St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions...

68
Higgs and Electroweak Physics Sven Heinemeyer, IFCA (Santander) St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs in Supersymmetry 3. Experimental facts and fiction (from a theorist’s view) Sven Heinemeyer – SUSSP 65 – St. Andrews 2009 III/1

Transcript of St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions...

Page 1: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Higgs and Electroweak Physics

Sven Heinemeyer, IFCA (Santander)

St. Andrews, 08/2009

1. The SM and the Higgs

2. The Higgs in Supersymmetry

3. Experimental facts and fiction (from a theorist’s view)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/1

Page 2: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Higgs and Electroweak Physics

Sven Heinemeyer, IFCA (Santander)

St. Andrews, 08/2009

1. The SM and the Higgs

2. The Higgs in Supersymmetry

3. Experimental facts and fiction (from a theorist’s view)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/1

Page 3: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Higgs and Electroweak Physics (III):

Experimental facts and fiction

Sven Heinemeyer, IFCA (Santander)

St. Andrews, 08/2009

1. Higgs boson searches at LEP

2. Higgs boson searches at the Tevatron

3. Higgs boson searches at the LHC

4. Higgs boson precision physics at the ILC

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/2

Page 4: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 5: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle

2. measure its mass (⇒ ok?)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 6: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle

2. measure its mass (⇒ ok?)

3. measure coupling to gauge bosons

4. measure couplings to fermions

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 7: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle

2. measure its mass (⇒ ok?)

3. measure coupling to gauge bosons

4. measure couplings to fermions

5. measure self-couplings

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 8: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle

2. measure its mass (⇒ ok?)

3. measure coupling to gauge bosons

4. measure couplings to fermions

5. measure self-couplings

6. measure spin, . . .

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 9: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle T

2. measure its mass (⇒ ok?) T

3. measure coupling to gauge bosons

4. measure couplings to fermions

5. measure self-couplings

6. measure spin, . . .

T = Tevatron,

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 10: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle T L

2. measure its mass (⇒ ok?) T L

3. measure coupling to gauge bosons L

4. measure couplings to fermions L

5. measure self-couplings

6. measure spin, . . .

T = Tevatron, L = LHC,

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 11: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Discovering the Higgs boson

What has to be done?

1. Find the new particle T L I

2. measure its mass (⇒ ok?) T L I

3. measure coupling to gauge bosons L I

4. measure couplings to fermions L I

5. measure self-couplings I

6. measure spin, . . . I

T = Tevatron, L = LHC, I = ILC

We need the ILC to find the Higgs

and to establish the Higgs mechanism!

But the LHC can do a crucial part already!

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3

Page 12: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

1. Higgs search at LEP:

Dominant SM production process:

e+e− → ZH:e−

e+

Z

HZ

σ(e+e− → ZH) =G2

µM4Z

96π s

[

v2e + a2

e

]

ββ2 + 12M2

Z/s

(1 − M2Z/s)2

with β2 = (1 − (MH + MZ)2/s) (1 − (MH − MZ)2/s) (1)

Dominant decay process: H → bb

b

b

H

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/4

Page 13: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Search for the Standard Model Higgs at LEP: [LEP Higgs WG ’03]

Exclusion limit

at the 95% C.L.:

MH > 114.4 GeV

expected: 115.3 GeV

(LEP has seen exactly as

many Higgs-like events

as could be expected

for MH ≈ 116 GeV,

not more, not less)-30

-20

-10

0

10

20

30

40

50

106 108 110 112 114 116 118 120

mH(GeV/c2)

-2 ln

(Q)

ObservedExpected for backgroundExpected for signal plus background

LEP

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/5

Page 14: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Search for the MSSM Higgs bosons:

Situation is more involved due to many SUSY parameters

→ investigate benchmark scenarios:

→ Vary only MA and tanβ

→ Keep all other SUSY parameters fixed

1. mmaxh scenario:

→ obtain conservative tanβ exclusion bounds (Xt = 2MSUSY)

2. no-mixing scenario

→ no mixing in the scalar top sector (Xt = 0)

3. small αeff scenario

→ hbb coupling ∼ sinαeff/ cos β can be zero: αeff → 0:

main decay mode vanishes, important search channel vanishes

4. gluophobic Higgs scenario

→ hgg coupling is small: main LHC production mode vanishes[M. Carena, S.H., C. Wagner, G. Weiglein ’02]

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/6

Page 15: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Search for neutral SUSY Higgs bosons:

e+e− → Zh, ZH

e−

e+

Z

h, HZ

σhZ ≈ sin2(β − αeff)σSMhZ

σHZ ≈ cos2(β − αeff)σSMhZ

e+e− → Ah, AH

e−

e+

A

h, HZ

σhA ∝ cos2(β − αeff)σSMhZ

σHA ∝ sin2(β − αeff)σSMhZ

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/7

Page 16: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Constraints from the Higgs search at LEP [LEP Higgs Working Group ’06]

Experimental search vs. upper mh-bound (FeynHiggs 2.0)

mmaxh -scenario (mt = 174.3 GeV, MSUSY = 1 TeV):

mh > 92.8 GeV

(expected: 94.9 GeV), 95% C.L.

MA > 93.4 GeV

(expected: 95.2 GeV)

1

10

0 20 40 60 80 100 120 140

1

10

mh (GeV/c2)

tanβ

Excludedby LEP

TheoreticallyInaccessible

mh-max(b)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/8

Page 17: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Parameter region where experimental lower bound on Mh is significantly

lower than SM bound, MH > 114.4 GeV, corresponds to sin2(β −αeff) ≪ 1

“Excluded” tanβ region:

1

10

165 170 175 180 185

1

10

mtop

tanβ

mh-max

Excludedby LEP

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/9

Page 18: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Constraints from the Higgs search at LEP [LEP Higgs Working Group ’06]

Experimental search vs. upper mh-bound (FeynHiggs 2.0)

no-mixing scenario (mt = 174.3 GeV, MSUSY = 1 TeV):

mh > 93.6 GeV

(expected: 96.0 GeV), 95% C.L.

MA > 93.6 GeV

(expected: 96.4 GeV)

1

10

0 20 40 60 80 100 120 140

1

10

mh (GeV/c2)

tanβ

Excludedby LEP

TheoreticallyInaccessible

No Mixing(b)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/10

Page 19: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

2. Higgs search at the Tevatron

Tevatron: pp accelerator: → T

Production processes as at LEP:

q

q′

W

H

W

q

q

Z

H

Z

Other important production channels:

t

t

tg

g

H

q

q

q′

q′

W

W

H

Dominant decays:

b, τ−

b, τ+

H

W

W

H

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/11

Page 20: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/12

Page 21: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Overview of SM production cross sections:

[F. Maltoni et al. ’05]

1

10

10 2

10 3

100 120 140 160 180 200

qq → Wh

qq → Zh

gg → h

bb → h

gg,qq → tth

qq → qqh

mh [GeV]

σ [fb]

SM Higgs production

TeV II

TeV4LHC Higgs working group

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/13

Page 22: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Expectations for Higgs discovery at the Tevatron:

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/14

Page 23: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Real performance compared with expectations: [T. Dorigo ’09]

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/15

Page 24: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Current Status of SM Higgs searches at the Tevatron:

1

10

100 110 120 130 140 150 160 170 180 190 200

1

10

mH(GeV/c2)

95%

CL

Lim

it/S

MTevatron Run II Preliminary, L=0.9-4.2 fb-1

ExpectedObserved±1σ Expected±2σ Expected

LEP Exclusion TevatronExclusion

SMMarch 5, 2009

⇒ applies also to a SM-like light MSSM Higgs boson

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/16

Page 25: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Possible problem in SUSY:

h → bb

can be strongly suppressed

→ “Small αeff scenario”

[M. Carena, S.H., C. Wagner,

G. Weiglein ’02]

⇒ Strong suppression of

h → bb possible,

up to MA <∼ 350 GeV

(not realized in

mSUGRA/CMSSM, GMSB,

AMSB, . . . )

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/17

Page 26: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Tevatron MSSM Higgs searches: “Heavy” MSSM Higgs bosons

Search modes: b b → φ b b , φ = h, H, A

p p → φ → τ+ τ− , φ = h, H, A

Strong enhancement compared to the SM:

σ(bbA) × BR(A → bb) ≃ σ(bbA)SMtan2 β

(1 + ∆b)2× 9

(1 + ∆b)2 + 9

σ(gg, bb → A)× BR(A → τ+τ−) ≃ σ(gg, bb → A)SMtan2 β

(1 + ∆b)2 + 9

∆b =2αs

3πmg µ tanβ × I(mb1

, mb2, mg)

+αt

4πAt µ tanβ × I(mt1

, mt2, µ)

Either H ≈ A or h ≈ A ⇒ another factor of 2

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/18

Page 27: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Example: pp → h/H/A → τ+τ− at D0 with 2 fb−1 [D0 ’08]

(GeV)AM100 120 140 160 180 200 220 240

βta

n

0

10

20

30

40

50

60

70

80

90

100

Observed limitExpected limitLEP 2

100 120 140 160 180 200 220 2400

10

20

30

40

50

60

70

80

90

100-1DØ prel., 1-2.2 fb

= +200 GeVµ, maxhm

(GeV)AM100 120 140 160 180 200 220 240β

tan

0

10

20

30

40

50

60

70

80

90

100

Observed limitExpected limitLEP 2

100 120 140 160 180 200 220 2400

10

20

30

40

50

60

70

80

90

100-1DØ prel., 1-2.2 fb

= +200 GeVµNo-mixing,

⇒ exclusion for light MA and large tanβ

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/19

Page 28: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

3. Higgs search at the LHC:

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/20

Page 29: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

The (un)official (optimistic?) LHC time line:

2009: repairs, cool-down etc.,

first collisions by the end of the year?

2010: 0.1 fb−1 – 0.2 fb−1 (at√

s ≤ 10 TeV) ⇒ first physics results?

2011: O (few) fb−1 ⇒ first physics results?

2012 – 2015: 10 fb−1 per year ⇒ physics results with “low” luminosity

2016 – ?: 100 fb−1 per year ⇒ physics results with “high” luminosity

2019 + X (X > 0): upgrade to SLHC?

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/21

Page 30: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

The (un)official (optimistic?) LHC time line:

2009: repairs, cool-down etc.,

first collisions by the end of the year?

2010: 0.1 fb−1 – 0.2 fb−1 (at√

s ≤ 10 TeV) ⇒ first physics results?

2011: O (few) fb−1 ⇒ first physics results?

2012 – 2015: 10 fb−1 per year ⇒ physics results with “low” luminosity

2016 – ?: 100 fb−1 per year ⇒ physics results with “high” luminosity

2019 + X (X > 0): upgrade to SLHC?

YOU live in an exciting time!!!

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/21

Page 31: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Important SM production channel at the LHC:

Gluon-Fusion:

t

t

tg

g

H

WBF:

q

q

q′

q′

W

W

H

Important decay for Higgs mass measurement:

W

W

W γ

γ

H t

t

t γ

γ

H

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/22

Page 32: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Overview of SM Higgs production at the LHC:

10 2

10 3

10 4

10 5

100 200 300 400 500

qq → Wh

qq → Zh

gg → h

bb → h

qb → qth

gg,qq → tth

qq → qqh

mh [GeV]

σ [fb]

SM Higgs production

LHC

TeV4LHC Higgs working group

gluon fusion: gg → H

weak boson fusion (WBF):

qq → q′q′H

top quark associated

production: gg, qq → ttH

weak boson associated

production: qq′ → WH, ZH

SM Higgs search at the LHC: ⇒ full parameter space accessible!?

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/23

Page 33: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

SM Higgs search at the LHC: ⇒ full parameter space accessible

[ATLAS ’05]

Sig

nal

Sig

nif

ican

ce

1

10

102

-1 L dt=10 fb∫

σ5

WW→VBF Hττ →VBF H

(inclusive + VBF)γγ→H 4l (with K-factors)→ ZZ→H 4l (no K-factors)→ ZZ→H

bb→ttH,Hν lν l→ WW→H

llbb→ ZZ→H llqq→ ZZ→VBF H

Combined

(GeV)HM100 200 300 400 500

⇒ most problematic case also at the LHC: MH = 115 . . .120 GeV

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/24

Page 34: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Step 2: Measurement of the mass

Best channel for mass measurement in the SM: H → γγ[ATLAS ’99]

⇒ δMH ≈ 200 MeV

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/25

Page 35: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Situation is a bit more complicated for SUSY Higgses (φ = h, H, A)

[Tev4LHC Higgs working group report ’06]

100 150 200 250 300 350 400 450 500MΦ [GeV]

10-1

100

101

102

103

104

105

106

Φ p

rodu

ctio

n cr

oss

sect

ion

[fb]

h

H

A

LHC, √s = 14 TeVmh

max, tanβ = 5

(bb)Φ

ggΦ

qqΦ

W/ZΦ

ttΦ

gluon fusion: gg → φ

weak boson fusion (WBF):

qq → q′q′φ

top quark associated

production: gg, qq → ttφ

weak boson associated

production: qq′ → Wφ, Zφ

NEW: bbφ

Search for the lightest MSSM Higgs at the LHC:

⇒ full parameter accessible But there might be problems . . .

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/26

Page 36: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Possible problem in SUSY:

gg → h → γγ

can be strongly suppressed

→ “gluophobic Higgs scenario”

[M. Carena, S.H., C. Wagner,

G. Weiglein ’02]

⇒ Strong suppression of

gg → h → γγ possible

over the whole parameter space

(not realized in

mSUGRA/CMSSM, GMSB,

AMSB, . . . )0 200 400 600 800 1000

MA [GeV]

0

10

20

30

40

50

tanβ

0.0 - 0.2

0.2 - 0.4

0.4 - 0.6

0.6 - 0.8

0.8 - 1.0

> 1.0

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/27

Page 37: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Mh measurement in the “nice” mmaxh scenario:

[CMS ’06]

Measurement possible only for

MA >∼ 250 GeV

⇒ δMh ≈ 200 MeV

other channels:

h → ZZ∗ → 4µ (Mh >∼ 130 GeV)

otherwise: δMh >∼ 1 − 2 GeV

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/28

Page 38: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

The heavy MSSM Higgs bosons

MSSM Higgs discovery contours in MA–tanβ plane

(mmaxh benchmark scenario): [ATLAS ’99] [CMS ’03]

ATLAS

LEP 2000

ATLAS

mA (GeV)

tan

β

1

2

3

4

56789

10

20

30

40

50

50 100 150 200 250 300 350 400 450 500

0h

0H A

0 +-H

0h

0H A

0 +-H

0h

0H A

00

h H+-

0h H

+-

0h only

0 0Hh

ATLAS - 300 fbmaximal mixing

-1

LEP excluded

areas where only h is observable ⇒ “LHC wedge”

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/29

Page 39: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Latest results for neutral heavy Higgs bosons:

MSSM Higgs discovery contours in MA–tanβ plane (Φ = H, A)

(mmaxh benchmark scenario): [CMS PTDR ’06]

2,GeV/cAM100 200 300 400 500 600 700 800

βta

n

10

20

30

40

50

-1CMS, 30 fb

= h,H,Aφ, φ bb→pp scenariomax

hm2 = 1 TeV/cSUSYM2 = 200 GeV/c2M

2 = 200 GeV/cµ2 = 800 GeV/cgluinom

SUSY = 2 Mt

Stop mix: X

µ e

→ ττ → φ

+jet

µ → ττ

→ φe+jet→ ττ → φ

-1

jet+jet, 60 fb

→ ττ → φ

µµ → φ

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/30

Page 40: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Charged Higgs boson searches:

MSSM Higgs discovery contours in MA–tanβ plane

(mmaxh benchmark scenario): [CMS PTDR ’06]

2,GeV/cAM100 200 300 400 500 600

βta

n

10

20

30

40

50

60

70

80-1CMS, 30 fb

νντ → ±, H± tbH→pp 2 = 175 GeV/ctm

scenariomaxhm

2 = 1 TeV/cSUSYM2 = 200 GeV/c2M

2 = 200 GeV/cµ2 = 800 GeV/cgluinom

SUSY = 2 Mt

Stop mix: X

jjb→ Wb →t

blν l→ Wb →t

light charged Higgs:

MH± < mt

heavy charged Higgs:

MH± > mt

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/31

Page 41: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Differences compared to the SM Higgs:

Additional enhancement factors compared to the SM case:

b

b

Ayb → yb

tanβ

1 + ∆b

At large tanβ: either H ≈ A or h ≈ A

t

b

H+ ybtanβ

1 + ∆b

∆b =2αs

3πmg µ tanβ × I(mb1

, mb2, mg)

+αt

4πAt µ tanβ × I(mt1

, mt2, µ)

⇒ other parameters enter ⇒ strong µ dependence

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/32

Page 42: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Most powerful search modes for heavy MSSM Higgs bosons:

bb → H/A → τ+τ− + X

gb → tH± + X, H± → τντ

pp → tt → H± + X, H± → τντ

Enhancement factors compared to the SM case:

H/A :tan2 β

(1 + ∆b)2× BR(H → τ+τ−) + BR(A → τ+τ−)

BR(H → τ+τ−)SM

H± :tan2 β

(1 + ∆b)2× BR(H± → τντ)

⇒ ∆b effects so far neglected by ATLAS/CMS

also relevant for BR(H/A → τ+τ−), BR(H± → τντ)

also relevant: correct evaluation of Γ(H/A/H± → SUSY)

⇒ additional effects on BR(H/A → τ+τ−), BR(H± → τντ)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/33

Page 43: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Suggestion for new benchmark scenarios:

[M. Carena, S.H., C. Wagner, G. Weiglein ’05]

→ investigate benchmark scenarios:

→ Vary only MA and tanβ (large!)

→ Keep all other SUSY parameters fixed

→ Vary in addition µ: µ = ±1000,±500,±200 GeV

(if perturbativity allows)

1. mmaxh scenario:

→ obtain conservative tanβ exclusion bounds (Xt = 2MSUSY)

At large ⇒ large O (αt) contribution to ∆b

2. no-mixing scenario

→ no mixing in the scalar top sector (Xt = 0)

At small ⇒ small O (αt) contribution to ∆b

⇒ large difference to mmaxh scenario

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/34

Page 44: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Dependence of LHC wedge from bb → H/A → τ+τ− → 2 jets on µ:

[S.H., A. Nikitenko, G. Weiglein et al. ’06]

2,GeV/cAM100 200 300 400 500 600 700 800

βta

n

10

20

30

40

502 = -1000 GeV/cµ

2 = -200 GeV/cµ

2 = 200 GeV/cµ2 = 1000 GeV/cµ

-1CMS, 60 fb

j+j→ ττ → φ bb→pp scenariomax

hm2 = 1 TeV/cSUSYM2 = 200 GeV/c2M

SUSY = 0.8 Mgluinom

SUSY = 2 MtStop mix: X

2,GeV/cAM100 200 300 400 500 600 700 800

βta

n

10

20

30

40

502 = -1000 GeV/cµ

2 = -200 GeV/cµ

2 = 200 GeV/cµ2 = 1000 GeV/cµ

-1CMS, 60 fb

j+j→ ττ → φ bb→pp

no mixing scenario2 = 2 TeV/cSUSYM2 = 200 GeV/c2M

SUSY = 0.8 Mgluino

m = 0tStop mix: X

⇒ now based on full CMS simulation

⇒ non-negligible variation with the sign and absolute value of µ

(→ numerical compensations in production and decay)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/35

Page 45: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Precision of δM/M from bb → H/A → τ+τ− → 2 jets:

[S.H., A. Nikitenko, G. Weiglein et al. ’06]

⇒ now based on full CMS simulation

⇒ high precision measurement of heavy Higgs boson masses possible

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/36

Page 46: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Charged Higgs: comparison with CMS PTDR (mmaxh scenario):

[M. Hashemi, S.H., R. Kinnunen, A. Nikitenko, G. Weiglein ’07]

2,GeV/cAM100 200 300 400 500 600

βta

n

10

20

30

40

50

60

70

80

2 = -1000 GeV/cµ2 = -200 GeV/cµ

2 = 200 GeV/cµ2 = 1000 GeV/cµ

scenariomaxhm

2 = 1 TeV/cSUSYM2 = 200 GeV/c2M

SUSY = 0.8 Mgluinom

SUSY = 2 MtX

→ note: MA–tanβ plane

light charged Higgs:

always worse than PTDR

better MH± calculation!

inclusion of ∆b effects

heavy charged Higgs:

PTDR in “the middle”

new results partially

substantially worse

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/37

Page 47: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

4. Higgs precision physics at the ILC

Higgs production at the ILC:

110

100100 200 300 400 500 600 700

�(e+e� ! Higgs) [fb]

ps = 350 500 800 GeV MHHZH���

Higgs-strahlung:

e+e− → Z∗ → ZH

e−

e+

Z

HZ

weak boson fusion (WBF):

e + e− → ννH

e+

e−

ν

ν

W+

W−

H

⇒ Measurement of masses, couplings, . . . in per cent/per mille

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/38

Page 48: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Some ILC specifics:

recoil method: e+e− → ZH, Z → e+e−, µ+µ−

⇒ total measurement of Higgs production cross section

⇒ NO additional theoretical assumptions needed for absolute

determination of partial widths

⇒ all observable channels can be measured with high accuracy

Some ILC results (500 fb−1@√

s = 350 GeV):

δMH ≈ 50 MeV

δgZZH ≈ 2.5%, δgWWH ≈ 2 − 5%

δgHbb ≈ 1 − 2% (for MH <∼ 150 GeV)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/39

Page 49: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Higgs physics at the ILC:

SM Higgs @ ILC:

Precise measurement of:

1. Higgs boson mass,

δMH ≈ 50 MeV

2. Higgs boson width

(direct/indirect)

3. Higgs boson couplings,

O (few%) ⇒4. Higgs boson quantum

numbers: spin, . . .

[TESLA TDR ’01]

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/40

Page 50: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Higgs physics at the ILC:

SM Higgs @ ILC:

Precise measurement of:

1. Higgs boson mass,

δMH ≈ 50 MeV

2. Higgs boson width

(direct/indirect)

3. Higgs boson couplings,

O (few%) ⇒4. Higgs boson quantum

numbers: spin, . . .

[TESLA TDR ’01]

But do we need the ILC precision?

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/40

Page 51: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Higgs physics at the ILC:

SM Higgs @ ILC:

Precise measurement of:

1. Higgs boson mass,

δMH ≈ 50 MeV

2. Higgs boson width

(direct/indirect)

3. Higgs boson couplings,

O (few%) ⇒4. Higgs boson quantum

numbers: spin, . . .

[TESLA TDR ’01]

But do we need the ILC precision?

YES! To discriminate between the SM and extensions

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/40

Page 52: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Example I: Higgs couplings in the MSSM:

“Normal” MSSM scenario:

⇒ measurable deviations over large parts of the parameter space

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/41

Page 53: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Example II: Higgs couplings in model with extra dimensions:

Effects of Kaluza Klein towers:

-40%

-30%

-20%

-10%

0% (SM)

10%

20%

30%

c τ t W Z Hb40%

Devia

tion fr

om

SM

Valu

ehΓ

Extra DimensionsHiggs-radion mixing

?

⇒ measurable deviations over large parts of the parameter space

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/42

Page 54: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Example III: Higgs couplings in a baryogenis motivated SM extension:

-40%

-30%

-20%

-10%

0% (SM)

10%

20%

30%

c τ t W Z Hb40%D

evia

tion fr

om

SM

Valu

ehΓ

Electroweak Baryogenesis

⇒ Only Higgs self coupling deviates, measurement possible!

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/43

Page 55: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Step 5: measurement of the Higgs boson self-coupling

⇒ only possible at the ILCZ He�e+ HHZ Z HHZ Z HHZ1

Parton-level study:

[Djouadi, Kilian, Muhlleitner,

Zerwas ’99]

1 ab−1 ⇒ 20–30%

measurement of λ = λHHH

However:

λ = λHHHH out of reach

for all foreseeable colliders100 120 140 160 180

0

0.2

0.1

0.3

MH[GeV]

SM Double Higgs-strahlung: e+ e- → ZHH

σ [fb]

√s = 800 GeV

√s = 500 GeV

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/44

Page 56: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

⇒ only Lepton Colliders can “verify” the Higgs mechanism

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/45

Page 57: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

. . . including couplings to the second family!

⇒ coupling to the c quark:

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/46

Page 58: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

. . . including couplings to the second family!

⇒ coupling to the muon:

µ+µ− Mass (GeV)

Evt

s. /

1 ab

-1

0

5

10

15

20

25

115 120 125 130 135 140 145 150 155

(MH = 120 GeV,√

s = 800 GeV, Lint = 1 ab−1)

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/47

Page 59: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Step 6: measurement of the Higgs boson spin

⇒ easy at the ILC

Threshold scan for

σ(e+e− → ZX):

X = H ⇒ σ ∼ β

(β from kinematics)

20 fb−1

⇒ identification easy

s (GeV)

cros

s se

ctio

n (f

b)

J=0

J=1

J=2

0

5

10

15

210 220 230 240 250

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/48

Page 60: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Indirect determination of unknown Higgs sector parameters

LHC/ILC reach for MSSM Higgs bosons:

LHC:

h : all MA − tanβ plane

H, A : unreachable parts

CMS, 30 fb−1, mmaxh scenario: ⇒

ILC:

kinematic limit: MA <∼√

s/2

→√

s = 800 GeV

→√

s = 1000 GeV

γγ:

kinematic limit: MA <∼ 0.8√

sILC:

√s = 800 GeV√s = 1000 GeV

γγ:√

s = 800 GeVQ: Is it possible to extend the reach for heavy Higgs bosons ?

A: Yes, by direct and indirect measurements

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/49

Page 61: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

⇒ indirect determination of MA in LHC wedge

Existing LHC analyses neglect:

− MSSM intrinsic uncertainties

− parametric SM uncertainties

− anticipated parametric MSSM uncertainties

⇒ existing analyses unrealistic

One analysis includes all uncertainties: [K. Desch et al. ’04]

⇒ needs ILC uncertainty of

r ≡

[

BR(h → bb)/BR(h → WW ∗)]

MSSM[

BR(h → bb)/BR(h → WW ∗)]

SM

+ input for masses, mixing angles from LHC ⊕ ILC

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/50

Page 62: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Analysis using r: [K. Desch et al. ’04]

∆r/r = 4%: upper limit on MA up to MA <∼ 800 GeV

∆r/r = 1.5%: ∆MA/MA = 20(30)% for MA = 600(800) GeV

inclusion of parametric errors crucial for reliable bounds

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/51

Page 63: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Tricky scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the ILC?

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/52

Page 64: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Tricky scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the ILC?

A: Of course!

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/52

Page 65: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Tricky scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the ILC?

A: Of course! Or better: even more!

The ILC provides:

− precise Higgs coupling measurements

− precision observable measurements with the GigaZ option

⇒ Only the ILC can find deviations from the SM predictions via the various

precision measurements

⇒ Only the ILC can point towards extensions of the SM

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/52

Page 66: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Outlook

• The quest for electroweak symmetry breaking continues!

• Low-energy Supersymmetry continues to be our best bet for physics

beyond the Standard Model

• Data rules:

We need experimental information from Tevatron, LHC, ILC,

ν experiments, dark matter searches, low-energy experiments, . . .

to verify / falsify our ideas about electroweak symmetry breaking,

the Higgs, extensions of the SM, . . .

• The experiments in the next years will bring a decisive test of our ideas

about the Higgs and electroweak symmetry breaking

⇒ Very exciting prospects for the coming years

Expect the unexpected!

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/53

Page 67: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Interested in Theory Predictions?

Interested in

• theory predictions for the Tevatron?

• theory predictions for the LHC?

• theory predictions for the ILC?

• phenomenology analyses in Higgs/SUSY?

⇒ You can do your PhD at IFCA (Santander, Spain)

contact: Sven.Heinemeyer @ cern.ch

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/54

Page 68: St. Andrews, 08/2009 1. The SM and the Higgs 2. The Higgs ... · 4. measure couplings to fermions Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/3. Discovering the Higgs boson

Santander, Spain: (15 minutes by foot from the institute :-)

contact: Sven.Heinemeyer @ cern.ch

Sven Heinemeyer – SUSSP65 – St. Andrews 2009 III/55