Springer Series in Geomechanics and Geoengineering

30
Springer Series in Geomechanics and Geoengineering Wei Wu · Hai-Sui Yu Editors Proceedings of China-Europe Conference on Geotechnical Engineering Volume 1

Transcript of Springer Series in Geomechanics and Geoengineering

Page 1: Springer Series in Geomechanics and Geoengineering

Springer Series in Geomechanics and Geoengineering

Wei Wu · Hai-Sui Yu Editors

Proceedings of China-Europe Conference on Geotechnical EngineeringVolume 1

Page 2: Springer Series in Geomechanics and Geoengineering

Springer Series in Geomechanicsand Geoengineering

Series editor

Wei Wu, Universität für Bodenkultur, Vienna, Austriae-mail: [email protected]

Page 3: Springer Series in Geomechanics and Geoengineering

Geomechanics deals with the application of the principle of mechanics togeomaterials including experimental, analytical and numerical investigations intothe mechanical, physical, hydraulic and thermal properties of geomaterials asmultiphase media. Geoengineering covers a wide range of engineering disciplinesrelated to geomaterials from traditional to emerging areas.

The objective of the book series is to publish monographs, handbooks, workshopproceedings and textbooks. The book series is intended to cover both thestate-of-the-art and the recent developments in geomechanics and geoengineering.Besides researchers, the series provides valuable references for engineeringpractitioners and graduate students.

More information about this series at http://www.springer.com/series/8069

Page 4: Springer Series in Geomechanics and Geoengineering

Wei Wu • Hai-Sui YuEditors

Proceedings of China-EuropeConference on GeotechnicalEngineeringVolume 1

123

Page 5: Springer Series in Geomechanics and Geoengineering

EditorsWei WuInstitut für GeotechnikUniversität für BodenkulturVienna, Austria

Hai-Sui YuFaculty of EngineeringUniversity of LeedsLeeds, UK

ISSN 1866-8755 ISSN 1866-8763 (electronic)Springer Series in Geomechanics and GeoengineeringISBN 978-3-319-97111-7 ISBN 978-3-319-97112-4 (eBook)https://doi.org/10.1007/978-3-319-97112-4

Library of Congress Control Number: 2018949380

© Springer Nature Switzerland AG 2018This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publisher, the authors, and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, express or implied, with respect to the material contained herein orfor any errors or omissions that may have been made. The publisher remains neutral with regard tojurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Page 6: Springer Series in Geomechanics and Geoengineering

Foreword

Nigh on a century after Karl Terzaghi published his epoch-making book“Erdbaumechanik auf bodenphysikalischer Grundlage” in 1925, geotechnicalengineering has developed from its infancy to a full-fledged engineering discipline.Europe is the cradle of modern soil mechanics and geotechnical engineering. Theold continent still hosts the finest researchers, engineers, contractors, and manu-facturers in geotechnical engineering. However, the construction activities, as thedriving force for research and innovation, have subsided considerably in Europe. Amajor player in the construction sector is China with its huge domestic market aswell as its ambitious Belt and Road Initiative abroad. For many years, China has themost construction activities of the world with such impressive infrastructure pro-jects such as the Three Gorges Dam, South–North Water Transport, High-SpeedRailway. This conference will link the birthplace of modern soil mechanics with thecountry with most construction and research activities in geotechnical engineering.It offers a welcoming opportunity to take stock of the state-of-the-art practice andthe current research trends in China, Europe, and beyond.

The responses following our call for papers were overwhelming and echoed wellbeyond China and Europe. We have received about 400 papers from 35 countries,which make this conference a truly international event. The contributions in thisproceedings cover virtually all areas of geotechnical engineering including con-stitutive model; numerical simulation; micro–macro relationship; laboratory testing;monitoring, instrumentation, and field test; foundation engineering; undergroundconstruction; innovative geomaterials; environmental geotechnics; cold regionsgeotechnical engineering; transportation and hydraulic engineering; unsaturatedsoils in waste management and CO2 storage; geohazards–risk assessment, miti-gation, and prevention. The proceedings provide an excellent overview of thecurrent geoengineering research and practice in China, Europe, and beyond.

v

Page 7: Springer Series in Geomechanics and Geoengineering

I am indebted to the plenary speakers, session organizers, and authors. Thegenerous support from the City of Vienna and PORR, Austria, represented byDr. Schön Harald (CEO), is gratefully acknowledged. My co-workers in Vienna,Dr. Wang Shun, Dr. He Xu-Zhen, and Dr. Lin Jia, spent many hours reading andcorrecting the papers. Lastly, I am grateful to my dear wife Ms. Wang Jing-Xiu,who made every effort to make this conference a success.

April 2018 Wei Wu

vi Foreword

Page 8: Springer Series in Geomechanics and Geoengineering

Contents

Part I: Constitutive Model

A Simple Anisotropic Mohr-Coulomb Strength Criterionfor Granular Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Wei Cao, Rui Wang, and Jian-Min Zhang

The Equivalent Stress of Soil Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . 8Tong Dong, Liang Kong, Likun Hua, Xing Wang, and Yingren Zheng

Constitutive Model for Granular-Fluid Flows Basedon Stress Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Xiaogang Guo, Wei Wu, Liangtong Zhan, and Ping Chen

The Hypoplastic Model Expressed by Mean Stress and DeviatoricStress Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Xuzhen He, Wei Wu, Dichuan Zhang, and Jong Kim

Multi-scale Modelling of Crushable Granular Materials . . . . . . . . . . . . 21Pierre-Yves Hicher

Study on the Constitutive Model of Sandy Pebble Soil . . . . . . . . . . . . . . 26Jizhi Huang and Guoyuan Xu

Isothermal Hyperelastic Model for Saturated Porous MediaBased on Poromechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Yayuan Hu

Review of N Models in Simulating Mechanical Behavior of Clays . . . . . 35Jianhong Jiang, Hoe I. Ling, and Victor N. Kaliakin

Strain-Rate and Temperature Dependency for PreconsolidationPressure of Soft Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Ting Li, Qi-Yin Zhu, Lian-Fei Kuang, and Li Gang

vii

Page 9: Springer Series in Geomechanics and Geoengineering

A Nonlinear Elastic Model for Dilatant Coarse-Grained Materials . . . . 43Si-hong Liu, Yi Sun, and Chao-min Shen

Influence of Multidirectional Principal Stress Axes RotationSequences on Deformation of Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Long Xue, Rui Wang, and Jian-Min Zhang

Transversely Isotropic Strength Criterion for Soils Basedon the Characteristic Mobilized Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 52Dechun Lu, Jingyu Liang, Chao Ma, and Xiuli Du

A Multi-Phase-Field Anisotropic Damage-Plasticity Modelfor Crystalline Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57SeonHong Na and WaiChing Sun

Simulation of the Undrained Behavior of Particulate AssembliesSubjected to Continuous Rotation of Lode Angle . . . . . . . . . . . . . . . . . . 61Mohammadjavad Salimi and Ali Lashkari

On Effective Stress and Effective Stress Equation . . . . . . . . . . . . . . . . . 65Longtan Shao, Xiaoxia Guo, and Boya Zhao

Hypoplastic Simulation of Axisymmetric Interface ShearTests in Granular Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Hans Henning Stutz and Alejandro Martinez

A Cam-Clay-Based Fractional Plasticity Model for Granular Soil . . . . . 74Yifei Sun and Yufeng Gao

Modelling Root-reinforced Soils with Nor-Sand . . . . . . . . . . . . . . . . . . . 79Barbara M. Świtała and E. James Fern

Experience of Parameter Optimization of the High-CycleAccumulation Model for Undrained Triaxial Tests on Sand . . . . . . . . . 84Yining Teng, Hans Petter Jostad, and Youhu Zhang

Hardening Soil Model - Influence of Plasticity Indexon Unloading - Reloading Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Wojciech Tymiński, Tomasz Kiełczewski, and Hubert Daniluk

A Visco-Hypoplastic Constitutive Model and Its Implementation . . . . . . 94Guofang Xu, Wei Wu, Jilin Qi, Xiaoliang Yao, Fan Yu, and Aiguo Guo

Advance in the Constitutive Modelling for Frozen Soils . . . . . . . . . . . . . 98Guofang Xu, Lingwei Kong, Yiming Liu, Cheng Chen, and Zhiliang Sun

Towards a Better Understanding of the Mechanicsof Soil Liquefaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Jun Yang, H. Y. Eric Sze, Liming Wei, and Xiao Wei

viii Contents

Page 10: Springer Series in Geomechanics and Geoengineering

UH Model for Granular Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Yang-ping Yao, Lin Liu, and Ting Luo

An Optimization-Based Parameter Identification Toolfor Geotechnical Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Zhen-Yu Yin and Yin-Fu Jin

Constitutive Model for Soaking-Induced Volume Changeof Unsaturated Compacted Expansive Soil . . . . . . . . . . . . . . . . . . . . . . . 116Wei-lie Zou, Xie-qun Wang, Jun-feng Zhang, Zhong Han,and Liang-long Wan

Part II: Micro-Macro Relationship

Linking Microstructural Behavior with Macrostructural Observationson Unsaturated Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Hiram Arroyo and Eduardo Rojas

The Effect of Particle Shape Polydispersity on Deformabilityof Granular Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Yuxuan Che, Fang Liu, Gang Deng, and Jizhong He

Grain Learning: Bayesian Calibration of DEM Models and ValidationAgainst Elastic Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Hongyang Cheng, Takayuki Shuku, Klaus Thoeni, Pamela Tempone,Stefan Luding, and Vanessa Magnanimo

An Analytical Study of the Bi-rock SystemConsidering Interface Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Xing-wei Chen and Zhong-qi Quentin Yue

Natural State Parameter for Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Katarzyna Dołżyk-Szypcio

Micro-structure Evolution in Layered Granular MaterialsDuring Biaxial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Longlong Fu, Peijun Guo, Shunhua Zhou, and Yao Shan

Dilatancy Phenomenon Study in Remolded Clays –A Micro-Macro Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Qian-Feng Gao, Mohamad Jrad, Lamine Ighil Ameu, Mahdia Hattab,and Jean-Marie Fleureau

DEM Simulation of Wave Propagation in Anisotropic Granular Soil . . . 153Xiaoqiang Gu and Shuocheng Yang

On Collapse of 2D Granular Columns: A Grain-Scale Investigation . . . 157Xuzhen He, Wei Wu, Dichuan Zhang, and Jong Kim

Contents ix

Page 11: Springer Series in Geomechanics and Geoengineering

DEM Simulation of the Behavior of Rockfill Sheared with DifferentIntermediate Principle Stress Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Juntian Hong, Ming Xu, and Erxiang Song

DEM Simulation of Sand Liquefaction Under PartiallyDrained Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Qian-Qian Hu, Rui Wang, and Jian-Min Zhang

A Hard-Sphere Model for Wet Granular Dynamics . . . . . . . . . . . . . . . . 169Kai Huang

Distinct Element Modelling of Constant Stress Ratio CompressionTests on Pore-Filling Type Methane Hydrate Bearing Sediments . . . . . . 174Mingjing Jiang, Wenkai Zhu, and Jie He

Investigating the Mechanical Behavior of Pore-Filling Type MethaneHydrate Bearing Sediments by the Discrete Element Method . . . . . . . . 178Mingjing Jiang, Jun Liu, and Jie He

A New Bottom-Up Strategy for Multiscale Studying of Clay UnderHigh Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182Lianfei Kuang, Guoqing Zhou, and Yazhou Zou

Evaluation of Grain Shape Parameters of Fujian Standard Sand . . . . . 186Shuai Li, Wan-Huan Zhou, Xue-Ying Jing, and Hua-Xiang Zhu

DEM Simulation of Oedometer Tests with Grain Crushing Effects . . . . 191Jia Lin, Erich Bauer, and Wei Wu

Mechanical Behaviour of Meso-Scale Structure at Critical Statefor Granular Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195Yang Liu, Xiaoxiao Wang, and Shunchuan Wu

Calibrating the Strength Ratio and the Failure Envelope for DEMModeling of Quasi-Brittle Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Haiying Huang and Yifei Ma

Investigation on Stress-Fabric Relation for AnisotropicGranular Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Weiyi Li, Jiangu Qian, and Xiaoqiang Gu

Micromechanical Analysis of the At-Rest Lateral Pressure Coefficientof Granular Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Chaomin Shen and Sihong Liu

Shear Modulus Degradation and Its Association with Internal Damagein Cemented Granular Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211Zhifu Shen, Mingjing Jiang, Zhihua Wang, and Shengnian Wang

x Contents

Page 12: Springer Series in Geomechanics and Geoengineering

Induced Crack Network Evolution in Geomaterials: µct Examinationand Mathematical Morphology Based Analysis . . . . . . . . . . . . . . . . . . . 216Maciej Sobótka, Michał Pachnicz, and Magdalena Rajczakowska

Kinematic Nature of Sand Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220Zenon Szypcio

Shortcomings of Existing Scan Line Void Fabric Tensors . . . . . . . . . . . 225A. I. Theocharis, E. Vairaktaris, and Y. F. Dafalias

DEM Simulation of Coarse-Grained Soil in Slip Zone . . . . . . . . . . . . . . 229Shun Wang, Wei Wu, Wei Xiang, and Deshan Cui

Discrete Element Experiment and Simulation . . . . . . . . . . . . . . . . . . . . 233Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang, Quan Yuan, Xia Li,and Yan Gao

Analytical Data Based Time-Dependent Mechanical Responsesof an Intergranular Bond Considering Various Bond Sizes . . . . . . . . . . 238H. N. Wang, N. Che, H. Gong, and M. J. Jiang

Visualization of Geogrid Reinforcing Effects Under Plane StrainConditions Using DEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242Zhijie Wang, Martin Ziegler, and Guangqing Yang

DEM Investigation of Fracture Characteristic of Calcareous SandParticles Under Dynamic Compression . . . . . . . . . . . . . . . . . . . . . . . . . 247Lei Wang, Xiang Jiang, Hanlong Liu, Zhichao Zhang, and Yang Xiao

Validation of Synthetic Images for Contact Fabric Generated by DEM . . . 252Max Wiebicke, Václav Šmilauer, Ivo Herle, Edward Andò,and Gioacchino Viggiani

Particle-Scale Observations of the Pressure Dip Under the Sand Pile . . . . 256Qiong Xiao and Xia Li

Experimental Study on Clay Pore Microstructure Based on SEMand IPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261Ri-qing Xu, Li-yang Xu, and Xiao-ran Yan

Investigating the Effect of Intermediate Principal Stress on GranularMaterials via DEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265Dunshun Yang, Xia Li, and Hai-Sui Yu

DEM Analysis of Cone Penetration Test in Sand . . . . . . . . . . . . . . . . . . 269Fuguang Zhang

DEM Investigation of Particle Crushing Effects on Static and DynamicPenetration Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274Ningning Zhang, Marcos Arroyo, Matteo Ciantia, and Antonio Gens

Contents xi

Page 13: Springer Series in Geomechanics and Geoengineering

Simulation of One-Dimensional Compression of Sand ConsideringIrregular Grain Shapes and Grain Breakage . . . . . . . . . . . . . . . . . . . . . 279Fan Zhu and Jidong Zhao

Size Effects in Cone Penetration Tests in Sand . . . . . . . . . . . . . . . . . . . . 283Pei-Zhi Zhuang and Hai-Sui Yu

Part III: Numerical Simulation

SPH-FDM Boundary Method for the Heat Conductionof Geotechnical Materials Considering Phase Transition . . . . . . . . . . . . 291Bing Bai, Dengyu Rao, Nan Wu, and Tao Xu

MPM Simulations of the Impact of Fast Landslideson Retaining Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296Francesca Ceccato, Paolo Simonini, and Veronica Girardi

Extensions to the Limit Equilibrium and Limit Analysisin Geomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300Zuyu Chen

Extrusion Flow Modelling of Concentrated Mineral Suspensions . . . . . . 307Chuan Chen, Damien Rangeard, and Arnaud Perrot

Enriched Galerkin Finite Element Method for Locally MassConservative Simulation of Coupled Hydromechanical Problems . . . . . 312Jinhyun Choo and Sanghyun Lee

Influence of Individual Strut Failure on Performance of DeepExcavation in Soft Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316Kamchai Choosrithong and Helmut F. Schweiger

Implementation of Advanced Constitutive Models for the Predictionof Surface Subsidence After Underground Mineral Extraction . . . . . . . 320Yury Derbin, James Walker, Dariusz Wanatowski, and Alec M. Marshall

Effect of Travelling Waves on Tunnels in Soft Soil . . . . . . . . . . . . . . . . 324Stefania Fabozzi, Emilio Bilotta, Haitao Yu, and Yong Yuan

Numerical Simulation of a Post-grouted Anchor and Validationwith In-Situ Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328Carla Fabris, Václav Račanský, Boštjan Pulko, and Helmut F. Schweiger

Numerical Analysis of Monopile Behavior UnderShort-Term Cyclic Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Anfeng Hu, Peng Fu, and Kanghe Xie

An Improved Beam-Spring Model for Excavation Support . . . . . . . . . . 336Biao Huang, Mingguang Li, Jinjian Chen, Yongmao Hou,and Jianhua Wang

xii Contents

Page 14: Springer Series in Geomechanics and Geoengineering

Numerical Modelling of a Monopile for Estimating the NaturalFrequency of an Offshore Wind Turbine . . . . . . . . . . . . . . . . . . . . . . . . 340David Igoe, Luke J. Prendergast, Breiffni Fitzgerald,and Saptarshi Sarkar

Modelling of Deep Excavation Collapse Using HypoplasticModel for Soft Clays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344Jan Jerman and David Mašín

Simulation of Caisson Foundation in Sand Using a Critical StateBased Soil Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350Zhuang Jin, Zhen-Yu Yin, Panagiotis Kotronis, and Ze-Xiang Wu

Analytical Solution for the Transient Response of Cylindrical Cavityin Unsaturated Porous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355Wei-Hua Li, Feng-Cui Feng, and Zhao Xu

Seepage and Deformation Analyses in Unsaturated SoilsUsing ANSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360Yangyang Li, Harianto Rahardjo, and K. N. Irvine

Implicit and Explicit Integration Schemes of a Double StructureHydro-Mechanical Coupling Model for Unsaturated Expansive Clays . . . . 365Jian Li, Pengyue Wang, Lu Hai, Yanhua Zhu, and Yan Liu

Influence of Different Soil Constitutive Models on SSI Effecton a Liquefiable Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370Zheng Li

Performance of Composite Buttress and Cross Walls to ControlDeformations Induced by Excavation . . . . . . . . . . . . . . . . . . . . . . . . . . . 373Aswin Lim and Chang-Yu Ou

Study on the Envelope of Stress Path During Deep Excavation . . . . . . . 377Li Liu, Hong-ru Zhang, and Jian-kun Liu

New Bond Model in Disk-Based DDA for Rock Failure Simulation . . . . 381Feng Liu, Kaiyu Zhang, and Kaiwen Xia

On the Pseudo-Coupled Winkler Spring Approach for Soil-MatFoundation Interaction Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386Dimitrios Loukidis and Georgios-Pantelis Tamiolakis

Numerical Analysis of Soil Ploughing Using the Particle FiniteElement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390Lluís Monforte, Marcos Arroyo, Maxat Mamirov, and Jong R. Kim

Numerical Analyses with an Equivalent Continuum ConstitutiveModel for Reinforced Soils with Angled Bar Components . . . . . . . . . . . 394Seyed Mehdi Nasrollahi and Ehsan Seyedi Hosseininia

Contents xiii

Page 15: Springer Series in Geomechanics and Geoengineering

A GPU-Accelerated Three-Dimensional SPH Solverfor Geotechnical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398Chong Peng, Wei Wu, and Hai-sui Yu

Numerical Analysis of Three Adjacent Horseshoe GalleriesSubjected to Seismic Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402Sid Ali Rafa, Allaoua Bouaicha, Idriss Rouaz, and Taous Kamel

Dynamic Analysis by Lattice Element Method Simulation . . . . . . . . . . . 405Zarghaam Haider Rizvi, Frank Wuttke, and Amir Shorian Sattari

Numerical Simulation of Plane Wave Propagation in a Semi-infiniteMedia with a Linear Hardening Plastic Constitutive Model . . . . . . . . . . 410Erxiang Song, Abbas Haider, and Peng Li

Construction Simulation and Sensitivity Analysis of UndergroundCaverns in Fault Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415Chao Su and Yijia Dong

A Stress Correction Algorithm for a Simple Hypoplastic Model . . . . . . 419Shun Wang, Wei Wu, Xuzhen He, Dichuan Zhang, and Jong Ryeol Kim

Experimental and Numerical Study of the Mechanical Propertiesof Granite After High Temperature Exposure . . . . . . . . . . . . . . . . . . . . 423Su-ran Wang and You-liang Chen

Conformable Derivative Modeling of Pressure Behaviorfor Transport in Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427R. Wang, H. W. Zhou, S. Yang, and Z. Zhuo

Boundary Element Analysis of Geomechanical Problems . . . . . . . . . . . . 431Sha Xiao and Zhongqi Yue

Numerical Simulation of the Bearing Capacity of a QuadrateFooting on Landfill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435Dawei Xue and Xilin Lü

How Spatial Variability of Initial Porosity and Fines ContentAffects Internal Erosion in Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439Jie Yang, Zhen-Yu Yin, Pierre-Yves Hicher, and Farid Laouafa

CFD Analysis of Free-Fall Ball Penetrometer in Clay . . . . . . . . . . . . . . 444Yuqin Zhang and Jun Liu

Multiscale Modeling of Large Deformation in Geomechanics:A Coupled MPM-DEM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449Jidong Zhao and Weijian Liang

Effect of Principal Stress Rotation on the Wave-Induced SeabedResponse Around a Submerged Breakwater . . . . . . . . . . . . . . . . . . . . . 453Hongyi Zhao, Jianfeng Zhu, and Dong-Sheng Zheng

xiv Contents

Page 16: Springer Series in Geomechanics and Geoengineering

Numerical Analysis of Spudcan-Footprint Interaction Using CoupledEulerian-Lagrangian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458Jingbin Zheng and Dong Wang

Upper Bound Solution for Ultimate Bearing Capacity of SuctionCaisson Foundation Based on Hill Failure Mode . . . . . . . . . . . . . . . . . . 463Wen-bo Zhu, Guo-liang Dai, Wei-ming Gong, and Xue-liang Zhao

Part IV: Laboratory Testing

Soil Liquefaction Tests in the ISMGEO Geotechnical Centrifuge . . . . . 469Sergio Airoldi, Vincenzo Fioravante, and Daniela Giretti

ISMGEO Large Triaxial Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473Sergio Airoldi, Alberto Bretschnaider, Vincenzo Fioravante,and Daniela Giretti

Experimental Study on Static Liquefaction of Carbon FiberReinforced Loose Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478Xiaohua Bao, Zhiyang Jin, Hongzhi Cui, and Haiyan Ming

Experimental Study on Effect of Temperature and Humidityon Uniaxial Mechanical Properties of Silty-Mudstone . . . . . . . . . . . . . . 483Jingcheng Chen and Hongyuan Fu

On Shear Strength of Stabilized Dredged Soil from İzmir Bay . . . . . . . 488İnci Develioglu and Hasan Firat Pulat

Instrument for Wetting-Drying Cycles of ExpansiveSoil Under Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492Jungui Dong, Guoyuan Xu, Hai-bo Lv, and Junyan Yang

Liquefaction of Firoozkuh Sand Under Volumetric-ShearCoupled Strain Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496S. R. Falsafizadeh and A. Lashkari

Shear Strength of Tailings with Different Void Ratios . . . . . . . . . . . . . . 501Tingting Fan

Dynamic Behaviour of Wenchuan Sand with Nonplastic Fines . . . . . . . 506Tugen Feng, Qiuying Qian, Fuhai Zhang, Mi Zhou, and Kejia Wang

Effects of Induced Anisotropies on Strength and DeformationCharacteristics of Remolded Loess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510Yongzhen Feng, Wuyu Zhang, Lingxiao Liu, and Yanxia Ma

Experimental Analysis of Over-Consolidation in Subsoilin Bratislava, Slovakia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514Zuzana Galliková

Contents xv

Page 17: Springer Series in Geomechanics and Geoengineering

Study on the Influence of Moisture Content on Mechanical Propertiesof Intact Loess in Qinghai, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519Anbang Guo, Wuyu Zhang, Lingxiao Liu, and Yanxia Ma

Undrained Shear Behaviour of Gassy Clay with Varying Initial PoreWater Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524Y. Hong, L. Z. Wang, and B. Yang

Creep of Reconstituted Silty Clay with Different Pre-loading . . . . . . . . . 529Minyun Hu, Bin Xiao, Shuchong Wu, Peijiao Zhou, and Yuke Lu

Experimental Study on the Influence of Gravel Content on theTensile Strength of Gravelly Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534Enyue Ji, Shengshui Chen, Zhongzhi Fu, and Jungao Zhu

Direct Simple Shear Tests on Swedish Tailings . . . . . . . . . . . . . . . . . . . 538Qi Jia and Jan Laue

Concrete-Sand Interface in Direct Shear Tests . . . . . . . . . . . . . . . . . . . . 542Zihao Jin, Qi Yang, Junzhe Liu, and Chen Chen

Improvement of Unconfined Compressive Strength of Soft Clayby Grouting Gel and Silica Fume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546Mahdi O. Karkush, Haifa A. Ali, and Balqees A. Ahmed

Shear Modulus and Damping Ratio of Coarse Fused Quartz . . . . . . . . . 551Gangqiang Kong, Hui Li, Qing Yang, Gang Yang, and Liang Chen

Field and Laboratory Investigation on Non-linear Small StrainShear Stiffness of Shanghai Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555Q. Li, W. D. Wang, Z. H. Xu, and B. Dai

Introducing a New Test System for the Rock-Machine Interaction . . . . 560S. D. Li, Z. M. Zhou, and W. S. Hou

A Parallel Comparison of Small-Strain Shear Modulus in BenderElement and Resonant Column Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 564Xin Liu and Jun Yang

Big Data and Large Volume (BDLV)-Based NanoindentationCharacterization of Shales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569Shengmin Luo, Yucheng Li, Yongkang Wu, Yuzhen Yu,and Guoping Zhang

Development of a Large Temperature-Controlled Triaxial Devicefor Rockfill Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574Hangyu Mao and Sihong Liu

Experimental Study of Small Strain Stiffness of UnsaturatedSilty Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578Tomáš Mohyla and Jan Boháč

xvi Contents

Page 18: Springer Series in Geomechanics and Geoengineering

Effects of Soil Fabric on Volume Change Behaviour of ClayUnder Cyclic Heating and Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582Qingyi Y. Mu, C. W. W. Ng, C. Zhou, and Hongjian J. Liao

Comparing Water Contents of Organic Soil Determined on the Basisof Different Oven-Drying Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 586Brendan C. O’Kelly and Weichao Li

Planar Granular Column Collapse: A Novel Releasing Mechanism . . . . 591Gustavo Pinzon and Miguel Angel Cabrera

Effect of Non-plastic Fines on Cyclic Shear Strength of SandUnder an Initial Static Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597Daniela Dominica Porcino, Valentina Diano, and Giuseppe Tomasello

Shear Band Between Steel and Carbonate Sand Under Monotonicand Cyclic Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602Shengjie Rui, Zhen Guo, Lizhong Wang, Wenjie Zhou, and Kanmin Shen

Comparative Study on the Compressibility and Shear Parametersof a Clayey Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607Erik Schwiteilo and Ivo Herle

Digital Image Measurement System for Soil Specimensin Triaxial Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611Longtan Shao, Xiaoxia Guo, and Boya Zhao

Open Science Interface Shear Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 615Hans Henning Stutz, Ralf Doose, and Frank Wuttke

Effect of Soil Characteristics on Shear Strength of Sands . . . . . . . . . . . 619Danai Tyri, Polyxeni Kallioglou, Kyriaki Koulaouzidou,and Stefania Apostolaki

Mechanical Behaviors of GRPS Track-Bed with Changing WaterLevels and Loading Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624Han-Lin Wang and Ren-Peng Chen

Analysing the Permanent Deformation of Cohesive Subsoil Subjectto Long Term Cyclic Train Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 628Natalie M. Wride and Xueyu Geng

Dynamic Tensile Failure of Rocks Under Triaxial Stress State . . . . . . . 632Bangbiao Wu and Kaiwen Xia

Experimental Study of Dynamic Shear Module and Damping Ratioof Intact Loess from Xining, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636Wenju Wu, Wuyu Zhang, Lingxiao Liu, and Yanxia Ma

Contents xvii

Page 19: Springer Series in Geomechanics and Geoengineering

True Triaxial Tests on Natural Shanghai Clay . . . . . . . . . . . . . . . . . . . 640Guan-lin Ye, Shuo Zhang, Yun-qi Song, and Jian-hua Wang

Study on Strength of Expanded Polystyrene ConcreteBased on Orthogonal Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644Quan You, Linchang Miao, Chao Li, Shengkun Hu, and Huanglei Fang

An Investigation on the Effects of Rainwater Infiltration in GranularUnsaturated Soils Through Small-Scale Laboratory Experiments . . . . . 648R. Darban, E. Damiano, A. Minardo, L. Olivares, Lei Zhang, L. Zeni,and L. Picarelli

Adaptive Strength Criterion of Sandy Gravel MaterialBased on Large-Scale True Triaxial Tests . . . . . . . . . . . . . . . . . . . . . . . 653Yuefeng Zhou, Jiajun Pan, Zhanlin Cheng, and Yongzhen Zuo

Part V: Geotechnical Monitoring, Instrumentationand Field Test

Validation of In-Situ Probes by Calibration Chamber Tests . . . . . . . . . 659Sergio Airoldi, Alberto Bretschneider, Vincenzo Fioravante,and Daniela Giretti

Cyclic Tests with a New Pressuremeter Apparatus . . . . . . . . . . . . . . . . 663Soufyane Aissaoui, Abdeldjalil Zadjaoui, and Philippe Reiffsteck

A New in Situ Measurement Technique for Monitoring the Efficiencyof Expansive Polyurethane Resin Injection Under ShallowFoundations on Clayey Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668Hossein Assadollahi, L. K. Sharma, Anh Quan Dinh,and Blandine Tharaud

Monitoring and Early Warning System in Earth Management -Based on Self-organized Fusion Sensor Networks . . . . . . . . . . . . . . . . . 672Rafig Azzam, Hui Hu, and Herbert Klapperich

Monitoring the Foundation Soil of an Existing LeveeUsing Distributed Temperature Fiber Optic Sensors . . . . . . . . . . . . . . . 677Giulia Bossi, Luca Schenato, Alessandro Pasuto, Silvia Bersan,Fabio De Polo, Simonetta Cola, and Paolo Simonini

Development of IoT Sensing Modulus for Surficial Slope Failures . . . . . 681Wen-Jong Chang, An-Bin Huang, Shih-Hsun Chou, and Jyh-Fang Chen

Evaluation of Free Swelling of Expansive Soil Using Four-ElectrodeResistivity Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685Ya Chu, Songyu Liu, Guojun Cai, and Hanliang Bian

Evaluation of the Variation of Deformation Parameters Beforeand After Pile Driving Using SCPTU Data . . . . . . . . . . . . . . . . . . . . . . 689Wei Duan, Guojun Cai, Jun Yuan, and Songyu Liu

xviii Contents

Page 20: Springer Series in Geomechanics and Geoengineering

Development of an FBG-Sensed Miniature Pressure Transducerand Its Applications to Geotechnical Centrifuge Modelling . . . . . . . . . . 694An-Bin Huang, Kuen-Wei Wu, Mohammed Z. E. B. Elshafie,Wen-Yi Hung, and Yen-Te Ho

Evaluation of Engineering Characteristics of South China SeaSedimentary Soil in Sanya New Airport Based on CPTU Data . . . . . . . 699Kuikui Li, Wencheng Liang, Guojun Cai, Songyu Liu, Yu Du,and Liuwen Zhu

Simplified Vibration Control Technique of Monitoring Devicesin Operating Tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703Bangan Liu and Yongbin Wei

Optimization of Location of Robotic Total Station in TunnelDeformation Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707Bangan Liu and Yongbin Wei

Life-Cycle Analysis of Foundation Structures Using Sensor-BasedObservation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712Arne Kindler and Karolina Nycz

From Mobile Measurements to Permanent Integrity Control:New Geotechnical Monitoring Instruments for LeakageDetection and Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716Mike Priegnitz and Ernst Geutebrück

Visual and Quantitative Investigation of the Settlement Behaviorof an Embankment Using Aerial Images Under Large-SizeField Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720Ali Alper Saylan, Okan Önal, Ali Hakan Ören, Gürkan Özden,and Yeliz Yükselen Aksoy

Real-Time Monitoring of Large-Diameter Caissons . . . . . . . . . . . . . . . . 725Brian Sheil, Ronan Royston, and Byron Byrne

Influences on CPT-Results in a Small Volume Calibration Chamber . . . 730F. T. Stähler, S. Kreiter, M. Goodarzi, D. Al-Sammarraie, T. Stanski,and T. Mörz

Estimation of Relative Density in Calcareous SandsUsing the Karlsruhe Interpretation Method . . . . . . . . . . . . . . . . . . . . . . 734Franz Tschuchnigg, Johannes Reinisch, and Robert Thurner

Investigation on Precursor Information of Granite FailureThrough Acoustic Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739C. S. Wang, H. W. Zhou, W. G. Ren, S. S. He, H. Pei, and J. F. Liu

Contents xix

Page 21: Springer Series in Geomechanics and Geoengineering

An Internet Based Intelligent System for Early ConcreteCuring in Underground Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743Yongbin Wei, Jindi Lin, Wei Zhao, Chao Hou, Zhenhuan Yu,Maowei Qiao, and Bangan Liu

Application of Multivariate Data-Based Model in Early Warningof Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747Hongyu Wu, Mei Dong, and Xiaonan Gong

Establishment of a Health Monitoring Assessment Systemfor Hong-Gu Tunnel in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751Xiangchun Xu, Songyu Liu, Liyuan Tong, Jun Guo, and Xing Long

Monitoring a Flexible Barrier Under the Impact of Large Boulderand Granular Flow Using Conventional and Optical Fibre Sensors . . . . 755Jian-Hua Yin, Jie-Qiong Qin, Dao-Yuan Tan, and Zhuo-Hui Zhu

Quantifying Fiber-Optic Cable–Soil Interfacial BehaviorToward Distributed Monitoring of Land Subsidence . . . . . . . . . . . . . . . 759Cheng-Cheng Zhang, Bin Shi, Su-Ping Liu, Hong-Tao Jiang,and Guang-Qing Wei

Monitoring the Horizontal Displacement by Soil-CementColumns Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763Wei Zhao, Longcai Yang, Binglong Wang, Congcong Xiong,Ye Zhang, and Xilei Zhang

Long-Term Field Monitoring of Additional Strain of VerticalShaft Linings in East China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767Guoqing Zhou, Lianfei Kuang, Guangsi Zhao, Hengchang Liang,and Xiaodong Zhao

Part VI: New Geomaterials and Ground Improvement

Sacrificial Anode Protection for Electrodes in ElectrokineticTreatment of Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773Abiola Ayopo Abiodun and Zalihe Nalbantoglu

The Effects of Colemanite and Ulexite Additives on the GeotechnicalIndex Properties of Bentonite and Sand-Bentonite Mixtures . . . . . . . . . 778Şükran Gizem Alpaydın and Yeliz Yukselen-Aksoy

Strength Development of Lateritic Soil Stabilized by LocalNanostructured Ashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782Duc Bui Van, Kennedy Chibuzor Onyelowe, Phi Van Dang,Dinh Phuc Hoang, Nu Nguyen Thi, and Wei Wu

xx Contents

Page 22: Springer Series in Geomechanics and Geoengineering

Laboratory Carbonation Model of Single Soil-MgO MixingColumn in Soft Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787Guanghua Cai, Songyu Liu, and Guangyin Du

Enhancing the Strength Characteristics of Expansive SoilUsing Bagasse Fibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792Liet Chi Dang and Hadi Khabbaz

Engineering Properties and Microstructure Feature of DispersiveClay Modified by Fly Ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797HengHui Fan, YingJia Yan, XiuJuan Yang, Lu Zhang, and HaiJun Hu

Effect of Strain Rate on Interface Friction Angle Between Sandand Alkali Activated Binder Treated Jute . . . . . . . . . . . . . . . . . . . . . . . 801Shashank Gupta, Anasua GuhaRay, Arkamitra Kar,and V. P. Komaravolu

Enhancement of Mechanical Properties of Expansive Clayey SoilUsing Steel Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805Anurag S. Hirapure and R. S. Dalvi

Breakage Effect of Soft Rock Blocks in Soil-Rock Mixturewith Different Block Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809Xinli Hu, Han Zhang, Chuncan He, and Wenbo Zheng

Comparative Experimental Study on Solar Electro-Osmosisand Conventional Electro-Osmosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814Jianjun Huang and Huiming Tan

Stress-Dilatancy Relationship for Fiber-Reinforced Soil . . . . . . . . . . . . . 818Yuxia Kong

Improvement of Soft Soils Using Bio-Cemented Sand Columns . . . . . . . 822Aamir Mahawish, Abdelmalek Bouazza, and Will P. Gates

Stabilization of Expansive Black Cotton Soils with AlkaliActivated Binders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826S. Mazhar, A. GuhaRay, A. Kar, G. S. S. Avinash, and R. Sirupa

Formation of Biomineralized Calcium Carbonate Precipitationand Its Potential to Strengthen Loose Sandy Soils . . . . . . . . . . . . . . . . . 830Sangeeta Shougrakpam and Ashutosh Trivedi

Experimental Study on Calcium Carbonate Precipitates Inducedby Bacillus Megaterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834Xiaohao Sun, Linchang Miao, and Chengcheng Wang

Effect of Fly Ash on Swell Behaviour of a Very Highly Plastic Clay . . . 838İ. Süt-Ünver, M. A. Lav, and E. Çokça

Contents xxi

Page 23: Springer Series in Geomechanics and Geoengineering

Analysis of Pore Size Distributions of Nonwoven Geotextiles Subjectedto Unequal Biaxial Tensile Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842Lin Tang, Songtai Sun, Xiaowu Tang, and Ruixuan Zhang

Effect of Fine Particles on Cement Treated Sand . . . . . . . . . . . . . . . . . . 847Ganapathiraman Vinoth, Sung-Woo Moon, Jong Kim, and Taeseo Ku

A Geochemical Model for Analyzing the Mechanism of Stabilized SoilIncorporating Natural Pozzolan, Cement and Lime . . . . . . . . . . . . . . . . 852Ba Thao Vu, Van Quan Tran, Quoc Dung Nguyen, Anh Quan Ngo,Huu Nam Nguyen, Huy Vuong Nguyen, and Hehua Zhu

Compaction Characteristics and Shrinkage Properties of FibreReinforced London Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858Jianye Wang, Andrew Sadler, Paul Hughes, and Charles Augarde

Flow Behavior of Clays Amended by Superhydrophobic Additives . . . . 862Yongkang Wu, Dongfang Wang, Yuzhen Yu, and Guoping Zhang

Mechanical and Thermal Behaviour of Cemented Soil with theAddition of Ionic Soil Stabilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866Fei Xu, Hua Wei, Wenxun Qian, and Yuebo Cai

Experimental Study on the Relation Between EDTA Consumptionand Cement Content of Cement Mixing Pile . . . . . . . . . . . . . . . . . . . . . 870Canhong Zhang, Baotian Wang, and Enyue Ji

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875

xxii Contents

Page 24: Springer Series in Geomechanics and Geoengineering

Part I: Constitutive Model

Page 25: Springer Series in Geomechanics and Geoengineering

A Simple Anisotropic Mohr-CoulombStrength Criterion for Granular Soils

Wei Cao , Rui Wang , and Jian-Min Zhang(✉)

Department of Hydraulic Engineering, National Engineering Laboratory for Green & SafeConstruction Technology in Urban Rail Transit, Tsinghua University, Beijing 100084, China

[email protected], [email protected]

Abstract. Granular soils usually possess inherent fabric anisotropy due tonatural deposition or compaction, leading to the dependence of peak shearstrength on loading direction. In order to describe this strength anisotropy, a novelaniso-tropic strength variable Λ, which is determined by stress tensor and fabricorientation, is introduced to measure the “distance” between the bedding planeand the maximum shear stress ratio plane. Incorporation of this variable in thetraditional Mohr-Coulomb criterion allows for the description of strength aniso‐tropy. The new anisotropic formulation needs only one extra parameter. Valida‐tion against test results shows that the formulation has good capability indescribing the anisotropic strength.

Keywords: Anisotropy · Strength criterion · Granular soil

1 Introduction

Natural deposition or compaction always lead to the anisotropic characteristics of gran‐ular soils. Anisotropy in strength has been observed in both physical experiments [1, 2]and numerical simulation [3, 4].

Classical isotropic strength criteria such as Mohr-Coulomb criterion, Matsuoka-Nakai criterion [5] and Lade-Duncan criterion [6] does not reflect the anisotropic feature.To formulate an anisotropic strength criterion, there are generally two methods. Oneway is to directly introduce the angle between the bedding plane and a specific stressplane, such as potential shear plane [3] or “spatially mobilized plane” [7]. This approachis straight forward, but the calculation is complicated when the stress tensor is axisym‐metric and there are infinite such stress planes. The other disadvantage is that the angleis usually not a continuous function of the stress tensor. The second method is to includejoint invariants of stress tensor and a fabric tensor [8, 9] or use a modified stress tensor[10] in the strength criterion. Guaranteeing objectivity automatically, the second methodis mathematically elegant, but suffers the disadvantage of lacking physical meaning, andmay need more parameters to depict the anisotropic strength accurately.

This study aims at developing an anisotropic Mohr-Coulomb criterion (AMC) withsimplicity and clear physical meaning. An anisotropic strength variable Λ is introduced

© Springer Nature Switzerland AG 2018W. Wu and H.-S. Yu (Eds.): Proceedings of China-Europe Conferenceon Geotechnical Engineering, SSGG, pp. 3–7, 2018.https://doi.org/10.1007/978-3-319-97112-4_1

Page 26: Springer Series in Geomechanics and Geoengineering

and used to extend Mohr-Coulomb criterion to become anisotropic. The proposed AMCcriterion is validated against test results.

2 Anisotropic Variable and Anisotropic Mohr-Coulomb Criterion

Existing test results [1–4] show that the peak strength usually decreases first and thenincreases with the increase of δ, which is the angle between the axis of the maximumprincipal stress and the normal direction of the bedding plane, and the peak strengthreaches its minimum value when δ is around 60°. Hence, it is postulated that anisotropicgranular soil obtains its minimum peak shear strength when the bedding plane coincideswith the plane of maximum shear stress ratio. Such a postulate is a reasonable assumptionfor friction dominated granular soil. To describe the relationship between the two planes,a novel anisotropic strength variable (ASV) Λ is proposed [11] (Fig. 1):

𝛬 ≡

√(𝜎msr − 𝜎bed

)2+

(𝜏msr − 𝜏bed

)2

𝜎3

(1)

where σ3 is the minimum principal stress, σmsr, τmsr and σbed, τbed denote the normal stressand shear stress on the plane of maximum shear stress ratio and the bedding plane,respectively. Λ measures the “distance” between the two planes and is equal to 0 whenthe two planes coincide.

Fig. 1. The anisotropic strength variable Λ’s definition

Thus, the anisotropic Mohr-Coulomb criterion (AMC) can be proposed as:

𝜎1

𝜎3= kf 0 + a𝛬 (2)

where kf0 represents the minimum strength and a represents the intensity of anisotropy.Both parameters can be conveniently and accurately calibrated with 3 sets of test datausing a least square fit method.

The AMC can be validated against existing test data on granular soils. Figure 2 showsthe comparison between the test results and the prediction of AMC criterion. It is shownthat the proposed AMC criterion is capable of capturing the strength anisotropy ofdifferent anisotropic granular materials.

4 W. Cao et al.

Page 27: Springer Series in Geomechanics and Geoengineering

Fig. 2. Test results and the prediction of AMC criterion (a) Elliptical rods (Test data from [12])(b) 2D DEM simulation (Test data from [3]) (c) Toyoura sand (Test data from [2])

Fig. 3. Different materials’ anisotropic parameters (Leighton Buzzard is abbreviated to LB, Testdata from [1])

A Simple Anisotropic Mohr-Coulomb Strength Criterion 5

Page 28: Springer Series in Geomechanics and Geoengineering

The anisotropic strength criterion is governed by the two parameters. As shown inFig. 3, the material with a greater kf0 also has a greater minimum peak strength, and thematerial with a greater a has stronger anisotropic intensity.

3 Concluding Remarks

Based on the postulate that anisotropic granular soil obtains its minimum peak shearstrength when the bedding plane coincides with the plane of maximum shear stress ratio,a novel anisotropic strength variable (ASV) is introduced to reflect the influence of theloading direction on the peak strength of such material. The ASV is introduced in theMohr-Coulomb criterion, extending it to become anisotropic, which is referred to asAMC. The proposed formulation only introduces one extra parameter compared to theexisting isotropic strength criterion, which can be calibrated conveniently. Validationshows good agreement between the predicted values using AMC and measured resultsfrom existing tests. The method of formulating the AMC can also readily be used toextend other classical isotropic criteria to become anisotropic with great simplicity andclarity.

Acknowledgements. The authors would like to acknowledge the National Natural ScienceFoundation of China (No. 51708332 and No. 51678346) for funding the work in this paper.

References

1. Yang, L.: Experimental study of soil anisotropy using hollow cylinder testing. In: Universityof Nottingham (2013)

2. Miura, K., Miura, S., Toki, S.: Deformation behavior of anisotropic dense sand under principalstress axes rotation. Soils Found. 26, 36–52 (1986)

3. Fu, P., Dafalias, Y.F.: Study of anisotropic shear strength of granular materials using DEMsimulation. Int. J. Numer. Anal. Met. 35, 1098–1126 (2011)

4. Wang, R., Fu, P., Tong, Z., Zhang, J.M., Dafalias, Y.F.: Strength anisotropy of granularmaterial consisting of perfectly round particles. Int. J. Numer. Anal. Met. Geomech. (2017)

5. Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under threedifferent principal stresses. Proc. JSCE 232, 59–70 (1974)

6. Lade, P.V., Duncan, J.M.: Elastoplastic stress-strain theory for cohesionless soil. J. Geotech.Eng. Div. 101, 1037–1053 (1975)

7. Yao, Y., Kong, Y.: Extended UH model: three-dimensional unified hardening model foranisotropic clays. J. Eng. Mech. (2011)

8. Pietruszczak, S., Mroz, Z.: Formulation of anisotropic failure criteria incorporating amicrostructure tensor. Comput. Geotech. 26, 105–112 (2000)

9. Wu, W.: Rational approach to anisotropy of sand. Int. J. Numer. Anal. Met. 22, 921–940(1998)

6 W. Cao et al.

Page 29: Springer Series in Geomechanics and Geoengineering

10. Yao, Y., Tian, Y., Gao, Z.: Anisotropic UH model for soils based on a simple transformedstress method. Int. J. Numer. Anal. Met. 41, 54–78 (2017)

11. Cao, W., Wang, R., Zhang, J.M.: Formulation of anisotropic failure criteria incorporating amicrostructure tensor. Comput. Geotech. 26, 105–112 (2000)

12. Zhang, L.W.: Research on failure mechanism and strength criterion of anisotropic granularmaterials and its application. Tsinghua University, Beijing (2007). (in Chinese)

A Simple Anisotropic Mohr-Coulomb Strength Criterion 7

Page 30: Springer Series in Geomechanics and Geoengineering

The Equivalent Stress of Soil Skeleton

Tong Dong1,2 , Liang Kong2(✉) , Likun Hua2, Xing Wang2, and Yingren Zheng1

1 Army Logistics University of PLA, Chongqing 401311, China2 School of Sciences, Qingdao University of Technology, Qingdao 266033, China

[email protected]

Abstract. Introducing the fabric tensor to reflect the distribution of the skeletonof the granular material, the real stress and the equivalent stress of the skeletonare obtained. A generalized method of anisotropic transformation of the isotropicconstitutive model into an anisotropic one is proposed with the true stress of soilskeleton described by the equivalent stress and the mechanical properties of skel‐etons described by the isotropic constitutive models. Taking the Cam-Clay modelas an example, the anisotropic transformed Cam-Clay model is built and verifiedby existing test results.

Keywords: True stress · Soil skeleton · Equivalent stress methodAnisotropic transformation

1 Introduction

Geomaterials is a system composed of a large number of discrete particles which usuallyhave a special assembly. Therefore, it often shows the mechanical properties of aniso‐tropy. In general, to describe this property, various kinds of anisotropy parameters areused to modify isotropic constitutive models [1]. However, the theoretical basis of suchmodification is not rigorous, which made the modified models complicated and poorlyapplicable. In this paper, based on theoretical analysis of the effective stress, the truestress of soils is discussed. Then, a general form of the true stress is proposed by tensoranalysis. Finally, with the idea of stress transformation, an anisotropic constitutivemodel is established and verified by the existing test data.

2 Effective Stress and Equivalent Stress

2.1 Effective Stress

The saturated soil is a typical two-phase material. The soil-skeleton, which is composedof interconnected soil particles, can bear and pass the effective stress. Soil particles andwater are assumed to be incompressible. Therefore, the deformation and strength of soilare the deformation and strength of soil-skeleton. In general, the effective stress is putforward to represent the average stress carried by the soil skeleton [2], which follows

© Springer Nature Switzerland AG 2018W. Wu and H.-S. Yu (Eds.): Proceedings of China-Europe Conferenceon Geotechnical Engineering, SSGG, pp. 8–12, 2018.https://doi.org/10.1007/978-3-319-97112-4_2