Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6....

91
Spin(9), Rosenfeld planes and canonical differential forms in octonionic geometry Maurizio Parton - Paolo Piccinni

Transcript of Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6....

Page 1: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Spin(9), Rosenfeld planes and canonical differential formsin octonionic geometry

Maurizio Parton - Paolo Piccinni

Page 2: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Page 3: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Page 4: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

MP, Paolo Piccinni.Spin(9) and almost complex structures on 16-dimensional manifolds.Annals of Global Analysis and Geometry, 41 (2012), 321–345.

MP, Paolo Piccinni.Spheres with more than 7 vector fields: all the fault of Spin(9).Linear Algebra and its Applications, 438 (2013), 1113–1131.

Liviu Ornea, MP, Paolo Piccinni, Victor Vuletescu.Spin(9) geometry of the octonionic Hopf fibration.Transformation Groups, 18 (2013), 845–864.

MP, Paolo Piccinni.Canonical Differential Forms, Rosenfeld Planes, and a Matryoshka inOctonionic Geometry.Work in progress.

Page 5: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

MP, Paolo Piccinni.Spin(9) and almost complex structures on 16-dimensional manifolds.Annals of Global Analysis and Geometry, 41 (2012), 321–345.

MP, Paolo Piccinni.Spheres with more than 7 vector fields: all the fault of Spin(9).Linear Algebra and its Applications, 438 (2013), 1113–1131.

Liviu Ornea, MP, Paolo Piccinni, Victor Vuletescu.Spin(9) geometry of the octonionic Hopf fibration.Transformation Groups, 18 (2013), 845–864.

MP, Paolo Piccinni.Canonical Differential Forms, Rosenfeld Planes, and a Matryoshka inOctonionic Geometry.Work in progress.

Page 6: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Further references

Robert Bryant.Remarks on Spinors in Low Dimensions.http://www.math.duke.edu/~bryant/Spinors.pdf (1999).

Thomas Friedrich.Weak Spin(9)-Structures on 16-dimensional Riemannian Manifolds.Asian Journal of Mathematics, 5 (2001), 129–160.

Andrei Moroianu, Uwe Semmelmann.Clifford structures on Riemannian manifolds.Advances in Mathematics, 228 (2011), 940–967.

Page 7: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Main aim of the talk

Convince you that Spin(9) is beautiful.

Method

Introduce Spin(9) little brother: Sp(2) · Sp(1)

Show you that Spin(9) is involved in many curious phenomena

Relatives

Construction of relevant differential forms associated with the groups

Spin(9), Spin(10),Spin(12), Spin(16)

appearing as structure and holonomy group in the exceptional symmetricspaces

FII EIII,EVI,EVIII

Cayley plane Rosenfeld planes

Page 8: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Page 9: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Page 10: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Berger’s list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

SO(n)U(n)

SU(n)

Sp(n) · Sp(1)

Sp(n)G2

Spin(7)Spin(9)

Simply connected, complete, holonomy Spin(9)⇔

OP2 = F4Spin(9) (s > 0), R16(flat), OH2 = F4(−20)

Spin(9) (s < 0)[Alekseevsky, Funct. Anal. Prilozhen 1968].

Page 11: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Berger’s list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

SO(n)U(n)

SU(n)

Sp(n) · Sp(1)

Sp(n)G2

Spin(7)Spin(9)Spin(9)×

Simply connected, complete, holonomy Spin(9)⇔

OP2 = F4Spin(9) (s > 0), R16(flat), OH2 = F4(−20)

Spin(9) (s < 0)[Alekseevsky, Funct. Anal. Prilozhen 1968].

Page 12: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

First Spin(9) definition

Definition

Spin(9) is the Lie group which has been excluded from a list.

Page 13: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

First Spin(9) definition

Definition

Spin(9) is the Lie group which has been excluded from a list.

Page 14: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

What is Spin(9)?

Definition

Spin(9) ⊂ SO(16) is the group of symmetries of the Hopf fibration

O2 ⊃ S15 S7

→ S8 ∼= OP1[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Λ8(R16)Spin(9)

= Λ81 + . . . [Friedrich, Asian Journ. Math 2001].

Spin(9) is the stabilizer in SO(16) of any element of Λ81

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl Details More details

[Berger, Ann. Ec. Norm. Sup. 1972].

Page 15: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

What is Spin(9)?

Definition

Spin(9) ⊂ SO(16) is the group of symmetries of the Hopf fibration

O2 ⊃ S15 S7

→ S8 ∼= OP1[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Λ8(R16)Spin(9)

= Λ81 + . . . [Friedrich, Asian Journ. Math 2001].

Spin(9) is the stabilizer in SO(16) of any element of Λ81

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl Details More details

[Berger, Ann. Ec. Norm. Sup. 1972].

Page 16: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Page 17: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

The closest relative: the quaternionic group Sp(2) · Sp(1)

Analogy 1

Spin(9) and Sp(2) · Sp(1) are the symmetry groups of the Hopf fibrations:

S15 −→ OP1 S7 −→ HP1

Analogy 2

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl

Sp(2) · Sp(1) is the stabilizer in SO(8) of the 4-form

Ω =

∫HP1

p∗l νl dl

Page 18: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

The closest relative: the quaternionic group Sp(2) · Sp(1)

Analogy 1

Spin(9) and Sp(2) · Sp(1) are the symmetry groups of the Hopf fibrations:

S15 −→ OP1 S7 −→ HP1

Analogy 2

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9) =

∫OP1

p∗l νl dl

Sp(2) · Sp(1) is the stabilizer in SO(8) of the 4-form

Ω =

∫HP1

p∗l νl dl

Page 19: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Two alternative constructions for the quaternionic form Ω

Sum of squares: classical

Ω = ω2I + ω2

J + ω2K , where ωI , ωJ , ωK are orthogonal local Kahler forms

Sum of squares: involutions

Ω = τ2(Θ), where

τ2(Θ) =∑

α<β θ2αβ

Θ = (θαβ) matrix of Kahler forms of Jαβ = Iα IβI1, . . . , I5 self-adjoint anti-commuting involutions in R8:

I1, . . . , I5 ∈ SO(8), I∗α = Iα, I2α = Id, Iα Iβ = −Iβ Iα

Explicit Iα

Page 20: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Two alternative constructions for the quaternionic form Ω

Sum of squares: classical

Ω = ω2I + ω2

J + ω2K , where ωI , ωJ , ωK are orthogonal local Kahler forms

Sum of squares: involutions

Ω = τ2(Θ), where

τ2(Θ) =∑

α<β θ2αβ

Θ = (θαβ) matrix of Kahler forms of Jαβ = Iα IβI1, . . . , I5 self-adjoint anti-commuting involutions in R8:

I1, . . . , I5 ∈ SO(8), I∗α = Iα, I2α = Id, Iα Iβ = −Iβ Iα

Explicit Iα

Page 21: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

The five involutions of Sp(2) · Sp(1) as 8× 8 matrices

I1 =

(0 Id

Id 0

)I2 =

(0 −RH

i

RHi 0

)

I3 =

(0 −RH

j

RHj 0

)I4 =

(0 −RH

k

RHk 0

)

I5 =

(Id 0

0 − Id

)Go back

Page 22: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Nine involutions for Spin(9)

Analogy 3

ΦSpin(9) = τ4(Θ), where

t9 +τ2(Θ)t7 + τ4(Θ)t5 +τ6(Θ)t3 + τ8(Θ)t characteristic polynomialof Θ

Θ = (θαβ) matrix of Kahler forms of Jαβ = Iα IβI1, . . . , I9 self-adjoint anti-commuting involutions in R16:

I1, . . . , I9 ∈ SO(16), I∗α = Iα, I2α = Id, Iα Iβ = −Iβ Iα

Explicit Iα

[MP-Piccinni, Ann. Glob. Anal. Geom. 2012].

Page 23: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

The nine involutions of Spin(9) as 16× 16 matrices

I1 =

(0 Id

Id 0

)I2 =

(0 −Ri

Ri 0

)I3 =

(0 −Rj

Rj 0

)

I4 =

(0 −Rk

Rk 0

)

I5 =

(0 −Re

Re 0

)

I6 =

(0 −Rf

Rf 0

)I7 =

(0 −Rg

Rg 0

)I8 =

(0 −Rh

Rh 0

)I9 =

(Id 0

0 − Id

)Go back

Page 24: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Spin(9) and Sp(2) · Sp(1) as structure groups

Analogy 4

A Spin(9)-structure on M16 is a rank 9 vector subbundle

spanI1, . . . , I9 ⊂ End(M)

A Sp(2) · Sp(1)-structure on M8 is a rank 5 vector subbundle

spanI1, . . . , I5 ⊂ End(M)

Page 25: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Spin(9) and Sp(2) · Sp(1) as structure groups

Analogy 4

A Spin(9)-structure on M16 is a rank 9 vector subbundle

spanI1, . . . , I9 ⊂ End(M)

A Sp(2) · Sp(1)-structure on M8 is a rank 5 vector subbundle

spanI1, . . . , I5 ⊂ End(M)

Due to the dual role Sp-Spin ofSp(1) = Spin(3) and Sp(2) = Spin(5)

Page 26: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)Why and whatQuaternionic analogyCuriosities about Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Page 27: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Jαβ = Iα Iβ1≤α<β≤9 generates spin(9)

There are 36 Kahler forms θαβ for 1 ≤ α < β ≤ 9

There are 84 Kahler forms θαβγ for 1 ≤ α < β ≤ 9

Remark

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by θαβ generated by θαβγ

Page 28: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Matryoshka-like structure

Nestedness

The family of complex structures Jαβ1≤α<β≤9 is compatible with theinclusion of Lie algebras

spin(7)∆ ⊂ spin(8) ⊂ spin(9)

in the sense that

spin(7)∆ = spanJαβ2≤α<β≤8

⊆ spanJαβ1≤α<β≤8 = spin(8)

⊆ spanJαβ1≤α<β≤9 = spin(9)

Page 29: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Spheres with more than 7 vector fields: Blame Spin(9)!

Spheres Sm−1 ⊂ Rm admit 1, 3 or 7 linearly independent vector fieldsaccording to whether p = 1, 2 or 3 in

m = (2k + 1)2p

In the general case

m = (2k + 1)2p16q with q ≥ 0 and p = 0, 1, 2, 3

the maximum number of vector fields is

σ(m) = 2p − 1 + 8q

C,H,O contribution Spin(9) contribution

Page 30: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

No S1-subfibration

Similarly to the quaternionic Hopf fibration, one would expect severalS1-subfibrations for the octonionic Hopf fibration on S15 ⊂ O2.

Theorem

Any global vector field on S15 which is tangent to the fibers of theoctonionic Hopf fibration S15 → S8 has at least one zero.[Ornea-MP-Piccinni-Vuletescu, Transformation Groups, 2013]

[Loo-Verjovsky, Topology, 1992]

Page 31: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

Page 32: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

Page 33: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)=

EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

Page 34: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)=

EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

Cayley plane

Page 35: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)=

EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

Cayley plane

Page 36: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Rosenfeld projective planes

What are the Rosenfeld projective planes?

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)= EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)= EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+= EVIII, dimEVIII = 128

Ros

enfe

ldpr

ojec

tive

pla

nes

Cayley plane

Page 37: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Rosenfeld projective planes

Focus on EIII

Cayley plane: OP2 =F4

Spin(9)= FII, dimFII = 16

(C⊗O)P2 =E6

Spin(10) ·U(1)= EIII, dimEIII = 32

(H⊗O)P2 =E7

Spin(12) · Sp(1)=

EVI, dimEVI = 64

(O⊗O)P2 =E8

Spin(16)+=

EVIII, dimEVIII = 128

Page 38: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

What is Spin(n)?

Roughly. . .

SO(2): multiplication by a unitary complex number in R2 = CSO(3): conjugation by a unitary quaternion in R3 = ImHSO(4): conjugation by 2 unitary quaternions in R4 = H

. . . we can say that. . .

The action of the above Lie groups SO(n) on Rn, for n = 2, . . . , 4, can bedescribed in terms of multiplication in some algebra embedding Rn as asubspace.

Motivation for Clifford algebras

Spin(n) is the generalization of the above fact to every n. The algebraembedding the group Spin(n) and the vector space Rn is called theClifford algebra. Go to MFD of Spin(n)

Page 39: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

What is Spin(n)?

Roughly. . .

SO(2): multiplication by a unitary complex number in R2 = CSO(3): conjugation by a unitary quaternion in R3 = ImHSO(4): conjugation by 2 unitary quaternions in R4 = H

. . . we can say that. . .

The action of the above Lie groups SO(n) on Rn, for n = 2, . . . , 4, can bedescribed in terms of multiplication in some algebra embedding Rn as asubspace.

Motivation for Clifford algebras

Spin(n) is the generalization of the above fact to every n. The algebraembedding the group Spin(n) and the vector space Rn is called theClifford algebra. Go to MFD of Spin(n)

Page 40: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

What is Spin(n)?

Roughly. . .

SO(2): multiplication by a unitary complex number in R2 = CSO(3): conjugation by a unitary quaternion in R3 = ImHSO(4): conjugation by 2 unitary quaternions in R4 = H

. . . we can say that. . .

The action of the above Lie groups SO(n) on Rn, for n = 2, . . . , 4, can bedescribed in terms of multiplication in some algebra embedding Rn as asubspace.

Motivation for Clifford algebras

Spin(n) is the generalization of the above fact to every n. The algebraembedding the group Spin(n) and the vector space Rn is called theClifford algebra. Go to MFD of Spin(n)

Page 41: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

Page 42: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

Page 43: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

Page 44: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

Page 45: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

def= I0

= I9

I0 is a complex structure, not an involution. It acts on the first factor ofC⊗O2 by complex multiplication.

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

Page 46: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

A basis for spin(10)

spin(10) = liespin(9), u(1) ⊂ su(16), where u(1) is generated by(i Id8 0

0 −i Id8

)

spin(9) is generated by J19, . . . , J89, because Jαβ = [Jβ9, Jα9]/2

=

def= I0

= I9

(i Id8 0

0 i Id8

(Id8 00 − Id8

)

Proposition

spin(10) = spanJαβ = Iα Iβ0≤α<β≤9

Page 47: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Canonical Spin(10)-form

Denote by JN the basis Jαβ = Iα Iβ0≤α<β≤9 of spin(10)

Denote by ΘN its associated skew-symmetric 10× 10 matrix ofKahler forms:

ΘN = (θαβ)0≤α<β≤9

Canonical Spin(10) form: 8-form in R32

The fourth coefficient τ4(ΘN) of the characteristic polynomial of ΘN is acanonical 8-form associated with the representation Spin(10) ⊂ SU(16):

ΦSpin(10) =∑

0≤α1<α2<α3<α4≤9

(θα1α2 ∧θα3α4−θα1α3 ∧θα2α4 +θα1α4 ∧θα2α3)2

Page 48: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

ΦSpin(10) generates H8(EIII)

Cohomology of EIII

H∗( (C⊗O)P2 ) =R[d2, d8]

(suitable relations)d2 ∈ H2, d8 ∈ H8

I’m Hermitian symmetric

I’m the Kahler form

What am I?

Page 49: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

ΦSpin(10) generates H8(EIII)

Cohomology of EIII

H∗( (C⊗O)P2 ) =R[d2, d8]

(suitable relations)d2 ∈ H2, d8 ∈ H8

I’m Hermitian symmetric

I’m the Kahler form

What am I?

Page 50: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

ΦSpin(10) generates H8(EIII)

The d8-Lemma

H∗( (C⊗O)P2 ) =R[d2, d8]

(suitable relations)d2 ∈ H2, d8 ∈ H8

I’m Hermitian symmetric

I’m the Kahler form

What am I?

Page 51: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

ΦSpin(10) generates H8(EIII)

0 + 0 2 + 0 4 + 0 6 + 0 8 + 0 10 + 0 12 + 0 14 + 0 16 + 0

0 + 8 2 + 8 4 + 8 6 + 8 8 + 810 + 812 + 814 + 816 + 8

0 + 162 + 164 + 166 + 168 + 1610 + 1612 + 1614 + 1616 + 16

H0 H2 H4 H6 H8 H10 H12 H14 H16

1

2

3

Kahler form

→ generator in H2(EIII)

→ generator in H8(EIII)

Page 52: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

ΦSpin(10) generates H8(EIII)

0 + 0 2 + 0 4 + 0 6 + 0 8 + 0 10 + 0 12 + 0 14 + 0 16 + 0

0 + 8 2 + 8 4 + 8 6 + 8 8 + 810 + 812 + 814 + 816 + 8

0 + 162 + 164 + 166 + 168 + 1610 + 1612 + 1614 + 1616 + 16

H0 H2 H4 H6 H8 H10 H12 H14 H16

1

2

3

Kahler form

ΦSpin(10)

→ generator in H2(EIII)

→ generator in H8(EIII)

Page 53: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Time check

How many minutes?

Go on with EVI, EVIII

Skip to applications

Page 54: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planesWhy and whatSpin(10)Spin(12) and Spin(16)

4 Applications

5 Conclusion

Page 55: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

EVI: cohomology ring

The cohomology of

EVI = (H⊗O)P2 =E7

Spin(12) · Sp(1)

is given by

H∗( (H⊗O)P2 ) =R[d4, d8, d12]

(suitable relations)d4 , d8 , d12 ∈ H4,H8,H12

I’m quaternion-Kahler

I’m the quaternion-Kahler form

? ?

Page 56: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

A basis for spin(12) ⊂ sp(16)

Consider the matrices(i Id8 0

0 −i Id8

),

(j Id8 0

0 −j Id8

),

(k Id8 0

0 −k Id8

)where i , j , k act as quaternionic multiplication on H⊗O2

Denote by I0, I−1, I−2 the i , j , k multiplication

Proposition

spin(12) = spanJαβ = Iα Iβ−2≤α<β≤9

Canonical Spin(12) forms: 8 and 12-form in R64

If ΘO is the matrix of Kahler forms of Jαβ = Iα Iβ, then τ4(ΘO) andτ6(ΘO) are a canonical 8-form and a canonical 12-form on R64 = H⊗O2

associated to Spin(12).

Page 57: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

EVI: cohomology ring

0 + 0 + 0 4 + 0 + 0 8 + 0 + 0 12 + 0 + 0 16 + 0 + 0 20 + 0 + 0 24 + 0 + 0 28 + 0 + 0 32 + 0 + 0

0 + 8 + 0 4 + 8 + 0 8 + 8 + 0 12 + 8 + 0 16 + 8 + 0 20 + 8 + 0 24 + 8 + 028 + 8 + 032 + 8 + 0

0 + 16 + 0 4 + 16 + 0 8 + 16 + 0 12 + 16 + 0 16 + 16 + 020 + 16 + 024 + 16 + 028 + 16 + 032 + 16 + 0

0 + 24 + 0 4 + 24 + 0 8 + 24 + 012 + 24 + 016 + 24 + 020 + 24 + 024 + 24 + 028 + 24 + 032 + 24 + 0

0 + 32 + 04 + 32 + 08 + 32 + 012 + 32 + 016 + 32 + 020 + 32 + 024 + 32 + 028 + 32 + 032 + 32 + 0

0 + 0 + 12 4 + 0 + 12 8 + 0 + 12 12 + 0 + 12 16 + 0 + 12 20 + 0 + 1224 + 0 + 1228 + 0 + 1232 + 0 + 12

0 + 8 + 12 4 + 8 + 12 8 + 8 + 12 12 + 8 + 1216 + 8 + 1220 + 8 + 1224 + 8 + 1228 + 8 + 1232 + 8 + 12

0 + 16 + 12 4 + 16 + 128 + 16 + 1212 + 16 + 1216 + 16 + 1220 + 16 + 1224 + 16 + 1228 + 16 + 1232 + 16 + 12

0 + 24 + 124 + 24 + 128 + 24 + 1212 + 24 + 1216 + 24 + 1220 + 24 + 1224 + 24 + 1228 + 24 + 1232 + 24 + 12

0 + 32 + 124 + 32 + 128 + 32 + 1212 + 32 + 1216 + 32 + 1220 + 32 + 1224 + 32 + 1228 + 32 + 1232 + 32 + 12

0 + 0 + 24 4 + 0 + 24 8 + 0 + 2412 + 0 + 2416 + 0 + 2420 + 0 + 2424 + 0 + 2428 + 0 + 2432 + 0 + 24

0 + 8 + 244 + 8 + 248 + 8 + 2412 + 8 + 2416 + 8 + 2420 + 8 + 2424 + 8 + 2428 + 8 + 2432 + 8 + 24

0 + 16 + 244 + 16 + 248 + 16 + 2412 + 16 + 2416 + 16 + 2420 + 16 + 2424 + 16 + 2428 + 16 + 2432 + 16 + 24

0 + 24 + 244 + 24 + 248 + 24 + 2412 + 24 + 2416 + 24 + 2420 + 24 + 2424 + 24 + 2428 + 24 + 2432 + 24 + 24

0 + 32 + 244 + 32 + 248 + 32 + 2412 + 32 + 2416 + 32 + 2420 + 32 + 2424 + 32 + 2428 + 32 + 2432 + 32 + 24

1 1 2 3 4 5 6 6 7

Quaternionic form

τ4(ΘO)

τ6(ΘO)

→ generator in H4(EVI)

→ generator in H8(EVI)

→ generator in H12(EVI)

Page 58: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

EVIII: cohomology ring

The cohomology of

EVIII = (O⊗O)P2 =E8

Spin(16)+

is given by

H∗( (O⊗O)P2 ) =R[d8, d12, d16, d20]

(suitable relations)d8 ,d12 ,d16 ,d20∈ H8,H12,H16,H20

?

?

?

?

Page 59: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

A basis for spin(16) ⊂ so(128)

Denote by I0, I−1, I−2, I−3, I−4, I−5, I−6 the i , j , k, e, f , g , hmultiplication by the octonion units on the first factor of O⊗O2

Proposition

spin(16) = spanJαβ = Iα Iβ−6≤α<β≤9

Canonical Spin(16) forms: 8, 12, 16 and 20-form in R128

If ΘR is the matrix of Kahler forms of Jαβ = Iα Iβ, then τ4(ΘR),τ6(ΘR), τ8(ΘR) and τ10(ΘR) are canonical forms associated with thestandard Spin(16) structure on R128 = O⊗O2.

Page 60: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

EVIII: cohomology ring

The cohomology of

EVIII = (O⊗O)P2 =E8

Spin(16)+

is given by

H∗( (O⊗O)P2 ) =R[d8, d12, d16, d20]

(suitable relations)d8 ,d12 ,d16 ,d20∈ H8,H12,H16,H20

I’m τ4(ΘR)

I’m τ6(ΘR)

I’m τ8(ΘR)

I’m τ10(ΘR)

Page 61: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

Page 62: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

Page 63: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

More than 7 vector fields on spheres? Spin(9)’s fault. . .

σ(m) = 2p − 1 + 8q

C,H,O contribution Spin(9) contribution

Maximal system of σ(m) = 8, 9, 11, 15 vector fields on S15,S31,S63, S127

Sphere σ(m) Vector fields Structures involved

S15 (p = 0, q = 1) 0 + 8 J19, . . . , J89 Spin(9)

S31 (p = 1, q = 1) 1 + 8 i ·, J19, . . . , J89 C + Spin(9)

S63 (p = 2, q = 1) 3 + 8 i ·, j ·, k ·,J19, . . . , J89 H + Spin(9)

S127 (p = 3, q = 1) 7 + 8 i ·, j ·, k ·, e·, f ·, g ·, h·, J19, . . . , J89 O + Spin(9)

Page 64: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

but Spin(10), Spin(12) and Spin(16) are co-conspirators

σ(m) =

0 + 8q Spin(9) contribution

1 + 8q Spin(10) contribution

3 + 8q Spin(12) contribution

7 + 8q Spin(16) contribution

Maximal system of σ(m) = 8, 9, 11, 15 vector fields on S15, S31,S63,S127

Sphere σ(m) Vector fields Structures involved

S15 (p = 0, q = 1) 0 + 8 J19, . . . , J89 Spin(9)

S31 (p = 1, q = 1) 1 + 8 J09,J19, . . . , J89 Spin(10)

S63 (p = 2, q = 1) 3 + 8 J(−2)9, J(−1)9, J09,J19, . . . , J89 Spin(12)

S127 (p = 3, q = 1) 7 + 8 J(−6)9, . . . , J(−1)9, J09,J19, . . . , J89 Spin(16)

Page 65: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

Page 66: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

The dolls. . .

Recall that the Spin(9) family

J I = Jαβ1≤α<β≤9

contains the Spin(8) and Spin(7)∆ subfamilies

JP = Jαβ1≤α<β≤8, JS = Jαβ2≤α<β≤8

Using the first factor multiplication in C⊗O2, H⊗O2, O⊗O2 weobtain the larger families

JN = Jαβ0≤α<β≤9, JO = Jαβ−2≤α<β≤9, J

R = Jαβ−6≤α<β≤9

Page 67: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

. . . and their Matryoshka

The Lie group inclusions

Spin(7)∆ ⊂ Spin(8) ⊂ Spin(9) ⊂ Spin(10) ⊂ Spin(12) ⊂ Spin(16)

are preserved by the spinor inclusions

JS ⊂ JP ⊂ J I ⊂ JN ⊂ JO ⊂ JR

= JSPINOR

Page 68: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

. . . and their Matryoshka

The Lie group inclusions

Spin(7)∆ ⊂ Spin(8) ⊂ Spin(9) ⊂ Spin(10) ⊂ Spin(12) ⊂ Spin(16)

are preserved by the spinor inclusions

JS ⊂ JP ⊂ J I ⊂ JN ⊂ JO ⊂ JR = JSPINOR

Page 69: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

INOR details

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by J I = Iα Iβ

Add I0 to obtain JN = Iα Iβ0≤α<β≤9 and

spanJN = spin(10) ⊂ so(32)

Add I−1, I−2 to obtain JO = Iα Iβ−2≤α<β≤9 and

spanJO = spin(12) ⊂ so(64)

Add I−6, . . . , I−3 to obtain JR = Iα Iβ−6≤α<β≤9 and

spanJR = spin(16) ⊂ so(128)

Page 70: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

INOR details

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by J I = Iα Iβ

Add I0 to obtain JN = Iα Iβ0≤α<β≤9 and

spanJN = spin(10) ⊂ so(32)

Add I−1, I−2 to obtain JO = Iα Iβ−2≤α<β≤9 and

spanJO = spin(12) ⊂ so(64)

Add I−6, . . . , I−3 to obtain JR = Iα Iβ−6≤α<β≤9 and

spanJR = spin(16) ⊂ so(128)

Page 71: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

INOR details

so(16) = Λ2(R16) = Λ236 ⊕ Λ2

84 = spin(9)⊕ Λ284

generated by J I = Iα Iβ

Add I0 to obtain JN = Iα Iβ0≤α<β≤9 and

spanJN = spin(10) ⊂ so(32)

Add I−1, I−2 to obtain JO = Iα Iβ−2≤α<β≤9 and

spanJO = spin(12) ⊂ so(64)

Add I−6, . . . , I−3 to obtain JR = Iα Iβ−6≤α<β≤9 and

spanJR = spin(16) ⊂ so(128)

Page 72: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 ApplicationsBack to spheresMatryoshkaClifford structures

5 Conclusion

Page 73: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Even Clifford structures

A rank r even Clifford structure on a Riemannian manifold Mn is:

a rank r oriented Euclidean vector bundle E over M

an algebra bundle morphism φ : Cl0(E )→ End(TM) such thatφ(Λ2E ) ⊂ End−(TM)

Classification

Rank of E Mn n

. . . . . . . . .

9 OP2 = FII = F4Spin(9) 16

10 (C⊗O)P2 = EIII = E6Spin(10)·U(1) 32

12 (H⊗O)P2 = EVI = E7Spin(12)·Sp(1) 64

16 (O⊗O)P2 = EVIII = E8Spin(16)+ 128

[Moroianu-Semmelmann, Adv. Math. 2011]

Page 74: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Explicit even Clifford structures on Rosenfeld planes

Holonomy representation

Local endomorphisms

Vector bundle

Spin(9)

Local I1, . . . , I9

E = spanI1, . . . , I9

Rank of E E φ Mn n

9 spanI1, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ OP2 16

10 spanI0, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (C⊗O)P2 32

12 spanI−2, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (H⊗O)P2 64

16 spanI−6, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (O⊗O)P2 128

Page 75: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Explicit even Clifford structures on Rosenfeld planes

Holonomy representation

Local endomorphisms

Vector bundle

Spin(9)

Local I1, . . . , I9

E = spanI1, . . . , I9

Rank of E E φ Mn n

9 spanI1, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ OP2 16

10 spanI0, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (C⊗O)P2 32

12 spanI−2, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (H⊗O)P2 64

16 spanI−6, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (O⊗O)P2 128

Page 76: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Explicit even Clifford structures on Rosenfeld planes

Holonomy representation

Local endomorphisms

Vector bundle

Spin(9)

Local I1, . . . , I9

E = spanI1, . . . , I9

Rank of E E φ Mn n

9 spanI1, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ OP2 16

10 spanI0, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (C⊗O)P2 32

12 spanI−2, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (H⊗O)P2 64

16 spanI−6, . . . , I9 Iα ∧ Iβ 7→ Jαβ = Iα Iβ (O⊗O)P2 128

Page 77: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

1 What you should expect in this talk

2 Spin(9)

3 After Spin(9): Rosenfeld projective planes

4 Applications

5 Conclusion

Page 78: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Wrapping up

Spin(9) is the octonionic version of the quaternionic group Sp(2) · Sp(1).

Spin(9) is the reason why there are more than 7 vector fields on spheres.

The Spin(9) form on R16 = O2 can be extended to C⊗O2, H⊗O2 andO⊗O2, to obtain explicit generators for the cohomology of particularsymmetric spaces called Rosenfeld planes.

Between the Spin(n) groups, Spin(10), Spin(12) and Spin(16) are moreequal than others to Spin(9).

Page 79: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry
Page 80: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Homology interpretation

Interpretation in terms of the homology of the Rosenfeld planes of thecanonical differential forms living in

H2,H8 H4,H8,H12 H8,H12,H16,H20

EIII EVI EVIII

Page 81: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Extending

Following

Iα1≤α≤9 ∈ End(O2)→ Iα0≤α≤9 ∈ End(C⊗O2)→ . . .

what happens extending the Pauli matrices

I1, I2, I3 ∈ End(C2)→ I0, . . . , I3 ∈ End(C⊗ C2)

and the

I1, . . . , I5 ∈ End(H2)→ I0, . . . , I5 ∈ End(C⊗H2)→ . . .

Page 82: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Subordinated structures

Can we write formulas as in

Ω = ω2I + ω2

J + ω2K

for our Spin(9), . . . ,Spin(16) canonical 8-forms in terms of compatiblequaternonic structures?

Page 83: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Minimal formal definition of Spin(n)

Definition

Cl(n) = Clifford algebra = algebra generated by vectors v ∈ Rn suchthat

v · v = −‖v‖2 · 1

α = canonical involution of Cl(n):

α(v) = −v for vectors v ∈ Rn

Cl0(n) = +1-eigenspace of α.

‖ · ‖ = norm of Cl(n) = extension of ‖ · ‖ to Cl(n).

Spin(n) = x ∈ Cl0(n)|xRnx−1 ⊂ Rnand‖x‖ = 1

Go back

Page 84: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Details for ΦSpin(9) =∫OP1 p∗l νl dl

νl = volume form on the octonionic lines ldef= (x ,mx) or

ldef= (0, y) in O2.

pl : O2 → l = projection on l .

p∗l νl = 8-form in O2 = R16.

The integral over OP1 can be computed over O with polarcoordinates.

The formula arise from distinguished 8-planes in theSpin(9)-geometry → (forthcoming) calibrations.

Go back

Page 85: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Berger and calibrations

Curiosity

Berger appears to know about the fact that ΦSpin(9) is a calibration onOP2 already in 1970 [Berger, L’Enseignement Math. 1970] and more explicitly in 1972[Berger, Ann. Ec. Norm. Sup. 1972, Theorem 6.3], very early with respect to theforthcoming calibration theory.

Page 86: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

Time check

ADATTARE E SPOSTAREDo we have at least ... minutes left?

Yes, go ahead as planned No, skip quaternionic analogy

Page 87: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

Page 88: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

Page 89: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

Page 90: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

First attempt

Remark

Since Spin(10) ⊂ SU(16), we would like to imitate Spin(9) ⊂ SO(16),and look for I0, . . . , I9 self-adjoint, anti-commuting involutions in C16.

Would-be proposition

Spin(10) ⊂ SU(16) is generated by 10 self-adjoint, anti-commutinginvolutions I0, . . . , I9.

Proposition

C16 with its standard Hermitian scalar product does not admit any familyof 10 self-adjoint, anti-commuting involutions I0, . . . , I9.

Page 91: Spin(9), Rosenfeld planes and canonical differential forms in …agricola/rauisch... · 2014. 6. 3. · Spin(9), Rosenfeld planes and canonical di erential forms in octonionic geometry

351 terms of ΦSpin(9)12345678

-14

123456

1′ 2

′2

123456

3′ 4

′-2

123456

5′ 6

′-2

123456

7′ 8

′-2

123457

1′ 3

′2

123457

2′ 4

′2

123457

5′ 7

′-2

123457

6′ 8

′2

123458

1′ 4

′2

123458

2′ 3

′-2

123458

5′ 8

′-2

123458

6′ 7

′-2

123467

1′ 4

′-2

123467

2′ 3

′2

123467

5′ 8

′-2

123467

6′ 7

′-2

123468

1′ 3

′2

123468

2′ 4

′2

123468

5′ 7

′2

123468

6′ 8

′-2

123478

1′ 2

′-2

123478

3′ 4

′2

123478

5′ 6

′-2

123478

7′ 8

′-2

1234

1′ 2

′ 3′ 4

′-2

1234

5′ 6

′ 7′ 8

′-2

123567

1′ 5

′-2

123567

2′ 6

′-2

123567

3′ 7

′-2

123567

4′ 8

′2

123568

1′ 6

′-2

123568

2′ 5

′2

123568

3′ 8

′-2

123568

4′ 7

′-2

123578

1′ 7

′-2

123578

2′ 8

′2

123578

3′ 5

′2

123578

4′ 6

′2

1235

1′ 2

′ 3′ 5

′-1

1235

1′ 2

′ 4′ 6

′-1

1235

1′ 3

′ 4′ 7

′-1

1235

1′ 5

′ 6′ 7

′-1

1235

2′ 3

′ 4′ 8

′1

1235

2′ 5

′ 6′ 8

′1

1235

3′ 5

′ 7′ 8

′1

1235

4′ 6

′ 7′ 8

′1

123678

1′ 8

′-2

123678

2′ 7

′-2

123678

3′ 6

′2

123678

4′ 5

′-2

1236

1′ 2

′ 3′ 6

′-1

1236

1′ 2

′ 4′ 5

′1

1236

1′ 3

′ 4′ 8

′-1

1236

1′ 5

′ 6′ 8

′-1

1236

2′ 3

′ 4′ 7

′-1

1236

2′ 5

′ 6′ 7

′-1

1236

3′ 6

′ 7′ 8

′1

1236

4′ 5

′ 7′ 8

′-1

1237

1′ 2

′ 3′ 7

′-1

1237

1′ 2

′ 4′ 8

′1

1237

1′ 3

′ 4′ 5

′1

1237

1′ 5

′ 7′ 8

′-1

1237

2′ 3

′ 4′ 6

′1

1237

2′ 6

′ 7′ 8

′-1

1237

3′ 5

′ 6′ 7

′-1

1237

4′ 5

′ 6′ 8

′1

1238

1′ 2

′ 3′ 8

′-1

1238

1′ 2

′ 4′ 7

′-1

1238

1′ 3

′ 4′ 6

′1

1238

1′ 6

′ 7′ 8

′-1

1238

2′ 3

′ 4′ 5

′-1

1238

2′ 5

′ 7′ 8

′1

1238

3′ 5

′ 6′ 8

′-1

1238

4′ 5

′ 6′ 7

′-1

124567

1′ 6

′2

124567

2′ 5

′-2

124567

3′ 8

′-2

124567

4′ 7

′-2

124568

1′ 5

′-2

124568

2′ 6

′-2

124568

3′ 7

′2

124568

4′ 8

′-2

124578

1′ 8

′-2

124578

2′ 7

′-2

124578

3′ 6

′-2

124578

4′ 5

′2

1245

1′ 2

′ 3′ 6

′1

1245

1′ 2

′ 4′ 5

′-1

1245

1′ 3

′ 4′ 8

′-1

1245

1′ 5

′ 6′ 8

′-1

1245

2′ 3

′ 4′ 7

′-1

1245

2′ 5

′ 6′ 7

′-1

1245

3′ 6

′ 7′ 8

′-1

1245

4′ 5

′ 7′ 8

′1

124678

1′ 7

′2

124678

2′ 8

′-2

124678

3′ 5

′2

124678

4′ 6

′2

1246

1′ 2

′ 3′ 5

′-1

1246

1′ 2

′ 4′ 6

′-1

1246

1′ 3

′ 4′ 7

′1

1246

1′ 5

′ 6′ 7

′1

1246

2′ 3

′ 4′ 8

′-1

1246

2′ 5

′ 6′ 8

′-1

1246

3′ 5

′ 7′ 8

′1

1246

4′ 6

′ 7′ 8

′1

1247

1′ 2

′ 3′ 8

′-1

1247

1′ 2

′ 4′ 7

′-1

1247

1′ 3

′ 4′ 6

′-1

1247

1′ 6

′ 7′ 8

′1

1247

2′ 3

′ 4′ 5

′1

1247

2′ 5

′ 7′ 8

′-1

1247

3′ 5

′ 6′ 8

′-1

1247

4′ 5

′ 6′ 7

′-1

1248

1′ 2

′ 3′ 7

′1

1248

1′ 2

′ 4′ 8

′-1

1248

1′ 3

′ 4′ 5

′1

1248

1′ 5

′ 7′ 8

′-1

1248

2′ 3

′ 4′ 6

′1

1248

2′ 6

′ 7′ 8

′-1

1248

3′ 5

′ 6′ 7

′1

1248

4′ 5

′ 6′ 8

′-1

125678

1′ 2

′-2

125678

3′ 4

′-2

125678

5′ 6

′2

125678

7′ 8

′-2

1256

1′ 2

′ 5′ 6

′-2

1256

3′ 4

′ 7′ 8

′-2

1257

1′ 2

′ 5′ 7

′-1

1257

1′ 2

′ 6′ 8

′1

1257

1′ 3

′ 5′ 6

′-1

1257

1′ 3

′ 7′ 8

′1

1257

2′ 4

′ 5′ 6

′-1

1257

2′ 4

′ 7′ 8

′1

1257

3′ 4

′ 5′ 7

′-1

1257

3′ 4

′ 6′ 8

′1

1258

1′ 2

′ 5′ 8

′-1

1258

1′ 2

′ 6′ 7

′-1

1258

1′ 4

′ 5′ 6

′-1

1258

1′ 4

′ 7′ 8

′1

1258

2′ 3

′ 5′ 6

′1

1258

2′ 3

′ 7′ 8

′-1

1258

3′ 4

′ 5′ 8

′-1

1258

3′ 4

′ 6′ 7

′-1

1267

1′ 2

′ 5′ 8

′-1

1267

1′ 2

′ 6′ 7

′-1

1267

1′ 4

′ 5′ 6

′1

1267

1′ 4

′ 7′ 8

′-1

1267

2′ 3

′ 5′ 6

′-1

1267

2′ 3

′ 7′ 8

′1

1267

3′ 4

′ 5′ 8

′-1

1267

3′ 4

′ 6′ 7

′-1

1268

1′ 2

′ 5′ 7

′1

1268

1′ 2

′ 6′ 8

′-1

1268

1′ 3

′ 5′ 6

′-1

1268

1′ 3

′ 7′ 8

′1

1268

2′ 4

′ 5′ 6

′-1

1268

2′ 4

′ 7′ 8

′1

1268

3′ 4

′ 5′ 7

′1

1268

3′ 4

′ 6′ 8

′-1

1278

1′ 2

′ 7′ 8

′-2

1278

3′ 4

′ 5′ 6

′-2

12

1′ 2

′ 3′ 4

′ 5′ 6

′2

12

1′ 2

′ 3′ 4

′ 7′ 8

′-2

12

1′ 2

′ 5′ 6

′ 7′ 8

′-2

12

3′ 4

′ 5′ 6

′ 7′ 8

′-2

134567

1′ 7

′2

134567

2′ 8

′2

134567

3′ 5

′-2

134567

4′ 6

′2

134568

1′ 8

′2

134568

2′ 7

′-2

134568

3′ 6

′-2

134568

4′ 5

′-2

134578

1′ 5

′-2

134578

2′ 6

′2

134578

3′ 7

′-2

134578

4′ 8

′-2

1345

1′ 2

′ 3′ 7

′1

1345

1′ 2

′ 4′ 8

′1

1345

1′ 3

′ 4′ 5

′-1

1345

1′ 5

′ 7′ 8

′-1

1345

2′ 3

′ 4′ 6

′1

1345

2′ 6

′ 7′ 8

′1

1345

3′ 5

′ 6′ 7

′-1

1345

4′ 5

′ 6′ 8

′-1

134678

1′ 6

′-2

134678

2′ 5

′-2

134678

3′ 8

′-2

134678

4′ 7

′2

1346

1′ 2

′ 3′ 8

′1

1346

1′ 2

′ 4′ 7

′-1

1346

1′ 3

′ 4′ 6

′-1

1346

1′ 6

′ 7′ 8

′-1

1346

2′ 3

′ 4′ 5

′-1

1346

2′ 5

′ 7′ 8

′-1

1346

3′ 5

′ 6′ 8

′-1

1346

4′ 5

′ 6′ 7

′1

1347

1′ 2

′ 3′ 5

′-1

1347

1′ 2

′ 4′ 6

′1

1347

1′ 3

′ 4′ 7

′-1

1347

1′ 5

′ 6′ 7

′1

1347

2′ 3

′ 4′ 8

′-1

1347

2′ 5

′ 6′ 8

′1

1347

3′ 5

′ 7′ 8

′-1

1347

4′ 6

′ 7′ 8

′1

1348

1′ 2

′ 3′ 6

′-1

1348

1′ 2

′ 4′ 5

′-1

1348

1′ 3

′ 4′ 8

′-1

1348

1′ 5

′ 6′ 8

′1

1348

2′ 3

′ 4′ 7

′1

1348

2′ 5

′ 6′ 7

′-1

1348

3′ 6

′ 7′ 8

′-1

1348

4′ 5

′ 7′ 8

′-1

135678

1′ 3

′-2

135678

2′ 4

′2

135678

5′ 7

′2

135678

6′ 8

′2

1356

1′ 2

′ 5′ 7

′-1

1356

1′ 2

′ 6′ 8

′-1

1356

1′ 3

′ 5′ 6

′-1

1356

1′ 3

′ 7′ 8

′-1

1356

2′ 4

′ 5′ 6

′1

1356

2′ 4

′ 7′ 8

′1

1356

3′ 4

′ 5′ 7

′1

1356

3′ 4

′ 6′ 8

′1

1357

1′ 3

′ 5′ 7

′-2

1357

2′ 4

′ 6′ 8

′-2

1358

1′ 3

′ 5′ 8

′-1

1358

1′ 3

′ 6′ 7

′-1

1358

1′ 4

′ 5′ 7

′-1

1358

1′ 4

′ 6′ 8

′-1

1358

2′ 3

′ 5′ 7

′1

1358

2′ 3

′ 6′ 8

′1

1358

2′ 4

′ 5′ 8

′1

1358

2′ 4

′ 6′ 7

′1

1367

1′ 3

′ 5′ 8

′-1

1367

1′ 3

′ 6′ 7

′-1

1367

1′ 4

′ 5′ 7

′1

1367

1′ 4

′ 6′ 8

′1

1367

2′ 3

′ 5′ 7

′-1

1367

2′ 3

′ 6′ 8

′-1

1367

2′ 4

′ 5′ 8

′1

1367

2′ 4

′ 6′ 7

′1

1368

1′ 3

′ 6′ 8

′-2

1368

2′ 4

′ 5′ 7

′-2

1378

1′ 2

′ 5′ 7

′1

1378

1′ 2

′ 6′ 8

′1

1378

1′ 3

′ 5′ 6

′-1

1378

1′ 3

′ 7′ 8

′-1

1378

2′ 4

′ 5′ 6

′1

1378

2′ 4

′ 7′ 8

′1

1378

3′ 4

′ 5′ 7

′-1

1378

3′ 4

′ 6′ 8

′-1

13

1′ 2

′ 3′ 4

′ 5′ 7

′2

13

1′ 2

′ 3′ 4

′ 6′ 8

′2

13

1′ 3

′ 5′ 6

′ 7′ 8

′-2

13

2′ 4

′ 5′ 6

′ 7′ 8

′2

145678

1′ 4

′-2

145678

2′ 3

′-2

145678

5′ 8

′2

145678

6′ 7

′-2

1456

1′ 2

′ 5′ 8

′-1

1456

1′ 2

′ 6′ 7

′1

1456

1′ 4

′ 5′ 6

′-1

1456

1′ 4

′ 7′ 8

′-1

1456

2′ 3

′ 5′ 6

′-1

1456

2′ 3

′ 7′ 8

′-1

1456

3′ 4

′ 5′ 8

′1

1456

3′ 4

′ 6′ 7

′-1

1457

1′ 3

′ 5′ 8

′-1

1457

1′ 3

′ 6′ 7

′1

1457

1′ 4

′ 5′ 7

′-1

1457

1′ 4

′ 6′ 8

′1

1457

2′ 3

′ 5′ 7

′-1

1457

2′ 3

′ 6′ 8

′1

1457

2′ 4

′ 5′ 8

′-1

1457

2′ 4

′ 6′ 7

′1

1458

1′ 4

′ 5′ 8

′-2

1458

2′ 3

′ 6′ 7

′-2

1467

1′ 4

′ 6′ 7

′-2

1467

2′ 3

′ 5′ 8

′-2

1468

1′ 3

′ 5′ 8

′-1

1468

1′ 3

′ 6′ 7

′1

1468

1′ 4

′ 5′ 7

′1

1468

1′ 4

′ 6′ 8

′-1

1468

2′ 3

′ 5′ 7

′1

1468

2′ 3

′ 6′ 8

′-1

1468

2′ 4

′ 5′ 8

′-1

1468

2′ 4

′ 6′ 7

′1

1478

1′ 2

′ 5′ 8

′1

1478

1′ 2

′ 6′ 7

′-1

1478

1′ 4

′ 5′ 6

′-1

1478

1′ 4

′ 7′ 8

′-1

1478

2′ 3

′ 5′ 6

′-1

1478

2′ 3

′ 7′ 8

′-1

1478

3′ 4

′ 5′ 8

′-1

1478

3′ 4

′ 6′ 7

′1

14

1′ 2

′ 3′ 4

′ 5′ 8

′2

14

1′ 2

′ 3′ 4

′ 6′ 7

′-2

14

1′ 4

′ 5′ 6

′ 7′ 8

′-2

14

2′ 3

′ 5′ 6

′ 7′ 8

′-2

1567

1′ 2

′ 3′ 5

′-1

1567

1′ 2

′ 4′ 6

′1

1567

1′ 3

′ 4′ 7

′1

1567

1′ 5

′ 6′ 7

′-1

1567

2′ 3

′ 4′ 8

′1

1567

2′ 5

′ 6′ 8

′-1

1567

3′ 5

′ 7′ 8

′-1

1567

4′ 6

′ 7′ 8

′1

1568

1′ 2

′ 3′ 6

′-1

1568

1′ 2

′ 4′ 5

′-1

1568

1′ 3

′ 4′ 8

′1

1568

1′ 5

′ 6′ 8

′-1

1568

2′ 3

′ 4′ 7

′-1

1568

2′ 5

′ 6′ 7

′1

1568

3′ 6

′ 7′ 8

′-1

1568

4′ 5

′ 7′ 8

′-1

1578

1′ 2

′ 3′ 7

′-1

1578

1′ 2

′ 4′ 8

′-1

1578

1′ 3

′ 4′ 5

′-1

1578

1′ 5

′ 7′ 8

′-1

1578

2′ 3

′ 4′ 6

′1

1578

2′ 6

′ 7′ 8

′1

1578

3′ 5

′ 6′ 7

′1

1578

4′ 5

′ 6′ 8

′1

15

1′ 2

′ 3′ 5

′ 6′ 7

′-2

15

1′ 2

′ 4′ 5

′ 6′ 8

′-2

15

1′ 3

′ 4′ 5

′ 7′ 8

′-2

15

2′ 3

′ 4′ 6

′ 7′ 8

′2

1678

1′ 2

′ 3′ 8

′-1

1678

1′ 2

′ 4′ 7

′1

1678

1′ 3

′ 4′ 6

′-1

1678

1′ 6

′ 7′ 8

′-1

1678

2′ 3

′ 4′ 5

′-1

1678

2′ 5

′ 7′ 8

′-1

1678

3′ 5

′ 6′ 8

′1

1678

4′ 5

′ 6′ 7

′-1

16

1′ 2

′ 3′ 5

′ 6′ 8

′-2

16

1′ 2

′ 4′ 5

′ 6′ 7

′2

16

1′ 3

′ 4′ 6

′ 7′ 8

′-2

16

2′ 3

′ 4′ 5

′ 7′ 8

′-2

17

1′ 2

′ 3′ 5

′ 7′ 8

′-2

17

1′ 2

′ 4′ 6

′ 7′ 8

′2

17

1′ 3

′ 4′ 5

′ 6′ 7

′2

17

2′ 3

′ 4′ 5

′ 6′ 8

′2

18

1′ 2

′ 3′ 6

′ 7′ 8

′-2

18

1′ 2

′ 4′ 5

′ 7′ 8

′-2

18

1′ 3

′ 4′ 5

′ 6′ 8

′2

18

2′ 3

′ 4′ 5

′ 6′ 7

′-2

Go

ba

ck