StaadFoundation Design

download StaadFoundation Design

of 97

Transcript of StaadFoundation Design

  • 8/12/2019 StaadFoundation Design

    1/97

    Isolated Footing Design (IS 456-2000)Design For Isolated Sloped Footing 1001Design For Isolated Sloped Footing 1002

    Design For Isolated Sloped Footing 1003Design For Isolated Sloped Footing 1004Design For Isolated Sloped Footing 1005Design For Isolated Sloped Footing 1006Design For Isolated Sloped Footing 1007Design For Isolated Sloped Footing 1008

    Footing No. Group ID Foundation Geometry

    - - Length Width Thickness Slope End Thickness

    1001 1 1.000 m 1.000 m 0.451 m 0.151 m

    1002 2 1.000 m 1.000 m 0.451 m 0.151 m1003 3 1.000 m 1.000 m 0.451 m 0.151 m

    1004 4 1.000 m 1.000 m 0.451 m 0.151 m

    1005 5 1.000 m 1.000 m 0.451 m 0.151 m

    1006 6 1.000 m 1.000 m 0.451 m 0.151 m

    1007 7 1.000 m 1.000 m 0.451 m 0.151 m

    1008 8 1.000 m 1.000 m 0.451 m 0.151 m

    Footing No.

    FootingReinforcement

    PedestalReinforceme

    nt

    - BottomReinforcement(M

    z)

    BottomReinforcement(M

    x)

    TopReinforcement(M

    z)

    TopReinforcement(M

    x)

    Main Steel Trans

    Steel

    1001 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    1002 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    1003 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    1004 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    1005 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    1006 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    1007 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    1008 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c 8 @ 85 mm c/c N/A N/A

    Isolated Footing 1001

    http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1001http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1001http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1002http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1002http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1003http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1003http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1004http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1004http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1005http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1005http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1006http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1006http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1007http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1007http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1008http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1008http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1008http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1007http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1006http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1005http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1004http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1003http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1002http://d/Program%20Files/Staad.foundation%205.3/CalcXsl/footing.xml%23foot1001
  • 8/12/2019 StaadFoundation Design

    2/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    3/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    4/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.064 -0.000 -0.000 -0.089

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.064 -0.000 -0.000 -0.089

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 0.096 -0.000 -0.000 -0.133

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 0.096 -0.000 -0.000 -0.133

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    5/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 71.0641 72.4744 72.4742 71.0640 0.000

    1 71.0641 72.4744 72.4742 71.0640 0.000

    1 71.0641 72.4744 72.4742 71.0640 0.000

    1 71.0641 72.4744 72.4742 71.0640 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 71.0641 72.4744 72.4742 71.0640

  • 8/12/2019 StaadFoundation Design

    6/97

    1 71.0641 72.4744 72.4742 71.0640

    1 71.0641 72.4744 72.4742 71.0640

    1 71.0641 72.4744 72.4742 71.0640

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 591.882 9461188.324 3898641.477 323.612

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 1

    Governing Disturbing Force : 0.064 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 591.882

    Critical Load Case for Overturning about X-Direction : 0

    Governing Overturning Moment : 0.000 kNm

    Governing Resisting Moment : 0.000 kNm

    Minimum Overturning Ratio for the Critical Load Case : 1000000.000Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 0

    Governing Disturbing Force : 0.000 kN

    Governing Restoring Force : 0.000 kN

    Minimum Sliding Ratio for the Critical Load Case : 1000000.000

    Critical Load Case for Overturning about Z-Direction : 1

    Governing Overturning Moment : -0.118 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 323.612

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    7/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.205 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    8/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    9/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.077 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    10/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.595 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    11/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 51.007 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    12/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    13/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    14/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    15/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    16/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.045 -0.045 -0.063 -0.063

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.045 -0.045 -0.063 -0.063

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.219 0.068 -0.068 -0.094 -0.094

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.219 0.068 -0.068 -0.094 -0.094

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    17/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 71.7696 72.7666 71.7696 70.7726 0.000

    1 71.7696 72.7666 71.7696 70.7726 0.000

    1 71.7696 72.7666 71.7696 70.7726 0.000

    1 71.7696 72.7666 71.7696 70.7726 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 71.7696 72.7666 71.7696 70.7726

  • 8/12/2019 StaadFoundation Design

    18/97

    1 71.7696 72.7666 71.7696 70.7726

    1 71.7696 72.7666 71.7696 70.7726

    1 71.7696 72.7666 71.7696 70.7726

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 837.251 837.204 457.740 457.775

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 1

    Governing Disturbing Force : 0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 837.251

    Critical Load Case for Overturning about X-Direction : 1

    Governing Overturning Moment : -0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.740Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 1

    Governing Disturbing Force : -0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 837.204

    Critical Load Case for Overturning about Z-Direction : 1

    Governing Overturning Moment : -0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.775

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    19/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.246 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    20/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    21/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.078 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    22/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.886 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    23/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.887 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    24/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    25/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    26/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    27/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    28/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.000 -0.064 -0.089 0.000

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.000 -0.064 -0.089 0.000

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.000 -0.096 -0.133 0.000

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.000 -0.096 -0.133 0.000

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    29/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 72.4746 72.4746 71.0644 71.0644 0.000

    1 72.4746 72.4746 71.0644 71.0644 0.000

    1 72.4746 72.4746 71.0644 71.0644 0.000

    1 72.4746 72.4746 71.0644 71.0644 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 72.4746 72.4746 71.0644 71.0644

  • 8/12/2019 StaadFoundation Design

    30/97

    1 72.4746 72.4746 71.0644 71.0644

    1 72.4746 72.4746 71.0644 71.0644

    1 72.4746 72.4746 71.0644 71.0644

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 25884379.737 591.917 323.634 12151473.530

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 0

    Governing Disturbing Force : 0.000 kN

    Governing Restoring Force : 0.000 kN

    Minimum Sliding Ratio for the Critical Load Case : 1000000.000

    Critical Load Case for Overturning about X-Direction : 1

    Governing Overturning Moment : -0.118 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 323.634Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 1

    Governing Disturbing Force : -0.064 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 591.917

    Critical Load Case for Overturning about Z-Direction : 0

    Governing Overturning Moment : 0.000 kNm

    Governing Resisting Moment : 0.000 kNm

    Minimum Overturning Ratio for the Critical Load Case : 1000000.000

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    31/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.263 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    32/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    33/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.078 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    34/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 51.007 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    35/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.595 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    36/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    37/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    38/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    39/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    40/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.045 -0.045 -0.063 0.063

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.045 -0.045 -0.063 0.063

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.068 -0.068 -0.094 0.094

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.068 -0.068 -0.094 0.094

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    41/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 72.7666 71.7693 70.7720 71.7693 0.000

    1 72.7666 71.7693 70.7720 71.7693 0.000

    1 72.7666 71.7693 70.7720 71.7693 0.000

    1 72.7666 71.7693 70.7720 71.7693 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 72.7666 71.7693 70.7720 71.7693

  • 8/12/2019 StaadFoundation Design

    42/97

    1 72.7666 71.7693 70.7720 71.7693

    1 72.7666 71.7693 70.7720 71.7693

    1 72.7666 71.7693 70.7720 71.7693

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 836.893 836.922 457.608 457.590

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 1

    Governing Disturbing Force : -0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 836.893

    Critical Load Case for Overturning about X-Direction : 1

    Governing Overturning Moment : -0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.608Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 1

    Governing Disturbing Force : -0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 836.922

    Critical Load Case for Overturning about Z-Direction : 1

    Governing Overturning Moment : 0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.590

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    43/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.246 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    44/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    45/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.078 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    46/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.886 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    47/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.886 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    48/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    49/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    50/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    51/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    52/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.064 0.000 0.000 0.089

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.064 0.000 0.000 0.089

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.096 0.000 0.000 0.133

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.096 0.000 0.000 0.133

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    53/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 72.4744 71.0645 71.0647 72.4746 0.000

    1 72.4744 71.0645 71.0647 72.4746 0.000

    1 72.4744 71.0645 71.0647 72.4746 0.000

    1 72.4744 71.0645 71.0647 72.4746 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 72.4744 71.0645 71.0647 72.4746

  • 8/12/2019 StaadFoundation Design

    54/97

    1 72.4744 71.0645 71.0647 72.4746

    1 72.4744 71.0645 71.0647 72.4746

    1 72.4744 71.0645 71.0647 72.4746

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 591.994 5458658.810 2364655.890 323.689

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 1

    Governing Disturbing Force : -0.064 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 591.994

    Critical Load Case for Overturning about X-Direction : 0

    Governing Overturning Moment : 0.000 kNm

    Governing Resisting Moment : 0.000 kNm

    Minimum Overturning Ratio for the Critical Load Case : 1000000.000Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 0

    Governing Disturbing Force : 0.000 kN

    Governing Restoring Force : 0.000 kN

    Minimum Sliding Ratio for the Critical Load Case : 1000000.000

    Critical Load Case for Overturning about Z-Direction : 1

    Governing Overturning Moment : 0.117 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 323.689

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    55/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.205 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    56/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    57/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.078 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    58/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.595 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    59/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 51.007 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    60/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    61/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    62/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    63/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    64/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.045 0.045 0.063 0.063

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 -0.045 0.045 0.063 0.063

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.068 0.068 0.094 0.094

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 -0.068 0.068 0.094 0.094

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    65/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 71.7692 70.7721 71.7696 72.7667 0.000

    1 71.7692 70.7721 71.7696 72.7667 0.000

    1 71.7692 70.7721 71.7696 72.7667 0.000

    1 71.7692 70.7721 71.7696 72.7667 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 71.7692 70.7721 71.7696 72.7667

  • 8/12/2019 StaadFoundation Design

    66/97

    1 71.7692 70.7721 71.7696 72.7667

    1 71.7692 70.7721 71.7696 72.7667

    1 71.7692 70.7721 71.7696 72.7667

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 837.074 836.825 457.528 457.698

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 1

    Governing Disturbing Force : -0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 837.074

    Critical Load Case for Overturning about X-Direction : 1

    Governing Overturning Moment : 0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.528Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 1

    Governing Disturbing Force : 0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 836.825

    Critical Load Case for Overturning about Z-Direction : 1

    Governing Overturning Moment : 0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.698

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    67/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.246 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    68/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    69/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.078 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    70/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.887 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    71/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.886 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    72/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    73/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    74/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    75/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    76/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.000 0.064 0.089 -0.000

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.000 0.064 0.089 -0.000

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 0.000 0.096 0.133 -0.000

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 0.000 0.096 0.133 -0.000

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    77/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 71.0643 71.0646 72.4747 72.4744 0.000

    1 71.0643 71.0646 72.4747 72.4744 0.000

    1 71.0643 71.0646 72.4747 72.4744 0.000

    1 71.0643 71.0646 72.4747 72.4744 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 71.0643 71.0646 72.4747 72.4744

  • 8/12/2019 StaadFoundation Design

    78/97

    1 71.0643 71.0646 72.4747 72.4744

    1 71.0643 71.0646 72.4747 72.4744

    1 71.0643 71.0646 72.4747 72.4744

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 4209658.969 591.935 323.646 1806019.266

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 0

    Governing Disturbing Force : 0.000 kN

    Governing Restoring Force : 0.000 kN

    Minimum Sliding Ratio for the Critical Load Case : 1000000.000

    Critical Load Case for Overturning about X-Direction : 1

    Governing Overturning Moment : 0.118 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 323.646Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 1

    Governing Disturbing Force : 0.064 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 591.935

    Critical Load Case for Overturning about Z-Direction : 0

    Governing Overturning Moment : 0.000 kNm

    Governing Resisting Moment : 0.000 kNm

    Minimum Overturning Ratio for the Critical Load Case : 1000000.000

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    79/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.263 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    80/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    81/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.078 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    82/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 51.007 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    83/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.595 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    84/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    85/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    86/97

    Input Values

    Footing Geomtery

    Design Type : Set Dimension

    Footing Thickness (Ft) : 450.000 mm

    Slope End Thickness (St) : 150.000 mm

    Footing Length - X (Fl) : 1000.000 mm

    Footing Width - Z (Fw) : 1000.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

  • 8/12/2019 StaadFoundation Design

    87/97

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Dimensions

    Column Shape : Rectangular

    Column Length - X (Pl) : 0.230 m

    Column Width - Z (Pw) : 0.230 m

    Pedestal

    Include Pedestal? No

    Pedestal Shape : N/A

    Pedestal Height (Ph) : N/A

    Pedestal Length - X (Pl) : N/A

    Pedestal Width - Z (Pw) : N/A

    Design Parameters

    Concrete and Rebar Properties

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 25.000 N/mm2

    Yield Strength of Steel : 415.000 N/mm2

    Minimum Bar Size : 6

    Maximum Bar Size : 32

    Minimum Bar Spacing : 50.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 50.000 mm

    Footing Clear Cover (F, CL) : 50.000 mm

    Soil Properties

    Soil Type : Drained

    Unit Weight : 22.000 kN/m3

    Soil Bearing Capacity : 100.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 0.000 mm

    Cohesion : 0.000 kN/m2

    Min Percentage of Slab : 0.000

    Sliding and Overturning

    Coefficient of Friction : 0.500

    Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Footing Design Calculations

    Load Combination/s- Service Stress Level

  • 8/12/2019 StaadFoundation Design

    88/97

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Service Stress Level

    Load Combination Number Load Combination Title

    1 WALL

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Load Combination/s- Strength Level

    Load Combination Number Load Combination Title

    101 FACTORED

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.045 0.045 0.063 -0.063

    Applied Loads - Service StressLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    1 64.812 0.045 0.045 0.063 -0.063

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 0.068 0.068 0.094 -0.094

    Applied Loads - StrengthLevel

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    101 97.218 0.068 0.068 0.094 -0.094

    Footing Size

    Initial Length (Lo) = 1.000 m

    Initial Width (Wo) = 1.000 m

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    89/97

    Area from initial length and width, Ao= LoX Wo= 1.000 m2

    Min. area required from bearing pressure, Amin= P / qmax= 0.718 m2

    Note: Aminis an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).qmax= Respective Factored Bearing Capacity.

    Final dimensions for design

    Length (L2) = 1.000 m Governing Load Case : # 1

    Width (W2) = 1.000 m Governing Load Case : # 1

    Area (A2) = 1.000 m2

    Pressures at Four Corner

    LoadCase

    Pressure atcorner 1

    (q1)(kN/m2)

    Pressure atcorner 2

    (q2)(kN/m2)

    Pressure atcorner 3

    (q3)(kN/m2)

    Pressure atcorner 4

    (q4)(kN/m2)

    Area offooting inuplift (Au)

    (m2)

    1 70.7724 71.7696 72.7665 71.7693 0.000

    1 70.7724 71.7696 72.7665 71.7693 0.000

    1 70.7724 71.7696 72.7665 71.7693 0.000

    1 70.7724 71.7696 72.7665 71.7693 0.000

    If Auis zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to

    account for uplift, areas of negative pressure will be set to zero and the pressure will be

    redistributed to remaining corners.

    Summary of adjusted Pressures at Four Corner

    Load Case Pressure atcorner 1 (q1)

    (kN/m2)

    Pressure atcorner 2 (q2)

    (kN/m2)

    Pressure atcorner 3 (q3)

    (kN/m2)

    Pressure atcorner 4 (q4)

    (kN/m2)

    1 70.7724 71.7696 72.7665 71.7693

  • 8/12/2019 StaadFoundation Design

    90/97

    1 70.7724 71.7696 72.7665 71.7693

    1 70.7724 71.7696 72.7665 71.7693

    1 70.7724 71.7696 72.7665 71.7693

    Details of Out-of-Contact Area

    (If Any)

    Governing load case = N/A

    Plan area of footing = 1.000 sq.m

    Area not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Detail of Out-of-contact Area

    Governing load case = N/A

    Plan area of footing = 1.000 sq.mArea not in contact with soil = 0.000 sq.m

    % of total area not in contact = 0.000%

    Check For Stability Against Overturning And Sliding

    - Factor of safetyagainst sliding

    Factor of safetyagainst overturning

    Load CaseNo.

    Along X-Direction Along Z-Direction

    About X-Direction About Z-Direction

    1 837.079 837.320 457.820 457.658

    Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along X-Direction : 1

    Governing Disturbing Force : 0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 837.079

    Critical Load Case for Overturning about X-Direction : 1

    Governing Overturning Moment : 0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.820Critical load case and the governing factor of safety for overturning and sliding

    Critical Load Case for Sliding along Z-Direction : 1

    Governing Disturbing Force : 0.045 kN

    Governing Restoring Force : 38.031 kN

    Minimum Sliding Ratio for the Critical Load Case : 837.320

    Critical Load Case for Overturning about Z-Direction : 1

    Governing Overturning Moment : -0.083 kNm

    Governing Resisting Moment : 38.030 kNm

    Minimum Overturning Ratio for the Critical Load Case : 457.658

    Check Trial Depth against moment (w.r.t. X Axis)

  • 8/12/2019 StaadFoundation Design

    91/97

    Critical Load Case = #101

    Effective Depth = = 0.397 m

    Effective End Depth = Initial End Depth - = 0.097 m

    Effective Width of

    Equivalent Rectangle =

    Col. Width + (Footing Width - Col.

    Width)/8.0

    = 0.326 m

    Governing moment (Mu) = 7.246 kNm

    As Per IS 456 2000 ANNEX

    G G-1.1C

    Limiting Factor1 (Kumax) = = 0.479107

    Limiting Factor2 (Rumax) = =

    3444.291146

    kN/m2

    Limit Moment Of

    Resistance (Mumax) =

    = 177.101773 kNm

    Mu

  • 8/12/2019 StaadFoundation Design

    92/97

    Critical Load Case = #101

    DX= 0.397 mShear Force(S) = 0.000 kN

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.4178

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength Of

    Concrete(Tc)

    = 453.555 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for one way shear (Along Z Axis)(Shear Plane Parallel To Z axis)

    Critical Load Case = #0

    DZ= 0.000 m

    Shear Force(S) = 0.000 kN

  • 8/12/2019 StaadFoundation Design

    93/97

    Shear Stress(Tv) = 0.000000 kN/m2

    Percentage Of Steel(Pt) = 0.0000

    As Per IS 456 2000 Clause

    40 Table 19

    Shear Strength OfConcrete(Tc)

    = 0.000 kN/m2

    Tv< Tc hence, safe

    Check Trial Depth for two way shear

    Critical Load Case = #101

    Shear Force(S) = 58.999 kN

    Shear Stress(Tv) = 97.078 kN/m2

    As Per IS 456 2000 Clause

    31.6.3.1

    Ks= = 1.000

    Shear Strength(Tc)= = 1250.0000 kN/m2

    KsX Tc = 1250.0000 kN/m2

    Tv=ld hence, safe

    Along Z Axis

    Bar diameter corresponding to max bar size(db) = 8 mm

    As Per IS 456 2000 Clause 26.2.1

    Development Length(ld) = = 0.322 m

    Allowable Length(ldb) = = 0.335 m

    ldb>=ld hence, safe

    Selection of Reinforcement

    Along Z Axis

  • 8/12/2019 StaadFoundation Design

    94/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.886 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    95/97

    As Per IS 456 2000 Clause 26.5.2.1

    Critical Load Case = #101

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 50.887 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    96/97

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin

  • 8/12/2019 StaadFoundation Design

    97/97

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of

    steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Minimum Area of Steel (Astmin) = 541.200 mm2

    Calculated Area of Steel (Ast) = 541.200 mm2

    Provided Area of Steel (Ast,Provided) = 541.200 mm2

    Astmin