Stability Assessment of a Critical Rock Slope

download Stability Assessment of a Critical Rock Slope

of 25

Transcript of Stability Assessment of a Critical Rock Slope

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    1/25

    Stability Assessment of aCritical Rock Slope

    Final Project Report

    GroupParticipants: StudentNumber:

    RebecaBarja 71116107

    PriyadarshiHem 71071104

    PabloUrrutia 36638088

    ShujingZhang 71180103

    Course: MINE590W

    Instructor: DirkVanZyl

    Date: Dec.14,2010

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    2/25

    2/21

    TableofContents

    1 Summary....................................................................................................................................3

    2 Objective.....................................................................................................................................3

    3 Introduction.................................................................................................................................3

    4 Statistics.....................................................................................................................................4

    4.1 NormalDistribution..............................................................................................................4

    4.2 BetaDistribution..................................................................................................................5

    4.3 ExponentialDistribution.......................................................................................................5

    5 GoldSimModel...........................................................................................................................6

    5.1 BaseCase...........................................................................................................................8

    5.2 RemedialMeasures...........................................................................................................13

    6 Costs........................................................................................................................................14

    7 DiscussionofResultsandConslusions.....................................................................................15

    8 References...............................................................................................................................21

    ListofFiguresFigure1:SauMauPingSlopeacrossfromendangeredapartmentblocks........................................4

    Figure2:GoldSimModelLayout........................................................................................................7

    Figure3:SauMauPingSlopeDiagram.............................................................................................9

    Figure4:ProbabilisticDistributionoftheTensionCrack....................................................................9

    Figure5:FrictionAngle-BetaandTruncatedNormalDistributions.................................................10

    Figure6:Cohesion-BetaandTruncatedNormalDistributions........................................................10

    Figure7:Relationshipbetweenfrictionanglesandcohesivestrengthsmobilisedatfailureofslopes

    invariousmaterials..........................................................................................................................11

    Figure8:ProbabilisticDistributionoftheEarthquake.......................................................................12

    Figure9:ProbabilisticDistributionofWaterLevelintheTensionCrack...........................................13Figure10:CDFofFSforBaseCaseScenario(BetaDistribution)....................................................16

    Figure11:CDFofFSforBaseCaseScenario(TruncatedNormalDistribution)...............................16

    Figure12:Changeinp(FS

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    3/25

    3/21

    1 SUMMARY

    AprobabilisticstabilityanalysiswascarriedoutusingGoldSimonthecasestudyAslope

    stabilityprobleminHongKong(Hoek,2007),toassesstheshort-termandlong-termstability

    oftheSauMauPingslope.Fourremedialmeasures(reductionofslopeheight,reductionof

    slope angle, reinforcement and drainage) were considered for improving the long-term

    stability of the slope; short-termstability wasnotconsidered an issueunder themodelled

    conditions.Costswere estimatedfor each of the remedialmeasures. Reducing the slope

    anglewas selectedas the preferredalternativedue toa technical andeconomicpointof

    view.

    2 OBJECTIVE

    Theobjectiveofthisprojectistocarryoutaprobabilisticanalysisonawidespreadproblem

    thatthreatensthesafetyofpeopleandtheirhomes,slopestability.Aprobabilisticapproach

    aided by GoldSim, a Monte Carlo simulation software, will be used to model the slope

    stability problem, generate a distribution for the factor of safety of the slope and finally,

    generateadistributionfortheprobabilityoffailureandprobabilityofacceptanceoftheslope.

    Allofthesedistributions,alongwithestimatedcosts,willbeusedinmakingadecisiononthe

    mostappropriateremedialmeasure that shouldbe takenin orderto ensure the long term

    stability of the slope. The problem chosen for this analysis will be introduced in the next

    section.

    3 INTRODUCTION

    Aliteraturereviewforslopestabilityproblemsleadtoaveryinterestingcasestudywrittenby

    EveretHoektitledAslopestabilityprobleminHongKong.Inthisarticle,thecaseofarock

    slopelocatedalongtheSauMauPingRoadinKowloonisdiscussed.Thisrockslopeposed

    potentialdangertotheapartmentblockslocatedacrossaroadwhichhousedapproximately

    10,000people.Thecriticalconcernforengineerswasthatamajorrockslidecouldoccurdue

    toexceptionallyheavy rainsand crossthe roadcausingdamage to theapartmentblocks.

    Beforemakingadecisiononwhethertoevacuateresidents,somecrucialquestionsneeded

    tobeanswered.Thesequestionswerethefollowing:

    Whatwasthefactorofsafetyoftheslopeunderearthquakeandheavyrainconditions

    Whatwastheacceptablefactorofsafetyforshorttermandlongtermconditions

    Whatstepswouldberequiredtoachievethesefactorsofsafety

    Figure1showstheSauMauPingSlopeandtheapartmentblockslocatedacrosstheroad.

    Theoriginalsolutiontothiscasetookatraditionaldeterministicapproach.However,forthe

    purposesofthisproject,aprobabilisticapproachwillbetakentoevaluateandcomparethe

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    4/25

    4/21

    originalengineeringdesigndecisiontothedecisiontakenwhentheweightofinfluencefrom

    theproblemvariablesaretakenintoaccount.

    AsecondcasestudybyE.Hoek,Factorofsafetyandprobabilityoffailure,describesthe

    recommendedmethodologyforcarryingoutasensitivityanalysisoftheprobabilityoffailure.

    Theprobabilitydistributionsusedinthisapproach(i.e.truncatednormalandexponential),as

    wellastheprobability functionsthatwerechosen byourgroup for experimental purposes(i.e. betafunction),will bedescribed in thestatisticssection thatfollows.TheMonteCarlo

    methodofsimulationwillbeused inorder togenerateafinaldistributionofresultsforthe

    factorofsafetycalculationandtheprobabilityoffailureandacceptance.

    Figure1:SauMauPingSlopeacrossfromendangeredapartmentblocks

    (Source:PracticalRockEngineering,E.Hoek)

    4 STATISTICS

    4.1 NormalDistribution

    Thenormaldistributionisacontinuousprobabilitydistributionwithtwoparameters,mean

    andvariance2,denotedbyN(,2).Theshapeofthenormaldistributionislikeabellwitha

    singlepeak at themeanofdata.Thespread ofa normaldistribution iscontrolled by thestandarddeviation.Thesmallerthestandarddeviation,themoreconcentratedthedata.

    Thenormaldensityfunctionis

    { = #$ e{%

    .

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    5/25

    5/21

    It is symmetric around the mean value, and inflection points occur at . Normal

    distributions are one of the most common distributions used for probabilistic analysis in

    geotechnicalengineeringduetoitssimplicityandwideapplicability.Giventhatitsrangefrom

    to cancauseproblemswhenusedinconjunctionwithaMonteCarloanalysis,usually

    theyare truncated by minimum andmaximumvalues. In this particular case,a truncated

    normaldistributionwasusedtodefinethefollowingvariables:

    Frictionangle

    Cohesion

    Tensioncrackdepth

    4.2 BetaDistribution

    The beta distribution is a continuous probability distributions having two positive shape

    parameters,denotedbyand.TheBetadistribution,initsstandardform,rangesfromzero

    toone,andtakesawiderangeofshapes.Thebetadensityfunctionis

    {;, = [#{1 \# u[#{1 u\#du#"

    The beta distribution is often used to describe the uncertainty or random variation of a

    probabilityvalue.Itcanrescaleandshifttocreatedistributionswithawiderangeofshapes

    andover any finite range. Betadistributions are very flexible andcan beused to replace

    manyothercommondistributions.Asecondmodelwithbetadistributionsassignedtofriction

    angleandcohesionwasalsodevelopedforcomparisonpurposesforthisanalysis.

    4.3 ExponentialDistribution

    The exponential distribution is a continuous probability distribution. It describes the time

    between events inaPoisson process.For a givenPoisson process, the timeT between

    consecutiveoccurrencesofeventshasanexponentialdistributionwiththefollowingdensity

    function:

    { = exp{ J 00 otherwise

    Exponentialdistributionswereusedtomodeltheeffectofearthquakeandheavyrainonthe

    slope. Given the need of creating truncated exponential distributions for modelling the

    earthquakeand storm (seeSection5.1.3formoreon this), and considering thatGoldSimcannottruncateanexponentialdistribution,atruncatedgammadistributionwasusedinstead.

    This was possible due to the fact that an exponential distribution is a special case of a

    gammadistributionwiththeshapeparameterk=1.

    Sinceagammadistributionisdefinedby:

    Mean=k*t

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    6/25

    6/21

    Standarddeviation= k t$

    Bysubstitutingk=1boththemeanandstandarddeviationwillbecomeequaltot.Therefore,

    anexponentialdistributionwithmeanequaltoXisequivalenttoagammadistributionwith

    meanequaltothestandarddeviation(whichisequaltoX).

    5 GOLDSIMMODEL

    Asmentionedabove,GoldSim(Version10.11(SP4),AcademicLicense)wasusedtoassess

    theprobabilityofacceptanceoftheSauMauPingslope.TheMonteCarloanalysiswasrun

    considering 5,000 realizations in every case. Figure 2 illustrates the layout of the model

    createdtoaccomplishthis.

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    7/25

    7/21

    F

    igure2:GoldSimM

    odelLayout

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    8/25

    8/21

    5.1 BaseCase

    The Factors ofSafety for theBaseCasewerecalculated basedon the sameprocedures

    followedonthecasestudyAslopestabilityprobleminHongKong(Hoek,2007),whichare

    summarizedbythefollowingequation:

    Where,

    Symbol Parameter

    c Cohesivestrengthalongslidingsurface

    A Baseareaofwedge

    W Weightofslidingmass

    p Angleoffailuresurface,measuredfromHorizontal

    Horizontalearthquakeacceleration

    U UpliftforceduetowaterpressureonfailureSurfaceV Horizontalforceduetowaterintensioncrack

    Frictionangleofslidingsurface

    For more information regarding the equations used in the Factor of Safety calculations,

    pleaserefertoAppendixA.

    5.1.1 GeometryoftheSlope

    TheSauMauPingroadwascutinamassofunweatheredgranite,withsheetjointsparallel

    totheexposedfaceofthecutslope.Thesesheetjointsarethemostprobablesurfaceof

    failureoftheslope,andwereestimatedwithadipof35.

    Accordingtotheinvestigationcarriedout,therockslopecanberepresentedbythediagram

    showninFigure3.Asillustratedthere,the60mhighgraniteslopeisdividedinthree20m

    high bencheswith inclinationsof70 to the horizontal,and anoverall slopeangleof50.

    Therewerealsotensioncracksatsomeplacesbehindthecrestoftheslope,withvariable

    depths. The GoldSimmodel developed for this project assessed only the stability of the

    overallslopebyincludingthetensioncrack,andnotacasewithoutit.Individualevaluationof

    thestabilityofeachbenchwasnotcarriedout.

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    9/25

    9/21

    Figure3:SauMauPingSlopeDiagram

    (Source:PracticalRockEngineering,E.Hoek)

    The depth of the tension crack was modelled as a stochastic variable with a normal

    distribution, following the recommendation on Factor of safety and probability of failure

    (Hoek, 2007).Figure4 illustrates the dataused tocreate theprobabilistic distribution.For

    more detailed information regarding the equations used in estimation of the standard

    deviation,minimumandmaximumdepthofthetensioncrackpleaserefertoAppendixA.The

    meandepthofthetensioncrackwasestimatedashalfthemaximumdepth.

    Figure4:ProbabilisticDistributionoftheTensionCrack

    5.1.2 MaterialProperties

    Due to the lack of shear strength information available on the SauMauPing slope, unit

    weight, frictionangle and cohesionof the rockslopehadtobeassumed tocomplete the

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    10/25

    10/21

    stabilityanalysis.Theseassumptionswerebasedonpublishedinformationforsimilarrocks,

    asdescribedinthecasestudyAslopestabilityprobleminHongKong(Hoek,2007).

    Table1showstheparametersselectedfortheprobabilisticanalysiscarriedoutaspartofthis

    project.Figures5and6illustratethestochasticdistributionsusedtomodelfrictionangleand

    cohesion.

    Table1:MaterialProperties

    Mean CoV Std.dev Min Max Distribution

    Rockfrictionangle 40 10% 3.75 30 45 Beta&Normal

    Rockcohesion 125kN/m2 30% 37.5kN/m2 50kN/m2 200kN/m2Beta&Normal

    Unitweight 25.5kN/m3 - - - - Deterministic

    Figure5:FrictionAngle-BetaandTruncatedNormalDistributions

    (betadistribution)

    (truncatednormaldistribution)

    Figure6:Cohesion-BetaandTruncatedNormalDistributions

    (betadistribution)

    (truncatednormaldistribution)

    Theunitweightwasestimatedasadeterministicvaluebecausenoinformationwasfound

    with regard toprobabilistic distributions that couldbeused toestimate this value.Friction

    angleandcohesionwhereestimatedfortheoriginalanalysisusingtheplotonFigure7,from

    thecasestudyAslopestabilityprobleminHongKong(Hoek,2007).Theplotalsoshows

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    11/25

    11/21

    the rangeofestimated shear strength values for the sheet joints inunweathered granite,

    developedfortheoriginalanalysis.

    Figure7:Relationshipbetweenfrictionanglesandcohesivestrengthsmobilisedatfailureofslopesinvariousmaterials

    (Source:PracticalRockEngineering,E.Hoek)

    TheoriginalanalysisusedtheenvelopeofshearstrengthshownonFigure7toobtainmean

    valuesforthefrictionangleandcohesion.Consideringthatthesestrengthparameterswereestimatedfromtheavailableliterature,andthatthereportedparametersarelikelyreductions

    ofavarietyoffieldandlabtestsaswellasobservationsfromthefield,amoreappropriate

    approachtoassessthestabilityoftheSauMauPingslopewouldbetoassumetheshear

    strengthasarandomvariableamongagivenrange,ratherthanafixedone.Followingthis

    line of thought, we used the same envelope on Figure 7 to generate our probabilistic

    distributions, setting up the minimums, maximums and means after it. The standard

    deviationsusedforouranalysiswerecalculatedwithatypicalcoefficientofvariationforeach

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    12/25

    12/21

    parameter.Thesecoefficientsofvariationwereselectedafterrevisingsomeliterature(Park,

    1999;ParkandWest,2001;Rththi,1988).

    5.1.3 EarthquakeandWaterinTensionCrack

    Besides geometry and inherent material parameters, other factors could also affect the

    stability of the slope, such as earthquakes (inducing external forces to the system) and

    storms(changingthesaturationconditionsofthesystem).Inthisspecificcase,earthquakes

    werenot perceived asamayor threatgiventhat the region of studywasnot deemed as

    highlyseismic.Afterdiscussingthesubjectwithlocalexperts, thedevelopersoftheoriginal

    stabilityanalysis(Hoek,2007)consideredappropriatetoincludeaminoracceleration(inthe

    formofapseudo-staticforce)duetoearthquakeloadingintothesystem.Thisacceleration

    wasestimatedtobe0.08g.

    Asapseudo-staticforce,theearthquakewasinputintothemodelasafractionofthegravity

    acceleration,appliedtotheweightoftheslidingmass.Thepseudo-staticforcewastreated

    asaprobabilisticvariable,inthiscasewithatruncatedgammadistribution(seesection4.3)

    withameanandstandarddeviationof0.08gandamaximumvalueof0.16g,asshowninFigure8.

    Figure8:ProbabilisticDistributionoftheEarthquake

    Typhoons,ontheotherhand,areverycommoninHongKongandoneofthesestormscould

    easily fill the tension cracks with water and saturate the whole slope. Storm events are

    usually represented by exponential distributions, but given that we needed tomodel the

    amount of water in the tension crack, and the tension crack has amaximum depth, theexponential distribution representing the water level in the tension crack should also be

    truncatedwithamaximumvalueequaltothewholedepthofthetensioncrack.TheGamma

    distributionshownonFigure9wasusedtomodelthewaterlevelinthetensioncrack,where

    Zisthedepthofthetensioncrack(modelledasanormaldistribution,asexplainedabove).

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    13/25

    13/21

    Figure9:ProbabilisticDistributionofWaterLevelintheTensionCrack

    5.2 RemedialMeasures

    AstheprobabilityofacceptanceoftheBaseCaseexceededour acceptancecriteria(see

    Section7),fourdifferentandindependentremedialmeasureswereassessedtoimprovethe

    stabilityoftheSauMauPingslope.Thesemeasureswere:

    Reductionoftheslopeheight

    Reductionoftheslopeangle

    Reinforcementoftheslope(bycablebolts)

    Drainageoftheslope

    5.2.1 ReductionoftheSlopeHeight

    Inordertoassessthereductionoftheslopeheight,changesintheheightoftheslopewereevaluatedusingtheGoldSimmodel.Reductionsof5mwereassesseduptoatotalheightof

    30 m, changing also the tension crack depth distribution with a new maximum (with

    consistentmeanandstandarddeviation)whilekeepingtherestofthemodelinputsthesame

    aswiththeBaseCase.ResultsarediscussedinSection7.Forfurtherdetailedinformation

    aboutthecalculationsofthenewtensioncrackdepthparameterspleaserefertoAppendixA.

    5.2.2 ReductionoftheSlopeAngle

    Similarasinthepreviouscase,theoverallangleoftheslopewaschangedbyintervalsof

    first5andthen1uptoadipof40.Thetensioncrackdepthdistributionwasalsomodified

    toreflectthechangeintheslopeangle.TherestoftheGoldSimmodelparameterswerekept

    thesameasintheBaseCase.PleaseseeSection7fordiscussionoftheresults.Formore

    information regarding the calculations for thenew tension crackdepthparameters please

    refertoAppendixA.

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    14/25

    14/21

    5.2.3 ReinforcementoftheSlope(byCablebolts)

    Cableboltsof25mlongwereincludedinthemodelasanewforceintheFactorofSafety

    equationshownonSection5.1.Thenewequationisasfollows:

    WhereTistheforceappliedbythecableboltandistheangleofthecableboltwith

    respect to the horizontal. Four different T values, from 2,800 kN to 4,000 kN, were

    assessed, all of them for a equal to 35, and four factors of safety were calculated

    accordingly.ResultsarediscussedinSection7.

    5.2.4 DrainageoftheSlope

    Toassesstheeffectofdrainingtheslope,nowaterpressurewasincludedintheFactorof

    Safety calculations for this remedialmeasure.Please see Section 7 fordiscussion of the

    results.

    6 COSTS

    Costswereestimatedbasedonliteraturereviewandprofessionalengineeringjudgementof

    the authors of this report. The costspresentedhere are just anapproximation basedon

    severalassumptions,giventhattheinformationavailableintheoriginalcasestudydoesnot

    focusoncostingaspects.Thecostsusedforthisprojectareusedsimplyforcomparisonof

    differentalternatives.Theseshouldnotbeusedforadifferentpurpose.

    Excavationvolumes, numberofboltsand lengthofthedrainagestructuresalsohad tobe

    estimatedinordertoobtaincomparablecostsbetweendifferentalternatives.Thecostshave

    beencalculatedforasectionoftheslopeof1.0mwidth.

    Cost of material excavation was estimated as 50.00 $CAD/m3 of material. This amount

    includestransportationofthecutmaterialtoawastedump5kmawayfromthesiteandis

    basedonpreviousexperienceandontheSMEMiningEngineeringHandbook(SMEwebsite,

    online source). The excavation volume estimated for this alternative was calculated by

    assumingexcavationsupto50mupstreamofthecrestoftheslope.

    CostofcableboltinstallationwasobtainedfromthebookCableboltinginUndergroundMines

    (HutchinsonandDiederichs,1996),which suggesteda valueof $CAD30.00 permeterof

    cablebolt.Thelengthofthecableboltswasestimatedasthelengthfromthefaceoftheslope

    uptotheslipsurface(i.e.sheetjoints),whichwas20m,plusanadditional5mforgrouting

    and proper anchoring of the bolts. The number of cable bolts required was calculated

    assumingayieldstressof400kNperbolt(GIAindustriabwebpage,onlinesource).

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    15/25

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    16/25

    16/21

    Figure10:CDFofFSforBaseCaseScenario(BetaDistribution)

    Figure11:CDFofFSforBaseCaseScenario(TruncatedNormalDistribution)

    Firstandforemost,Figures10and11showthattheselectionofabetaortruncatednormal

    distribution doesnotsignificantlyaffect theoutcomeof thestability analysis.The resulting

    probabilities of acceptance for the beta distribution as well as the truncated normal

    distributiondiffer invalueby1 3%. The betadistribution results are higher (i.e.more

    conservative). This is negligible for a stability evaluation like the one carried out in this

    project,alongwithmanyotherformsofgeotechnicalanalysis,wheremanyassumptionsand

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    17/25

    17/21

    simplificationsaremade.Itisworthnotingthatgiventheflexibilityofthebetadistribution,it

    can take different shapes.Therefore, the similarity in the results of this specific analysis

    betweenthebetaandtruncatednormaldistributionsisduetotheshapeofthecurrentbeta

    distribution (which issimilar to the truncatednormal),since it isrelated to the parameters

    (mean,standarddeviation,minandmax)usedtodefineit.

    Figures10and11alsoshowthattheprobabilityoffailureforbothdistributionsisabout1%,whichdoesnotimplyahighrisk;theprobabilityofacceptancefortheshorttermscenariois

    8.71%forthebetadistributionand6.77%forthetruncatednormal.Evenifthep(FS

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    18/25

    18/21

    Figure12:Changeinp(FS

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    19/25

    19/21

    Figure14:Changeinp(FS

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    20/25

    20/21

    Figure15:CombinedPlotShowingp(FS

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    21/25

    21/21

    betweenreducingslopeheightandslopeangleisduetotheexcavationvolumesrequiredfor

    eachofthem,beingthefirstonealmosttwiceasmuch.Moreover,Figure10showsthatto

    reachap(FS

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    22/25

    APPENDIXA:

    -CALCULATIONS-

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    23/25

    1 FACTOROFSAFETYCALCULATIONS

    FactorofSafetycalculationsweredonefollowing themethodshownonthecasestudyA

    slopestabilityprobleminHongKong(Hoek,2007).FigureA-1showsthediagramofforces

    usedtoelaboratetheFSequation,basedonlimitequilibriumconcepts.Itisworthnotingthat

    only forceswereconsideredwhencalculatingFS(notmomentums),and thatalltheforces

    pass through the center ofgravityof the slidingmass.This isa simplification,but itwasrequiredtouseGoldsimtosolvetheproblem.Furthermore,giventheassumptionsmadeto

    modelthecharacteristicsoftheslope,itwillnotbeveryinfluentialinthefinalresults.

    FigureA-1

    Where,

    Symbol Parameter

    c Cohesivestrengthalongslidingsurface

    A Baseareaofwedge

    W Weightofslidingmass

    f Angleoftheslope,measuredfromHorizontal

    p Angleoffailuresurface,measuredfromHorizontal

    Horizontalearthquakeacceleration

    U UpliftforceduetowaterpressureonfailureSurfaceb Distancebehindtensioncrackandcrest

    z Tensioncrackdepth

    zw Waterlevelontensioncrackandfailuresurface

    W Weightofslidingmass

    T Forcerepresentingthecableboltreinforcement

    Inclinationofreinforcement

    V Horizontalforceduetowaterintensioncrack

    Frictionangleofslidingsurface

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    24/25

    EquationsusedtocompletetheFScalculationsweretakenfromAslopestabilityproblemin

    HongKong(Hoek,2007),andareshownonFigureA2.

    FigureA-2

    Equationforcalculatingzwasobtainedbyminimizationofthefollowingequation(hoekand

    Bray,1974):

    Thisminimizationwasdoneconsideringdryconditionsontheslope,whichisasimplification

    butisacceptableforthescopeofthisanalysis(Hoek,2007).

    2 TENSIONCRACKDEPTHDISTRIBUTION

    Atruncatednormaldistributionwasselectedtomodeltheuncertaintiesonthedepthof the

    tension crack, following the recommendation on the case study Factor of safety and

    probabilityoffailure(Hoek,2007).Themaximumdepthofthetensioncrackoccurswhenthe

    crackislocatedatthecrestoftheslope(Hoek,2007),andwasestimatedby:

  • 8/3/2019 Stability Assessment of a Critical Rock Slope

    25/25

    z=H(1tanp/tanf)=24.75m

    Themeanforthetensioncrackdistributionwasselectedashalfofthemaximumcrackdepth,

    while an arbitrary standard deviation of 3 m was estimated, again following the

    recommendationonthecasestudyFactorofsafetyandprobabilityoffailure(Hoek,2007).

    Aminimumdepthof0.01mwasselectedforthetensioncracktoavoidnumericalissues.

    TheabovedescribedparameterswereusedfortheBaseCasescenario.Whenchangingthe

    modeltoassessthereductioninheightandslopeangleremedialmeasures,themaximum,

    mean, and standard deviation of the tension crack distribution were changed as well, to

    reflect the modifications made on the slope. The new values for max, mean and std.

    deviation were estimated as a fraction of the original ones, keeping the same ratio the

    changeinheightorslopeangle,asshownintablesA-1andA-2.

    TableA-1

    H(m) Maxcrackdepth(m) Std.deviation(m)

    60 24.75 3.0055 22.69 2.75

    50 20.62 2.50

    45 18.56 2.25

    40 16.50 2.00

    35 14.44 1.75

    30 12.37 1.50

    TableA-2

    Slopeangle() Maxcrackdepth(m) Std.deviation(m)

    50 24.75 3.00

    45 17.99 2.18

    44 16.49 2.00

    43 14.95 1.81

    42 13.34 1.62

    41 11.67 1.41