Splice Design - LRFD

download Splice Design - LRFD

of 22

Transcript of Splice Design - LRFD

  • 7/28/2019 Splice Design - LRFD

    1/22

    SECTION PROPERTIES

    1

    Properties for Universal Bea

    1 UB 1016x305x4872 UB 1016x305x438

    3 UB 1016x305x393

    4 UB 1016x305x349

    5 UB 1016x305x314

    6 UB 1016x305x272

    7 UB 1016x305x249

    8 UB 1016x305x222

    9 UB 914x419x388

    10 UB 914x419x343

    11 UB 914x305x289

    12 UB 914x305x253

    13 UB 914x305x22414 UB 914x305x201

    15 UB 838x292x226

    16 UB 838x292x194

    17 UB 838x292x176

    18 UB 762x267x197

    19 UB 762x267x173

    20 UB 762x267x147

    21 UB 762x267x134

    22 UB 686x254x170

    23 UB 686x254x152

    24 UB 686x254x140

    25 UB 686x254x125

    26 UB 610x305x238

    27 UB 610x305x179

    28 UB 610x305x149

    29 UB 610x229x140

    30 UB 610x229x125

    31 UB 610x229x113

    32 UB 610x229x101

    33 UB 533x210x122

    34 UB 533x210x10935 UB 533x210x101

    36 UB 533x210x92

    37 UB 533x210x82

    38 UB 457x191x98

    39 UB 457x191x89

    40 UB 457x191x82

    41 UB 457x191x74

    DesignationSl.

    No

  • 7/28/2019 Splice Design - LRFD

    2/22

    42 UB 457x191x67

    43 UB 457x152x82

    44 UB 457x152x74

    45 UB 457x152x67

    46 UB 457x152x60

    47 UB 457x152x52

    48 UB 406x178x74

    49 UB 406x178x67

    50 UB 406x178x60

    51 UB 406x178x54

    52 UB 406x140x46

    53 UB 406x140x39

    54 UB 356x171x67

    55 UB 356x171x57

    56 UB 356x171x51

    57 UB 356x171x45

    58 UB 356x127x39

    59 UB 356x127x33

    60 UB 356x165x54

    61 UB 356x165x46

    62 UB 356x165x40

    63 UB 305x127x48

    64 UB 305x127x42

    65 UB 305x127x37

    66 UB 305x102x33

    67 UB 305x102x28

    68 UB 305x102x25

    69 UB 254x146x43

    70 UB 254x146x37

    71 UB 254x146x31

    72 UB 254x102x28

    73 UB 254x102x25

    74 UB 254x102x22

    75 UB 203x133x30

    76 UB 203x133x25

    77 UB 203x102x2378 UB 178x102x19

    79 UB 152x89x16

    80 UB 127x76x13

    Properties for Universal Colu

    1 UC 356x406x634

  • 7/28/2019 Splice Design - LRFD

    3/22

    2 UC 356x406x551

    3 UC 356x406x467

    4 UC 356x406x393

    5 UC 356x406x340

    6 UC 356x406x287

    7 UC 356x406x235

    8 UC 356x368x202

    9 UC 356x368x177

    10 UC 356x368x153

    11 UC 356x368x129

    12 UC 305x305x283

    13 UC 305x305x240

    14 UC 305x305x198

    15 UC 305x305x158

    16 UC 305x305x137

    17 UC 305x305x118

    18 UC 305x305x97

    19 UC 254x254x16720 UC 254x254x132

    21 UC 254x254x107

    22 UC 254x254x89

    23 UC 254x254x73

    24 UC 203x203x86

    25 UC 203x203x71

    26 UC 203x203x60

    27 UC 203x203x52

    28 UC 203x203x46

    29 UC 152x152x37

    30 UC 152x152x30

    31 UC 152x152x23

    Properties for W sections as

    1 W44X335

    2 W44X290

    3 W44X262

    4 W44X230

    5 W40X593

    6 W40X503

    7 W40X431

    8 W40X3979 W40X372

    10 W40X362

    11 W40X324

    12 W40X297

    13 W40X277

    14 W40X249

    15 W40X215

    16 W40X199

  • 7/28/2019 Splice Design - LRFD

    4/22

    17 W40X392

    18 W40X331

    19 W40X327

    20 W40X294

    21 W40X278

    22 W40X264

    23 W40X235

    24 W40X211

    25 W40X183

    26 W40X167

    27 W40X149

    28 W36X800

    29 W36X652

    30 W36X529

    31 W36X487

    32 W36X441

    33 W36X395

    34 W36X361

    35 W36X330

    36 W36X30237 W36X282

    38 W36X262

    39 W36X247

    40 W36X231

    41 W36X256

    42 W36X232

    43 W36X210

    44 W36X194

    45 W36X182

    46 W36X170

    47 W36X160

    48 W36X150

    49 W36X135

    50 W33X387

    51 W33X354

    52 W33X318

    53 W33X291

    54 W33X263

    55 W33X241

    56 W33X221

    57 W33X201

    58 W33X169

    59 W33X152

    60 W33X141

    61 W33X130

    62 W33X118

    63 W30X391

    64 W30X357

    65 W30X326

    66 W30X292

    67 W30X261

    68 W30X235

    69 W30X211

  • 7/28/2019 Splice Design - LRFD

    5/22

    70 W30X191

    71 W30X173

    72 W30X148

    73 W30X132

    74 W30X124

    75 W30X116

    76 W30X108

    77 W30X99

    78 W30X90

    79 W27X539

    80 W27X368

    81 W27X336

    82 W27X307

    83 W27X281

    84 W27X258

    85 W27X235

    86 W27X217

    87 W27X194

    88 W27X178

    89 W27X16190 W27X146

    91 W27X129

    92 W27X114

    93 W27X102

    94 W27X94

    95 W27X84

    96 W24X370

    97 W24X335

    98 W24X306

    99 W24X279

    100 W24X250

    101 W24X229

    102 W24X207

    103 W24X192

    104 W24X176

    105 W24X162

    106 W24X146

    107 W24X131

    108 W24X117

    109 W24X104

    110 W24X103

    111 W24X94

    112 W24X84

    113 W24X76

    114 W24X68

    115 W24X62116 W24X55

    117 W21X201

    118 W21X182

    119 W21X166

    120 W21X147

    121 W21X132

    122 W21X122

  • 7/28/2019 Splice Design - LRFD

    6/22

    123 W21X111

    124 W21X101

    125 W21X93

    126 W21X83

    127 W21X73

    128 W21X68

    129 W21X62

    130 W21X55

    131 W21X48

    132 W21X57

    133 W21X50

    134 W21X44

    135 W18x311

    136 W18x283

    137 W18x258

    138 W18x234

    139 W18x211

    140 W18x192

    141 W18X175

    142 W18X158143 W18X143

    144 W18X130

    145 W18X119

    146 W18X106

    147 W18X97

    148 W18X86

    149 W18X76

    150 W18X71

    151 W18X65

    152 W18X60

    153 W18X55

    154 W18X50

    155 W18X46

    156 W18X40

    157 W18X35

    158 W16X100

    159 W16X89

    160 W16X77

    161 W16X67

    162 W16X57

    163 W16X50

    164 W16X45

    165 W16X40

    166 W16X36

    167 W16X31

    168 W16X26

    169 W14X730

    170 W14X665

    171 W14X605

    172 W14X550

    173 W14X500

    174 W14X455

    175 W14X426

  • 7/28/2019 Splice Design - LRFD

    7/22

    176 W14X398

    177 W14X370

    178 W14X342

    179 W14X311

    180 W14X283

    181 W14X257

    182 W14X233

    183 W14X211

    184 W14X193

    185 W14X176

    186 W14X159

    187 W14X145

    188 W14X132

    189 W14X120

    190 W14X109

    191 W14X99

    192 W14X90

    193 W14X82

    194 W14X74

    195 W14X68

    196 W14X61197 W14X53

    198 W14X48

    199 W14X43

    200 W14X38

    201 W14X34

    202 W14X30

    203 W14X26

    204 W14X22

    205 W12X336

    206 W12X305

    207 W12X279

    208 W12X252

    209 W12X230

    210 W12X210

    211 W12X190

    212 W12X170

    213 W12X152

    214 W12X136

    215 W12X120

    216 W12X106

    217 W12X96

    218 W12X87

    219 W12X79

    220 W12X72

    221 W12X65

    222 W12X58223 W12X53

    224 W12X50

    225 W12X45

    226 W12X40

    227 W12X35

    228 W12X30

    229 W12X26

    230 W12X22

  • 7/28/2019 Splice Design - LRFD

    8/22

    231 W12X19

    232 W12X16

    233 W12X14

    234 W10X112

    235 W10X100

    236 W10X88

    237 W10X77

    238 W10X68

    239 W10X60

    240 W10X54

    241 W10X49

    242 W10X45

    243 W10X39

    244 W10X33

    245 W10X30

    246 W10X26

    247 W10X22

    248 W10X19

    249 W10X17

    250 W10X15251 W10X12

    252 W8X67

    253 W8X58

    254 W8X48

    255 W8X40

    256 W8X35

    257 W8X31

    258 W8X28

    259 W8X24

    260 W8X21

    261 W8X18

    262 W8X15

    263 W8X13

    264 W8X10

    265 W6X25

    266 W6X20

    267 W6X15

    268 W6X16

    269 W6X12

    270 W6X9

    271 W6X8.5

    272 W5X19

    273 W5X16

    274 W4X13

  • 7/28/2019 Splice Design - LRFD

    9/22

    Column Rows Bolts Gauge Pitch Ext. distance Sum of r2

    nc nr n g p r Er

    1 2 2 50 50 25.00 1,250.0

    1 3 3 70 50 70.00 9,800.0

    1 4 4 80 80 120.00 32,000.0

    1 5 5 70 70 140.00 49,000.0

    1 6 6 75 75 187.50 98,437.5

    2 2 4 30 30 21.21 1,800.0

    2 3 6 70 180 114.02 68,200.0

    2 4 8 70 70 110.68 58,800.0

    2 5 10 70 70 144.31 110,250.0

    2 6 12 100 75 252.80 366,875.0

    3 2 6 30 30 33.54 4,950.0

    3 3 9 70 75 102.59 63,150.0

    3 4 12 70 75 129.03 118,500.0

    3 5 15 70 75 158.82 203,250.0

    3 6 18 70 75 190.39 324,750.0

    4 2 8 70 75 117.82 66,050.0

    4 3 12 70 75 132.50 123,575.0

    4 4 16 70 75 153.89 210,500.0

    4 5 20 70 75 179.60 336,625.0

    4 6 24 100 80 277.31 892,000.05 2 10 150 75 167.71 168,750.0

    5 3 15 100 80 188.68 292,000.0

    5 4 20 100 80 219.32 506,000.0

    5 5 25 100 80 256.12 820,000.0

    5 6 30 100 80 296.82 1,259,000.0

    6 2 12 100 80 206.16

    6 3 18 100 80 223.61

    6 4 24 100 80 250.00

    6 5 30 100 80 282.84

    6 6 36 100 80 320.16

  • 7/28/2019 Splice Design - LRFD

    10/22

    SPLICE CONNECTION

    Connection Identification MC 01

    INPUT DATA:

    Supporting member Weight = kG/mD = mm r = mm Ix = cm Sx = cm

    B = mm D' = mm Iy

    = cm Sy

    = cm

    tw = mm n = mm rx = cm Zx = cm

    tf = mm A = cm ry = cm Zy = cm

    Supported member Weight = kG/mD = mm r = mm Ix = cm Sx = cm

    B = mm D' = mm Iy = cm Sy = cm

    tw = mm n = mm rx = cm Zx = cm

    tf = mm A = cm ry = cm Zy = cm

    Member end actions

    UNFactored C = kN T = kN Fy = kN My = kN.m

    Fz = kN Mz = kN.m

    Connection Flange Web

    Grade of bolt ( F10T / HSFG / 8.8 ) = =Type of Connection = =

    Nominal Shear Strength of Bolt nv = M Pa nv = M Pa

    Nominal Tensile Strength of Bolt nt = M Pa nt = M PaNominal Strength of Weld Electrode material w = M Pa w = M Pa

    Grade of material -Member = A Plate = A

    Minimum Tensile Strength -Member Fum = M Pa Plate Fup = M Pa

    Minimum Yield Strength -Member Fym = M Pa Plate Fyp = M Pa

    Diameter of bolt db = mm db = mmDiameter of bolt hole dbh = mm dbh = mm

    Nr of bolt columns nc = nc =Nr of bolt rows nr = nr =Spacing of bolt rows (pitch) p = mm p = mmSpacing of bolt columns (gauge) g2 = mm g = mmSpacing of bolt columns (gauge) g1 = mmSpacing of bolt columns (gauge) g3 = mmHr. edge distance for member plate eh = mm eh = mmVertical End distance in plate at top ev,pt = mm ev,pt = mmVr. End distance in plate at bottom ev,pb = mm ev,pb = mmVertical End distance in member at top ev,mt = mm ev,mt = mmVr. End distance in member at bottom ev,mb = ev,mbSet back Sb = mm Sb = mmThickness of plate tp = mm tp = mmThk. of reinforcement plt. (doubler plt.) tfrp = mm twrp = mmNr of shear planes

    s=

    s=

    Sum of square of 'r' for the bolt group e r = mm2 e r = mm2Minimum Bolt Pretension b = kN b = kNHole Factor for sc = sc =

    Slip factor for m = m =

    Edge distance for inside plate ei' = mm Depth of top cope =Edge distance for inside plate ei'' = mm Depth of bottom cope =Thickness of inside plate tip = mmWidth of plate wp = mm Depth of plate =Length of plate Lp = mm Length of plate =Thickness of plate (outside & inside) tp = mm Thickness of plate =

    UC 356x368x202 201.9

    UC 356x368x202 201.9

    374.6

    374.7

    15.2

    290.216.527.0

    mm

    mm

    mm

    mm

    mm24.0

    Grade 50

    Standard Size Holes

    Class B

    16

    02

    374300

    6

    50

    70

    12

    57.35

    Slip Critical ConnectionSlip Critical Connection

    3538.0

    1264.016.19.6

    66260.0

    23690.0 3972.01920.0

    3972.01264.0

    0

    0

    1920.0

    Jun 01, 2010

    3538.0

    60

    0

    0

    50

    0

    10.5 0.5

    40

    57.35

    5 5

    82.3

    82.3

    345

    780

    260

    290

    24

    2

    27

    6

    450

    345

    4

    24

    2

    27

    0

    1

    290780

    16.527.0

    16.1

    0

    0

    520

    450

    257.0

    0.0

    A490-X

    0

    257.0

    0.0

    374.6 15.2 66260.0374.7 290.2 23690.0

    572572 Grade 50

    520

    9.6

    A490-X

    5820

    60

    60

    360.0

    475.0

    16.0

    257

    70

    50

    290.0

    175.0

    58800

    257

    2

    16

    40

    70

    10 of 22

  • 7/28/2019 Splice Design - LRFD

    11/22

    Connection Identification MC 01

    FLANGESafe. Capacity of one bolt Pb = > Fb. ( )

    Safe. Compression strength of the plate = > Cf,max. ( )Safe. Tensile strength of the plate = > Tf,max. ( )

    Safe. Compression strength of the flange = > Cf,max. ( )Safe. Tensile strength of the flange = > Tf,max. ( )

    Safe. Bearing strength of the plate per bolt = > Fb. ( )

    Safe. Bearing strength of the flange per bolt = > Fb. ( )

    Safe. Block shear strength of the beam flange = > Ff,max. ( )

    Safe. Block shear strength of the flange plate = > Ff,max. ( )

    Safe Interaction Check for Flange Plate

    WEBSafe. Capacity of one bolt Pb = > Fb. ( )Safe. Compression strength of the plate = > Cw. ( )Safe. Tensile strength of the plate = > Tw. ( )Safe. Compression strength of the web = > Cw. ( )Safe. Tensile strength of the web = > w. ( )Safe. Bearing strength of the plate per bolt = > Fb. ( )Safe. Bearing strength of the web per bolt = > Fb. ( )Safe. Shear strength of the plate p = > V. ( )Safe. Shear strength of the web w = > V. ( )

    Safe. Block shear strength of plate = > V. ( )Safe. Block shear strength of beam web = > V. ( )Safe. Axial Block shear strength of plate = > Fw,max. ( )Safe. Axial Block shear strength of beam web = > Fw,max. ( )

    Safe. Flexural strength of the fin plate = kN.m > Mf. ( )Safe Interaction Check for Fin PlateSafe Interaction Check for Block shear of Plate

    Safe Interaction Check for Block shear of web

    1,203.08 0.0

    190.9

    Jun 01, 2010

    N.A.

    154.7

    0.02024.5 1237.90.61

    0.63

    2161.08 kN

    415.76

    1,214.70

    N.A.

    154.70.37321.98

    kNkNkNkN

    0.00.0N.A.

    N.A. 884.52

    1,077.71 0.0N.A.

    kNkN

    0.0N.A. 105.25

    0.55

    1474.22569.231

    N.A.

    246.8 kN

    0.84 kN

    246.8 kN

    2,937.93 kN 0

    2291.1

    N.A.

    2656.8

    3,141.30

    2291.1

    3,658.67 kN

    587.76

    2291.10

    kN

    kN

    190.9

    190.9

    kN

    kN

    kN

    N.A.

    2291.1

    1237.9

    4177.44 kN

    154.7

    0.0

    0.862

    0.84

    0.79

    0.32

    0.32

    0.77

    0.86

    0.86

    0.48

    2,902.29

    591.30

    0.63

    kNkN

    1237.91,704.04 kN 1237.91,817.64 kN0.68

    0.73

    0.84

    0.46

    0.53

    11 of 22

  • 7/28/2019 Splice Design - LRFD

    12/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    SPLICE CONNECTION

    Connection identification MC

    Supporting member D1 = mm tw1 = mm r1 = mm

    UC 356x368x202 B1 = mm tf1 = mm D'1 = mm

    A1 = cm2 n = mm

    Supported member D2 = mm tw2 = mm r2 = mm

    UC 356x368x202 B2 = mm tf2 = mm D'2 = mm

    A2 = cm2 n = mm

    Member End Actions

    Unfactored UNFactored

    Compressive force C = kN kN

    Tensile force T = kN kN

    Shear force FY = kN kN

    Bending moment My = kN.m kN.m

    Lateral Shear force FZ = kN kN

    Bending moment Mz = kN.m kN.m

    Web connection

    Connection details

    Grade of bolt =Grade of material Rolled sections = A Grade 50 Plates - A

    Grade 50

    Diameter of bolt db =

    Diameter of bolt hole dbh =

    Area of one nominal bolt Ab =

    Effective area of one bolt Abn =

    Nr of bolt column nc =

    Nr of bolt rows nr =

    Nr of bolts n =

    Spacing of bolt rows (pitch) p =

    Spacing of bolt Columns (gauge) g =

    Horizontal Edge distance for member / plate Leh =

    Vertical End distance in plate at top Lev,pt =

    Vertical End distance in plate at bottom Lev,pb =

    Vertical End distance in member at top Lev,mt =

    Vertical End distance in member at bottom Lev,mb =

    Set back Sb =

    Length of plate Lp =

    Width of plate Wp =

    Thickness of plate tp = ( 2 - mm plates )

    Thickness of reinforcement twrp =

    Total thickness of web tw =

    A490-X

    KMK

    290.2

    15.2

    290.2

    15.2

    24.0

    MC

    mm

    mm

    mm

    mm

    572

    mm

    mm

    mm

    mm

    0.0

    0.0

    0.0

    01

    27.0

    0

    0.0

    352.9

    mm

    70.0

    12

    mm

    0.0

    0.0

    0.0

    16.5

    mm

    mm2

    mm2

    mm

    mm

    0.0

    5820

    257.0

    01

    0

    0.0

    374.6

    175.0

    22.5

    0.0

    4

    8

    27.0

    5820

    257.0

    82.3

    572

    82.3

    50.0

    40.0

    70.0

    40.0

    16.5

    6.0

    2

    5.0

    374.7

    27.0

    452.4

    mm

    mm

    24.0

    290.0

    374.7

    374.6

    EVERSENDAI

    12 of 22

  • 7/28/2019 Splice Design - LRFD

    13/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Least thickness of connected parts t =

    Nr of shear planes Ns =

    Sum of square of 'r' for the bolt group Er2

    =

    Force in web

    Due to compressive force C Cw = C

    =

    Due to tensile force T Tw = T

    =

    Maximum axial force in web Fw,max =

    Vertical shear force V =

    Shear in bolt due to V Fv = V/n

    =

    Eccentricity of V about c.g. of bolt group e = Sb+e'+0.5*(nc-1)*g

    =

    Moment due to eccentricity Me = V*e

    =

    Distance of outermost bolt from cg of b. group r = Sqrt(((nc-1)*g/2)2+((nr-1)*p/2)

    2)

    =

    Sum of square of 'r' for all bolts Er2

    =

    Vertical shear per bolt due to V FVl = V/n

    =

    Horizontal shear per bolt due to Fv,max FHl = Fw,max/n

    =

    Maximum shear in bolt due to Me Fm = Me*r/Er2

    =

    Vertical shear due to Fm FVm = Fm * cosq

    =

    Horizontal shear due to Fm FHm = Fm * sinq

    =

    Total vertical shear FV =

    Total horizontal shear FH =

    Resultant shear in bolt Fb =

    Check for bolts

    Nominal Shear Strength of Bolt Fnv =

    Nominal Tensile Strength of Bolt Fnt =

    Minimum Bolt Pretension Tb =

    Shear Strength of one bolt *Ps = *(Ns*Fnv*Ab) where,

    = =

    90.0 mm

    0.0 kN

    mm2

    352.9

    mm

    kN

    0.0 kN

    0.00

    1237.9

    154.73

    0.75

    780.0

    154.734

    kN

    kN

    M Pa

    kN

    kN

    kN

    kN

    kN

    kN

    mm2

    mm

    kN

    kN

    520.0

    kN257.0

    M Pa

    22.5

    2

    58800.0

    58800.0

    1237.9

    0.00

    0.00

    154.73

    kN

    0.00

    110.7

    0.00

    kN.m

    0.00

    0.0

    13 of 22

  • 7/28/2019 Splice Design - LRFD

    14/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Slip resistance of one bolt

    (Slip at required strength level) PSL = Ns*1.13*hsc*m*Tb*0.85

    hsc =

    Slip factor m =

    Minimum Bolt Pretension Tb =

    PSL =

    Capacity of one bolt Pb = > Fb. Safe.

    ( )

    Check for connected plies

    Rolled sections Plates

    Grade of material = A Grade 50 = A Grade 50

    Minimum Tensile Strength Fum = Fup =

    Minimum Yield Strength Fym = Fyp =

    Slenderness ratio, KL/r = K *L *sqrt(12) / tp where, L = (Leh,m + sb)*2

    = L = mm

    For KL/r < 25, K =

    Nominal compressive strength Pn = Fyp*Ag (E3.)

    =

    For KL/r > 25, Pn = Fcr*Ag

    Elastic Buckling Critical Stress Fe = p2*E/(KL/r)

    2

    =

    4.71*sqrt(E/Fy) =

    Flexural Buckling Stress Fcr = 0.658 (Fy/Fe) * Fy =

    =

    Compression Strength of the plate = Fcr*Ag

    Ag = Lp*tp

    =

    Nominal compressive strength Pn =

    Compression strength of the plate *Pn = > Cw. Safe.

    ( )

    Tensile Strength of the plate = Lower ( Tensile Yielding, Tensile Rupture)

    Tensile Yielding of the plate = *(Fy*Ag) Where,= =

    Effective net area Ae = An < 0.85* AgAn = (Lp-nr*dbh)*tp

    =

    Ae =

    Tensile Rupture of the plate = *(Fu*Ae) Where,

    = =

    7830.43

    113.40

    2401.20

    2357.33

    338.70

    6960

    246.8

    M Pa

    kN

    1474.2

    110.0

    0.5

    0.90

    kN

    M Pa

    450.0

    4368

    2161.08

    4368

    mm2

    mm2

    M Pa

    345.0 M Pa

    572

    154.7

    246.8

    1.0

    345.0

    572

    2161.08

    0.50

    450.0

    15.877

    257.0

    0.0

    0.90

    0.75

    kN

    KN

    M Pa

    mm2

    kN

    M Pa

    kN

    kN

    kN

    14 of 22

  • 7/28/2019 Splice Design - LRFD

    15/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Tensile Strength of the plate = > Tw. Safe.

    ( )

    Compression Strength of the web = Fcr*AgAg = (D2-dct-dcb)*tw

    =

    Compression Strength of the web Pn = > Cw. Safe.

    ( )

    Tensile Strength of the web = Lower ( Tensile Yielding, Tensile Rupture)

    Tensile Yielding of the web = *(Fy*Ag) Where,

    = =

    Effective net area Ae = An < 0.85* AgAn = (D2-dct-dcb-nr*dbh)*tw

    =

    Ae =

    Tensile Rupture of the web = *(Fu*Ae) Where,

    = =

    Tensile Strength of the web = > Tw. Safe.

    ( )

    Bearing Strength of the plate per bolt = (1.5*Lc*tp*Fu)* < 3*d*tp*Fu*Where, Lc = mm = > Fb. Safe.

    ( )

    Bearing Strength of the web per bolt = (1.5*Lc*tw*Fu)* < 3*d*tw*Fu*Where, Lc = mm = > Fb. Safe.

    ( )

    Shear Strength of the plate = Lower ( Shear Yielding, Shear Rupture)

    Shear Yielding of the plate = (0.6*Fy*Ag)* Where,

    = =

    Net Area subjected to shear Anv = (Lp-nr*dbh)*tp

    =Anv =

    Shear Rupture of the plate = (0.6*Fu*Anv)* Where,

    = =

    Shear Strength of the plate Vp = > V. Safe.

    ( )

    Shear Strength of the web = Lower ( Shear Yielding, Shear Rupture)

    Shear Yielding of the web = (0.6*Fy*Ag)* Where,

    = =

    2617.0

    5998.5

    26.5

    mm2

    kN

    mm2

    2569.231

    5998.5

    1474.2

    kN

    36.5

    8428.5

    321.98

    2024.5

    2024.5

    kN

    mm2

    KN

    4368

    884.52

    415.76

    kN

    kN

    1440.72

    884.52

    4368

    0.0

    0.75

    0.90

    1237.9

    1.0

    0.75

    kN

    kN

    154.7

    mm2

    154.7

    1237.9

    KN

    mm2

    kN

    0.0

    1.01744.7 kN

    15 of 22

  • 7/28/2019 Splice Design - LRFD

    16/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Net Area subjected to shear Anv = (D2-dct-dcb-nr*dbh)*tw

    =

    Anv =

    Shear Rupture of the web = (0.6*Fu*Anv)* Where,

    = =

    Shear Strength of the web Vw = > V. Safe.

    ( )

    Block shear strength of Plate = {(0.6*Fu*Anv+Ubs*Fu * Ant)}* Where,

    < {(0.6*Fy*Agv+Ubs*Fu * Ant)}* =

    Gross area subject to shear Agv

    = {(nr

    -1)*p+Lev,pt

    } * tp

    =

    Gross area subject to tension Agt = {(nc-1)*g+Leh} * tp=

    Net area subject to shear Anv = {(nr-1)*p+Lev,pt+0.5*dbh - nr*dbh} * tp=

    Net area subject to tension Ant = {(nc-1)*g+Leh+0.5*dbh - nc*dbh} * tp=

    Reduction Coefficient for block shear Ubs =

    Block shear strength of plate = > V. Safe.

    ( )

    Block shear strength of Beam Web = {(0.6*Fu*Anv+Ubs*Fu * Ant)}* Where,

    < {(0.6*Fy*Agv+Ubs*Fu * Ant)}* =

    Gross area subject to shear Agv = {(nr-1)*p+Lev,mt } * tw=

    Gross area subject to tension Agt = {(nc-1)*g+Leh} * tw=

    Net area subject to shear Anv = {(nr-1)*p+Lev,m t+0.5*dbh - nr*dbh} * tw=

    Net area subject to tension Ant = {(nc-1)*g+Leh+0.5*dbh - nc*dbh} * tw=

    Block shear capacity of beam web = > V. Safe.

    ( )

    Axial Block shear strength of Plate *Rn = {(0.6*Fu*Anv+Ubs*Fu * Ant)}* Where,

    < {(0.6*Fy*Agv+Ubs*Fu * Ant)}* =

    Gross area subject to shear Agv = {(nc-1)*g+Leh,p} * tp * 2

    =

    Gross area subject to tension Agt = {(nr-1)*p} * tp

    =

    Net area subject to shear Anv = {(nc-1)*g+Leh,p+0.5*dbh - nc*dbh} * tp * 2

    =

    Net area subject to tension Ant = {(nr-1)*p+ dbh - nr*dbh} * tp

    =

    Reduction Coefficient for block shear Ubs =

    Axial Block shear strength of plate = > Fw,max. Safe.

    ( )

    kN

    mm2

    1788.75 mm2

    mm2

    3732

    1,214.70

    5998.5

    mm2

    1214.7

    5998.5

    0.5

    6000 mm2

    2880

    1908

    1,203.08

    mm2

    mm2

    2700 mm2

    4450.5

    6576.75

    mm2

    kN

    kN

    mm2

    0.75

    0.0

    1237.9

    0.0

    0.75

    0.75

    0.0

    1,077.71

    3096

    kN

    mm2

    1

    0.75

    5760 mm2

    5040 mm2

    3816 mm2

    1817.64 kN

    16 of 22

  • 7/28/2019 Splice Design - LRFD

    17/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Axial Block shear strength of Beam Web Rn/ = {(0.6*Fu*Anv+Ubs*Fu * Ant)}* Where,

    < {(0.6*Fy*Agv+Ubs*Fu * Ant)}* =

    Gross area subject to shear Agv = {(nc-1)*g+Leh,m} * tw* 2

    =

    Gross area subject to tension Agt = {(nr-1)*p } * tw

    =

    Net area subject to shear Anv = {(nc-1)*g+Leh,m+0.5*dbh - nc*dbh} * tw* 2

    =

    Net area subject to tension Ant = {(nr-1)*p+dbh - nr*dbh} * tw

    =

    Axial Block shear strength of beam web = > Fw,max. Safe.

    ( )

    Flexural Strength of the fin plate (F11)

    Moment in fin plate Mf =

    Plastic section modulus of the fin plate Zf = tp*(Lp2-p

    2*nr*(nr

    2-1)*dbh/Lp)/4

    =

    Elastic section modulus of the fin plate Sf = tp*(Lp2-p

    2*nr*(nr

    2-1)*dbh/Lp)/6

    =

    Yielding Lb*d/t2

    0.08*E/Fy , Mn = Mp = Fy Zf < 1.6My

    length between point that braced againts Lb = mm

    twist of cross section

    depth of plate d = mm

    thickness of plate t = mm

    Lb*d/t2 =

    Cb =

    0.08*E/Fy =

    Nominal Flexural Strength, Mn = 345 * 340365.517< 1.6My

    =

    Mn = Mp =

    Lateral-Torsional Buckling =

    0.08*E/Fy < Lb*d/t2 1.9*E/Fy 1.9*E/Fy =

    My = Fy*Sf

    =

    Nominal Flexural Strength, Mn = Cb*{1.52-0.274(Lb*d/t2)*(Fy/E)}*My < Mp

    =

    Lb*d/t2 > 1.9*E/FyNominal Flexural Strength, Mn = Fcr Sf < Mp

    Fcr = 1.9E*Cb/(Lb*d/t2)

    = Mpa

    Mn = 6861.442 * 226910.344827586

    Nominal Flexural Strength, Mn =

    Nominal Flexural Strength, Mn =

    Flexural strength of fin plate *Mn = > Mf. Safe.

    ( )

    Interaction check for Axial & Moment = (< 1 Safe)

    117.43

    117.43

    78.28

    6861.44

    kN.m

    105.25

    24.0

    290.0

    116.94

    kN.m117.43

    kN.m

    kN.m

    1237.9

    0.75

    kN.m

    0.9

    0.00

    0.00 kN.m

    340366 mm3

    110.0

    0.84

    1101.45

    5400 mm2

    1704.04

    226910 mm3

    116.94 kN.m

    kN.m

    55.4

    1

    46.4

    kN

    4725 mm2

    3577.5

    mm22902.5

    mm2

    17 of 22

  • 7/28/2019 Splice Design - LRFD

    18/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Flange connection

    Connection details

    Grade of bolt =

    Grade of material Rolled sections = A Grade 50 Plates - A

    Grade 50

    Diameter of bolt db =

    Diameter of bolt hole dbh =

    Area of one nominal bolt Ab =

    Effective area of one bolt Abn =

    Nr of bolt column nc =

    Nr of bolt rows nr =

    Nr of bolts n =

    Spacing of bolt rows (pitch) p =

    Spacing of bolt coumns (gauge) g 2 =

    Spacing of bolt coumns (gauge) g 1 = g3 =

    Vertical End distance in plate at top Lev,pt =

    Vr. End distance in plate at bottom Lev,pb =

    Vertical End distance in member at top Lev,mt =

    Vr. End distance in member at bottom Lev,mb =

    Hr. edge distance for member / plate Leh =

    End distance in member e''' =

    Set back Sb =

    Width of plate bp = Width of plate inside bip = mm

    Length of plate lp = Thk. of inside plate tip = mm

    Thickness of plate tp = ( 2 - mm plates )

    Thickness of reinforcement tfrp =

    Gross thickness of flange tf =

    Least thickness of connected parts t =

    Nr of shear planes Ns =

    Sum of square of 'r' for the bolt group Er2

    =

    Force in flanges

    Due to compressive force C = C*Af2/A2

    =

    Due to moment Mz = Mz/ (D2-tf)

    =

    Due to tensile force T = T*Af2/A2

    =

    Force in compression flange Cf,max =

    Force in tension flange Tf,max =

    Maximum axial force in flanges Ff,max =

    Horizontal Shear in each bolt FHf = Ff,max/n

    =

    Eccentricity of Fz about c.g. of bolt group e = Sb+Leh+0.5*(nr-1)*p

    =

    mm

    mm

    mm

    mm

    mm

    260.0

    27.0

    16.0

    0.0

    360.0

    57.4

    5.0

    A490-X

    572

    475.0

    mm

    mm

    mm

    57.4

    mm

    kN

    mm

    70.0

    352.9 mm2

    2

    12

    50.0

    57.4

    50.0

    6

    60.0

    452.4

    mm

    mm2

    24.0

    27.0

    2291.1

    kN

    374300.0

    0.0

    2

    27.0

    190.9

    0.0

    2291.1

    0.0

    0.0

    kN

    mm

    mm

    mm

    mm

    mm

    mm

    kN

    mm2

    572

    16.0

    240

    0.0 mm

    kN

    240.0

    kN

    mm

    16

    mm

    2291.1

    kN

    18 of 22

  • 7/28/2019 Splice Design - LRFD

    19/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Moment in each flange due to My Mf = My*0.5

    =

    Moment due to lateral shear Me = Fz*e*0.5

    =

    Total moment Mf =

    Distance of outermost bolt from cg of b. group r = Sqrt((g1+g2/2)2+((nr-1)*p/2)

    2)

    =

    Sum of square of 'r' for all bolts Er2

    =

    Lateral shear per bolt due to Fz FVl = Fz/(2*n)

    =

    Horizontal shear per bolt due to Fv,max FHl = Ff/n

    =

    Maximum shear in bolt due to Me Fm = Me*r/Er2

    =

    Horizontal shear due to Fm FHm = Fm * sinq

    =

    Lateral shear due to Fm FLm = Fm * cosq

    =

    Total horizontal shear FH =

    Total lateral shear FL =

    Resultant shear in bolt Fb =

    Check for bolts

    Nominal Shear Strength of Bolt Fnv =

    Nominal Tensile Strength of Bolt Fnt =

    Minimum Bolt Pretension Tb =

    Shear Strength of one bolt Ps = (Ns*Fnv*Ab)* where,

    = =

    Slip resistance of one bolt

    (Slip at required strength level) PSL = Ns*1.13*hsc*m*Tb*0.85

    hsc =Slip factor m =Minimum Bolt Pretension Tb =

    PSL =

    Capacity of one bolt Pb = > Fb. Safe.

    ( )

    Check for connected plies

    Rolled sections Plates

    Grade of material = A Grade 50 = A Grade 50

    Minimum Tensile Strength Fum = Fup =

    Minimum Yield Strength Fym = Fyp =

    kN

    kN

    kN

    KN

    0.00

    0.00

    190.92

    190.922

    0.00

    0.00

    246.8

    345.0

    780.0

    KN

    257.0

    kN257.0

    520.0

    352.9

    kN

    572

    1.00.50

    246.8

    M Pa

    0.00

    0.00

    0.00

    kN.m

    mm

    kN

    190.92 kN

    572

    kN

    190.9

    M Pa

    kN

    kN

    218.0

    374300.0

    345.0 M Pa

    450.0 M Pa 450.0

    M Pa

    M Pa

    0.75

    0.00

    mm2

    kN.m

    kN.m

    kN

    19 of 22

  • 7/28/2019 Splice Design - LRFD

    20/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Slenderness ratio, KL/r = K *L *sqrt(12) / tp where, L = (Leh,m + sb)*2

    = L = mm

    For KL/r < 25, K =

    Nominal compressive strength Pn = Fyp*Ag (E3.)

    =

    For KL/r > 25, Pn = Fcr*Ag

    Elastic Buckling Critical Stress Fe = p2*E/(KL/r)

    2

    =

    4.71*sqrt(E/Fy) =

    Flexural Buckling Stress Fcr = 0.658 (Fy/Fe) * Fy =

    =

    Compression Strength of the plate = Fcr*Ag

    Ag = bp*tp + bip*tip

    =

    Nominal compressive strength Pn =

    Compression strength of the plate *Pn = > Cf,max. Safe.

    ( )

    Tensile Strength of the plate = Lower ( Tensile Yielding, Tensile Rupture)

    Tensile Yielding of the plate = (Fy*Ag)* Where,

    = =

    Effective net area Ae = An < 0.85* AgAn = (bp-nc*dbh)*tp + (bip-nc*dbh)*tip

    =

    Ae =

    Tensile Rupture of the plate = (Fu*Ae)* Where,

    = =

    Tensile strength of the plate = > Tf,max. Safe.

    ( )

    Compression strength of the flange = Fym*Ag

    Ag = B2*tf

    =

    Compression strength of the flange *Pn = > Cf,max. Safe.

    ( )

    Tensile Strength of the flange = Lower ( Tensile Yielding, Tensile Rupture)

    Tensile Yielding of the flange = (Fy*Ag)* Where,

    = =

    0

    0.90

    kN

    10116.9

    M Pa

    113.40

    0

    0.90

    2291.1

    130.0

    kN

    2656.8 kN 0.75

    3,141.30

    3141.3

    2656.8

    mm2

    7872

    kN

    kN

    mm2

    kN

    2980.8 kN

    2,937.93

    14.073

    3264.36

    7872 mm2

    0.5

    3312.00 kN

    0.90

    340.04 M Pa

    9966.94

    9600 mm2

    20 of 22

  • 7/28/2019 Splice Design - LRFD

    21/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Effective net area Ae = An < 0.85* AgAn = (B2-nc*dbh)*tf2

    =

    Ae =

    Tensile Rupture of the flange = (Fu*Ae)* Where,

    = =

    Tensile Strength of the flange = > Tf,max. Safe.

    ( )

    Bearing Strength of the plate per bolt = (1.5*Lc*tp*Fu)* < (3*d*tp

    *Fu

    )*

    Where, Lc = mm = > Fb. Safe.

    ( )

    Bearing Strength of the flange per bolt = (1.5*Lc*tf*Fu)* < (3*d*tf*Fu)*

    Where, Lc = mm = > Fb. Safe.

    ( )

    Block shear strength of Plate = {(0.6*Fu*Anv+Ubs*Fu * Ant)}* Where,

    < {(0.6*Fy*Agv+Ubs*Fu * Ant)}* =

    Gross area subject to shear Agv = {(nr-1)*p+Leh}* 2 * tp=

    Gross area subject to tension Agt = {g1 +g3 +Lev,pt+Lev,pb} * tp=

    Net area subject to shear Anv = {(nr-1)*p+Leh+0.5*dbh - nr*dbh} * 2 * tp=

    Net area subject to tension Ant = (g1 +g3 +Lev,pt+Lev,pb+dbh - nc*dbh) * tp=

    Reduction Coefficient for block shear Ubs =

    Block shear strength of the flange plate = > Ff,max. Safe.

    ( )

    Block shear strength of Beam flange = {(0.6*Fu*Anv+Ubs*Fu * Ant)}* Where,

    < {(0.6*Fy*Agv+Ubs*Fu * Ant)}* =

    Gross area subject to shear Agv = {(nr-1)*p+Leh}* 2 * tf=

    Gross area subject to tension Agt = {g1 +g3 +Lev,mt+Lev,mb} * tf=

    Net area subject to shear Anv = {(nr-1)*p+Leh+0.5*dbh - nr*dbh} * 2 * tf=

    Net area subject to tension Ant = (g1 +g3 +Lev,mt+Lev,mb+dbh - nc*dbh) * tf=

    Block shear strength of the beam flange = > Ff,max. Safe.

    ( )

    3096.9 mm2

    14121 mm2

    4177.44

    22140 mm2

    1

    0.75

    KN

    0.75kN

    2291.1

    mm2

    2291.1

    2291.1

    190.9

    190.9

    3200.0

    0.75

    KN

    2,902.29

    36.5

    8599.365

    mm2

    2902.3

    mm2

    43.0

    8658.9

    587.76

    591.30 KN

    kN

    mm2

    26240

    2336.0

    KN

    mm2

    3,658.67

    16736 mm2

    2367.9 mm2

    21 of 22

  • 7/28/2019 Splice Design - LRFD

    22/22

    EVERSENDAI ENGINEERING L.L.C Sheet of

    PROJECT Job No Designed by

    CLEVELAND CLINIC - ABU DHABI

    Date Checked by

    SUBJECT

    ReferenceDESIGN OF STEEL WORK CONNECTIONS AISC - LRFD

    KMK

    MC 01

    EVERSENDAI

    Moment capacity of the flange plate y

    Moment in flange plate Mf = 37 0 0 36.5

    Net section modulus of the flange plate Znet = Iyy-p / xmax tp

    Net moment of inertia of the flange plt. Iyy-p = tip

    47 0 47 140 46.5 0 46.5

    Net section modulus of the flange plate Znet = y

    Plastic section modulus of the fin plate Zf =

    Elastic section modulus of the fin plate Sf =

    Yielding Lb*d/t2

    0.08*E/Fy , Mn = Mp = Fy Zf < 1.6My

    length between point that braced againts Lb = mm

    twist of cross section

    depth of plate d = mm

    thickness of plate t = mm

    Lb*d/t2

    =

    Cb =

    0.08*E/Fy =

    Nominal Flexural Strength, Mn = 345 * 853365.2 < 1.6My

    =

    Mn = Mp =

    Lateral-Torsional Buckling

    0.08*E/Fy < Lb*d/t2 1.9*E/Fy =

    1.9*E/Fy =

    My = Fy*Sf

    =

    Nominal Flexural Strength, Mn = Cb*{1.52-0.274(Lb*d/t2)*(Fy/E)}*My < Mp

    =

    Lb*d/t2

    > 1.9*E/Fy

    Nominal Flexural Strength, Mn = Fcr Sf < Mp

    Fcr = 1.9E*Cb/(Lb*d/t2)

    = Mpa

    Mn = 2078.632 * 568910.13

    Nominal Flexural Strength, Mn =

    Nominal Flexural Strength, Mn =

    Flexural strength of fin plate *Mn = > Mf. Safe.

    ( )

    Interaction check for Axial & Bending of Plate = < 1.0, Safe

    233

    568910 mm3

    0.00 kN.m

    853365 mm3

    568910.13 mm3

    102403824 mm4

    130.0

    360.0

    16.0

    kN.m

    294.41 kN.m

    46.4

    294.41

    182.8

    0.9

    253.24 kN.m

    1101.4

    196.27 kN.m

    281.38 kN.m

    2078.63

    0.00

    0.862

    294.41 kN.m

    281.38 kN.m

    1