen, Q. Yin, E. Young. Assumption of mass-dependent fractionation of stable isotopes. Chronometry must also separate radiogenic ingrowth from isotopic anomalies:. - PowerPoint PPT Presentation

Transcript of Stable isotope anomalies and early Solar System chronology

Page 1: Stable isotope anomalies  and  early Solar System chronology

Stable isotope anomalies and

early Solar System chronology

Stable isotope anomalies and

early Solar System chronology

F. Albarède, M. Arnould, R. Carlson, N. Dauphas,

T. Fujii, S.Jacobsen, Q. Yin, E. Young

F. Albarède, M. Arnould, R. Carlson, N. Dauphas,

T. Fujii, S.Jacobsen, Q. Yin, E. Young

Page 2: Stable isotope anomalies  and  early Solar System chronology

Chronometry must also separate radiogenic ingrowth from isotopic anomalies:

• Nucleosynthetic anomalies• Spallation

• Mass-independent fractionation

Assumption of mass-dependent fractionation of stable isotopes

Consistent with Urey-Bigeleisen-Mayer (1947) equilibrium fractionation theory and kinetic effects.

Additional distillation (Rayleigh) effects permitted.

Page 3: Stable isotope anomalies  and  early Solar System chronology

Interpreting isotopic anomalies:evidence of mixing

Interpreting isotopic anomalies:evidence of mixing

Trinquier et al. (2006) Luck et al. (2003)

Internally normalized Stable isotopes

Page 4: Stable isotope anomalies  and  early Solar System chronology

Interpreting isotopic anomaliesInterpreting isotopic anomalies

Zanda et al. (2006)

Page 5: Stable isotope anomalies  and  early Solar System chronology

I Nucleosynthetic anomaliesI Nucleosynthetic anomalies

Page 6: Stable isotope anomalies  and  early Solar System chronology

neutron closed-shell N = 50

Page 7: Stable isotope anomalies  and  early Solar System chronology

neutron closed-shell N = 82

Page 8: Stable isotope anomalies  and  early Solar System chronology

Predominance domains of the different nucleosynthetic processes

Predominance domains of the different nucleosynthetic processes

Arnould and Gariely (2003)

Page 9: Stable isotope anomalies  and  early Solar System chronology

Detecting s- and r-process anomalies on Ba Detecting s- and r-process anomalies on Ba

11σσ iiii NN

1

10

100

1000

10000

130B

a(p)

132B

a(p)

134B

a(s)

135B

a(s,r

)

136B

a(s)

137B

a(r,s

)

138B

a(r,s

)

5

10

15

20

25

30

40

50

60

80

100

temp (keV)

neutron cross-section in mb (Bao et al., 2000), temperature T in keV

s-process at steady-state: N mirrors

Page 10: Stable isotope anomalies  and  early Solar System chronology

Dip of neutron cross-sections forclosed-shells (magic numbers)

Dip of neutron cross-sections forclosed-shells (magic numbers)

138Ba142Nd90Zr

88Sr

208Pb

Page 11: Stable isotope anomalies  and  early Solar System chronology

Ba nucleosynthetic anomaliesBa nucleosynthetic anomaliesAndreasen and Sharma (2007)

Ranen and Jacobsen (2007) Carlson et al. (2007)

Page 12: Stable isotope anomalies  and  early Solar System chronology

Mass balance equation for nucleosynthetic componentsMass balance equation for

nucleosynthetic components

f: weight fraction of each component: deviation from terrestrial abundances

Linearity also holds for isotopic ratios of a same element not for different elements

Page 13: Stable isotope anomalies  and  early Solar System chronology

Binary (s,r) mixing in Ba from carbonaceous chondrites

Binary (s,r) mixing in Ba from carbonaceous chondrites

Andreasen and Sharma (2007)Andreasen and Sharma (2007)

Saint Severin

Murchison

Allende

Juvinas

-8

-6

-4

-2

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

137Ba (ppm)

13

8B

a (p

pm

)

Page 14: Stable isotope anomalies  and  early Solar System chronology

More than two components in Ba from carbonaceous chondrites (p,s,r)

More than two components in Ba from carbonaceous chondrites (p,s,r)

Andreasen and Sharma (2007)Andreasen and Sharma (2007)

Saint Severin

Murchison

Allende Juvinas

-100

-80

-60

-40

-20

0

20

40

60

80

100

-40 -20 0 20 40 60 80

130Ba (ppm)

13

2B

a (p

pm

)

Page 15: Stable isotope anomalies  and  early Solar System chronology

Binary mixing in Sm …

Binary mixing in Sm …

Mokoia

Grosnaja

Allende

Murray

Mighei

Orgueil

Indarch

Ucera

Peace

Homestead

Gladstone

15555

GRZ-1

-200

0

200

400

600

800

1000

1200

-600 -500 -400 -300 -200 -100 0 100

e149Sm

e 150

Sm

100

1000

10000

100000

144S

m(p

)

147S

m(r,

s)

148S

m(s

)

149S

m(r,

s)

150S

m(s

)

152S

m(r,

s)

154S

m(r)

T1/

2

5

10

15

20

25

30

40

50

60

80

100

Carlson et al. (2007)

Page 16: Stable isotope anomalies  and  early Solar System chronology

… or not?… or not?

Mokoia

GrosnajaAllende

Murray

Mighei

Orgueil

Indarch

Ucera

PeaceHomestead

Gladstone

15555

GRZ-1

-200

0

200

400

600

800

1000

1200

-30 -25 -20 -15 -10 -5 0 5

e154Sm

e 150

Sm

Page 17: Stable isotope anomalies  and  early Solar System chronology

Binary mixing of Mo-Ru nucleosynthetic components

Binary mixing of Mo-Ru nucleosynthetic components

Dauphas (2004)

Page 18: Stable isotope anomalies  and  early Solar System chronology

Binary mixing of s- and r-process Os componentsBinary mixing of s- and r-process Os components

Yokoyama et al. (2007) Humayun and Brandon (2007)

Page 19: Stable isotope anomalies  and  early Solar System chronology

Pre-solar grains and predictionsPre-solar grains and predictions

Lugaro et al. (2003) Loss of consistency for different elements

There is more than binary mixing

Page 20: Stable isotope anomalies  and  early Solar System chronology

Issues: Issues:

•Do nucleosynthetic components have discrete isotopic properties?

•How many components are needed to account observations (deconvolution)?

•Which mineral or organic phases are the carriers?

Page 21: Stable isotope anomalies  and  early Solar System chronology

II Field shiftII Field shift

Page 22: Stable isotope anomalies  and  early Solar System chronology

Nuclear field shiftNuclear field shifta.k.a.

Page 23: Stable isotope anomalies  and  early Solar System chronology

Nuclear field shifteffect of nuclear charge radius

Nuclear field shifteffect of nuclear charge radius

Point-chargeapproximation

Breit (1958)

Page 24: Stable isotope anomalies  and  early Solar System chronology

Nuclear field shift:effect of nuclear shape

Nuclear field shift:effect of nuclear shape

4.80

4.85

4.90

4.95

5.00

5.05

5.10

142Nd 144Nd 146Nd 148Nd 150Nd

nu

clea

r ch

arg

e ra

diu

s (f

m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

qu

adrip

olar d

eform

ation

b2

Page 25: Stable isotope anomalies  and  early Solar System chronology

Bigeleisen’s (1996) formulation of mass fractionation

is the difference in nuclear charge radii between nuclei of mass m and m’, A and B are constants

2δ r

mass independent 1/T mass dependent 1/T2

Page 26: Stable isotope anomalies  and  early Solar System chronology

Temperature dependence of isotope fractionation between U(IV) and U(VI)Temperature dependence of isotope

fractionation between U(IV) and U(VI)

Bigeleisen (1998)

Mass-independent fractionation remains after

internal normalization!

Sites: gas-dust interaction

Page 27: Stable isotope anomalies  and  early Solar System chronology

Evidence of non-mass dependent fractionation experiment between crown-ether and acid solution

Evidence of non-mass dependent fractionation experiment between crown-ether and acid solution

Fujii et al. (2006)

Further evidence from elution on ion-exchange resins

Page 28: Stable isotope anomalies  and  early Solar System chronology

Levins et al.(1999)

Hfnuclear charge radii increase

smoothly

Page 29: Stable isotope anomalies  and  early Solar System chronology

Campbell et al. (1997)

Zr: deformation of nucleus increases past the neutron closed-shell (N=50)

N=50

Page 30: Stable isotope anomalies  and  early Solar System chronology

Odd-even staggering of Sn nuclear properties

Suggests using even-even or odd-odd for normalization!

1

10

100

1000

112Sn 113Sn 114Sn 115Sn 116Sn 117Sn 118Sn 119Sn 120Sn 121Sn 122Sn 124Sn 125Sn

neu

tro

n c

ross

-sec

tio

n (

fm)

4.58

4.6

4.62

4.64

4.66

4.68

4.7

nu

clear charg

e radiu

s (fm)

Page 31: Stable isotope anomalies  and  early Solar System chronology

Odd-even staggering of nuclear massesOdd-even staggering of nuclear masses

-40

-30

-20

-10

0

10

20

30

58 59 60 61 62 63 64

Mi/(

Mi-

1 -

Mi+

1) -

1 (

pp

m)

Ni

Begs the question of which process control mass fractionation

Page 32: Stable isotope anomalies  and  early Solar System chronology

Test for an effect of nuclear field shiftTest for an effect of nuclear field shift

ar

mmm

mmmr mm

i

immm ii

e211 ,

2

12

12,

2

1m

mi1

2

m

minternally normalized to

Fujii et al. (2006)

Page 33: Stable isotope anomalies  and  early Solar System chronology
Page 34: Stable isotope anomalies  and  early Solar System chronology

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

50Cr 52Cr 53Cr 54Crnu

clea

r ch

arge

rad

ius

(fm

)

Page 35: Stable isotope anomalies  and  early Solar System chronology

Mo isotopes in carbonaceous chondrites

Mo isotopes in carbonaceous chondrites

Fujii et al. (2006)

Page 36: Stable isotope anomalies  and  early Solar System chronology

The origin of the 54Cr anomaly

The origin of the 54Cr anomaly

1.0

10.0

100.0

1000.0

50Cr 52Cr 53Cr 54Cr

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

nu

clear charg

e radiu

s (fm)

10

15

20

25

30

40

50

60

80

100

Trinquier et al. (2006)T

σ

Neutron cross-sections do not separate 54Cr from 52Cr, nuclear field shift does

Extraction experiments(Fujii et al, 2002)

50

52

53

54

Page 37: Stable isotope anomalies  and  early Solar System chronology

III Analytical issues(or the limits of mass-dependent fractionation)

III Analytical issues(or the limits of mass-dependent fractionation)

Page 38: Stable isotope anomalies  and  early Solar System chronology

Chen et al. (2003)

Correction for analytical and instrumental mass bias assumes constant isotopic abundances

Page 39: Stable isotope anomalies  and  early Solar System chronology

Anomalous behavior of 125TeAnomalous behavior of 125Te

Moynier et al. (2006) Fehr et al.’ (2006) data renormalization

Page 40: Stable isotope anomalies  and  early Solar System chronology

100

1000

10000

180W 182W 183W 184W 186W

T1/

2

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.38

nu

clear charg

e radiu

s (fm)

100

1000

10000

T1/

2

5.33

5.34

5.35

5.36

5.37

5.38

5.39

5.4

5.41

5.42

nu

clear chag

e radiu

s

Risky normalisation (odd/even ratio)

Also 61Ni

Page 41: Stable isotope anomalies  and  early Solar System chronology

Pb: the double closed shell at mass 208(Z=82, N=126)

Pb: the double closed shell at mass 208(Z=82, N=126)

0.1

1

10

100

1000

204Pb 206Pb 207Pb 208Pb

T1/

2

5.465

5.470

5.475

5.480

5.485

5.490

5.495

5.500

5.505

nu

clear ch

arge rad

ius (fm

)

10

15

20

25

30

40

50

60

80

100

Page 42: Stable isotope anomalies  and  early Solar System chronology

5.460

5.465

5.470

5.475

5.480

5.485

5.490

5.495

5.500

5.505

202 204 205 206 207 208

nu

cle

ar

ch

arg

e r

ad

ius

(fm

)Odd-even staggering of Pb isotopes

(extended spectrum)Odd-even staggering of Pb isotopes

(extended spectrum)

Sakakihara et al. (2001)

Page 43: Stable isotope anomalies  and  early Solar System chronology

Analytical mass fractionation Odd-even staggering and

instrumental bias

Analytical mass fractionation Odd-even staggering and

instrumental bias

Blichert-Toft et al. (2003) Doucelance et al. (2001)

PbPb

Page 44: Stable isotope anomalies  and  early Solar System chronology

ConclusionsConclusions

• The number of nucleosynthetic components needs to be more rigorously evaluated

• The strength of the nuclear field shift effect w.r.t. nucleosynthetic anomalies still unclear

• Odd-even staggering of nuclear properties is ubiquitous and its cause is multiple: neutron cross-sections, nuclear field radii, and masses

Page 45: Stable isotope anomalies  and  early Solar System chronology

MoMo

Page 46: Stable isotope anomalies  and  early Solar System chronology

SmSm

100

1000

10000

100000

T1

/2

4.85

4.90

4.95

5.00

5.05

5.10

5.15

nu

clear charg

e radiu

s (fm)

5

10

15

20

25

30

40

50

60

80

100

Page 47: Stable isotope anomalies  and  early Solar System chronology

SmSm

-800

-600

-400

-200

0

200

400

600

800

1000

1200

e Sm

i

GRZ-1

15555

Gladstone

Homestead

Peace

Ucera

Indarch

Orgueil

Mighei

Murray

Allende

Grosnaja

Mokoia

Carlson et al. (2007)

Page 48: Stable isotope anomalies  and  early Solar System chronology

r-process nuclide abundancesr-process nuclide abundances

Arnould et al. (2007)

Page 49: Stable isotope anomalies  and  early Solar System chronology

MoMo

100

1000

10000

92Mo(p) 94Mo(p) 95Mo(s,r) 96Mo(s) 97Mo(s,r) 98Mo(s,r) 100Mo(r)

T1

/2

4.25

4.30

4.35

4.40

4.45

4.50

nu

clear charg

e radiu

s (fm)

10

15

20

25

30

40

50

60

80

100

Series11

Page 50: Stable isotope anomalies  and  early Solar System chronology

Mo isotopic anomalies in carbonaceous chondritesMo isotopic anomalies in carbonaceous chondrites

Orgueil

Allende

Dauphas et al. (2002)

Yin et al. (2002)

Page 51: Stable isotope anomalies  and  early Solar System chronology

Meteorites vs pre-solar grainsMeteorites vs pre-solar grains

Dauphas et al. (2004)

Nicolussi et al. (1998)

Page 52: Stable isotope anomalies  and  early Solar System chronology

MoMo

100

1000

10000

92Mo(p) 94Mo(p) 95Mo(s,r) 96Mo(s) 97Mo(s,r) 98Mo(s,r) 100Mo(r)

T1

/2

4.25

4.30

4.35

4.40

4.45

4.50

nu

clear ch

arge rad

ius (fm

)

10

15

20

25

30

40

50

60

80

100

Series11

SiC: Pellin et al. (1999)

Page 53: Stable isotope anomalies  and  early Solar System chronology

Os: normalization to 189 is risky too

100

1000

10000

184Os(p) 186Os(s) 187Os(s,p) 188Os(r,s) 189Os(r) 190Os(r,s) 192Os(r)

T1/

2

5.33

5.34

5.35

5.36

5.37

5.38

5.39

5.4

5.41

5.42

nu

clear chag

e radiu

s

10

15

20

25

30

40

50

60

80

100

Page 54: Stable isotope anomalies  and  early Solar System chronology

SmSm

100

1000

10000

100000

T1

/2

4.85

4.90

4.95

5.00

5.05

5.10

5.15

nu

clear charg

e radiu

s (fm

)

5

10

15

20

25

30

40

50

60

80

100

Page 55: Stable isotope anomalies  and  early Solar System chronology

Nd may help telling NFS from (s,r) mixingNd may help telling NFS from (s,r) mixing

10

100

1000

10000

142Nd(s) 143Nd(r,s) 144Nd(s,r) 145Nd(r,s) 146Nd(s,r) 148Nd(r,s) 150Nd(r)

T1

/2

4.80

4.85

4.90

4.95

5.00

5.05

5.10

nu

clear charg

e radiu

s (fm)

5

10

15

20

25

30

40

50

60

80

100

Page 56: Stable isotope anomalies  and  early Solar System chronology

0.612

0.614

0.616

0.618

0.620

0.622

0.624

0.626

0.628

4.535 4.540 4.545 4.550 4.555 4.560 4.565 4.570 4.575

Age (Ga)

20

7P

b*/

20

6P

b*

The devil is in the details: precision is not the main issue of U-Pb

chronology but odd-even staggering

The devil is in the details: precision is not the main issue of U-Pb

chronology but odd-even staggering