Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

476

Transcript of Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

Page 1: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 2: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 3: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 4: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 5: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 6: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 7: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 8: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 9: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 10: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 11: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 12: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 13: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 14: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 15: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 16: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 17: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 18: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 19: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 20: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 21: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 22: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 23: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 24: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 25: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 26: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 27: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 28: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 29: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 30: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 31: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 32: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 33: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 34: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 35: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 36: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 37: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 38: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 39: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 40: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 41: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 42: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 43: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 44: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 45: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 46: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 47: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 48: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 49: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 50: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 51: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 52: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 53: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 54: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 55: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 56: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 57: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 58: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 59: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 60: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 61: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 62: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 63: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 64: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 65: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 66: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 67: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 68: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 69: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 70: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 71: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

CHAPTER 3

Infrared Spectrometry

3.1 Introduction

Infrared (IR) radiation refers broadly to that part of the electromagnetic spectrum between the visible and mi- crowave regions. Of greatest practical use to the organic chemist is the limited portion between 4000 and 400 cm I . There has been some interest in the near- IR (14,290-4000 cm-') and the far-IR regions, 700- 200 cm-I.

From the brief theoretical discussion that follows, it is clear that even a very simple molecule can give an extremely complex spectrum. The organic chemist takes advantage of this complexity when matching the spec- trum of an unknown compound against that of an au- thentic sample. A peak-by-peak correlation is excellent evidence for identity. Any two compounds, except en- antiomers, are unlikely to give exactly the same IR spec- trum.

Although the IR spectrum is characteristic of the entire molecule, it is true that certain groups of atoms give rise to bands at or near the same frequency regard- less of the structure of the rest of the molecule. It is the persistence of these characteristic bands that permits the chemist to obtain useful structural information by simple inspection and reference to generalized charts of characteristic group frequencies. We shall rely heavily on these characteristic group frequencies.

Since we are not solely dependent on 1R spectra for identification, a detailed analysis of the spectrum will not be required. Following our general plan, we shall present only sufficient theory to accomplish our pur- pose: utilization of IR spectra in conjunction with other spectral data in order to determine molecular structure.

The importance of IR spectrometry as a tool of the practicing organic chemist is readily apparent from the number of books devoted wholly or in part to discus- sions of applications of IR spectrometry (see the refer- ences at the end of this chapter). There are many com- pilations of spectra as well as indexes to spcctral

collections and to the literature. Among the more com- monly used compilations are those published by Sadtler (1972) and by Aldrich (1985).

3.2 Theory

Infrared radiation of frequencies less than about 100 cm-I is absorbed and converted by an organic mol- ecule into energy of molecular rotation. This absorption is quantized; thus a molecular rotation spectrum consists of discrete lines.

Infrared radiation in the range from about 10,000- 100 cm is absorbed and converted by an organic mol- ecule into energy of molecular vibration. This absorp- tion is also quantized, but vibrational spectra appear as bands rather than as lines because a single vibrational energy change is accompanied by a number of rota- tional energy changes. It is with these vibrational-ro- tational bands, particularly those occurring between 4000 and 400 cm-I, that we shall be concerned. The fre- quency or wavelength of absorption depends on the rel- ative masses of the atoms, the force constants of the bonds, and the geometry of the atoms.

Band positions in IR spectra are presented here as wavenumbers ( T ) whose unit is the reciprocal centi- meter (cm-I); this unit is proportional to the energy of vibration and modern instruments are linear in recip- rocal centimeters. Wavelength (A) was used in the older literature in units of micrometers (pm = m; earlier called microns). Wavenumbers are reciprocally related to wavelength.

Note that wavenumbers are sometimes called "fre- quencies." However, this is incorrect since wavenum- bers (i in units of cm-I) are equal to 1 X 104/h in units of pm, whereas frequencies ( v in Hz) are equal to c/A in cm, c being the speed of light (3 X 101%cm/s), The

Isaias
Highlight
Page 72: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 73: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 74: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 75: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 76: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 77: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 78: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 79: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 80: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 81: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 82: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 83: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 84: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 85: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 86: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 87: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 88: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 89: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 90: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 91: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 92: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 93: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 94: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 95: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 96: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 97: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 98: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 99: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 100: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 101: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 102: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 103: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 104: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 105: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 106: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 107: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 108: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

108 Chapter 3 Infrared Spectrometry

WAVENUMBERS (cm- ' ) FIGURE 3.34. Ethyl p-toluenesulfonate. A. Asymmetric S(=O), stretch, 1355.5 cm--I. B. Symmetric S(=O), stretch, 1177 cm-l. C. Various strong S-0-C stretching, 1000-769 cm-l.

fonates show negligible differences; electron-donating groups in the para position of arenesulfonates cause higher frequency absorption.

Sulfonic acids are listed in narrow ranges above; these apply only to anhydrous forms. Such acids hydrate readily to give bands that are probably a result of the formation of hydronium sulfonate salts, in the 1230- 1120 cm-I range.

3.6.27 Organic Halogen Compounds

The strong absorption of halogenated hydrocarbons arises from the stretching vibrations of the carbon- halogen bond.

Aliphatic C-Cl absorption is observed in the broad region between 850 and 550 cm-I. When several chlorine atoms are attached to one carbon atom, the band is usually more intense and at the high-frequency end of the assigned limits. Carbon tetrachloride (see Appendix B, No. 10) shows an intense band at 797 cm-l. The first overtones of the intense fundamental bands are frequently observed. Spectra of typical chlo- rinated hydrocarbons are shown in Appendix B: Nos. 10-13. Brominated compounds absorb in the 690- 515 cm-I region, iodo compounds in the 600-500 cm-I region. A strong CH, wagging band is observed for the CH,X (X = C1, Br, and I) group in the 1300- 1150 cm-I region.

Fluorine-containing compounds absorb strongly over a wide range between 1400 and 1000 cm-I because of C-F stretching modes. A monofluoroalkane shows a strong band in the 1100- 1000 cm-I region. As the number of fluorine atoms in an aliphatic molecule in- creases, the band pattern becomes more complex, with multiple strong bands appearing over the broad region

of C-3 absorption (see Fluorolube spectrum, Appen- dix C). The CF, and CF, groups absorb strongly in the 1350-1 120-cm-I region. The spectrum of Fluorolube@, Appendix B, No. 14, illustrates many of the preceding absorption characteristics.

Chlorobenzenes absorb in the 1096- 1089 cm-I region. The position within this region depends on the substitution pattern. Aryl fluorides absorb in the 1250-1100 cm-I region of the spectrum. A monofluo- rinated benzene ring displays a strong, narrow absorp- tion band near 1230 cm-I.

3.6.28 Silicon Compounds

3.6.28.1 Si -H Vibrations Vibrations for the Si -H bond include the Si-H stretch (- 2200 cm-l) and the Si-H bend (800-950 cm-I). The Si-H stretching fre- quencies are increased by the attachment of an electro- negative group to the silicon.

3.6.28.2 SiO-H and Si-0 Vibrations The O H stretching vibrations of the SiOH group absorb in the same region as the alcohols, 3700-3200 cm-I, and strong Si-0 bands are at 830-1110 cm-l. As in alco- hols, the absorption characteristics depend on the de- gree of hydrogen bonding.

The spectrum of silicone lubricant, Appendix B (No. 27), illustrates some of the preceding absorptions.

3.6.28.3 Silicon - Halogen Stretching Vibrations Ab- sorption caused by Si-F stretch is in the 800-1000 re- gion.

Bands resulting from Si- C1 stretching occur at fre- quencies below 666 cm l .

Isaias
Highlight
Isaias
Highlight
Isaias
Highlight
Page 109: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 110: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 111: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 112: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 113: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 114: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 115: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 116: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 117: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 118: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 119: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 120: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 121: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 122: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 123: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 124: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 125: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 126: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 127: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 128: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 129: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 130: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 131: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 132: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 133: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 134: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 135: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

Appendix B 135

NO. 27 NO. 28

Isaias
Highlight
Page 136: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 137: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 138: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 139: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 140: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 141: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 142: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 143: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 144: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

CHAPTER 4

Proton Magnetic Resonance Spectrometry

4.1 Introduction Atomic Atomic I Mass Number Example (I)

Nuclear magnetic resonance (NMR) spectrometry is ba- sicallv another form of absor~tion snectrometrv. akin to Half-integer Odd Odd or iH(i), liO(?), l$N($)

2 I I d Z

IR or UV spectrometry. Under appropriate conditions even Integer Even Odd ?H(1), l$N(l), lgB(3)

in a mugneticfield, a sample can absorb electromagnetic Zero Even Even radiation in the radio frequency (rf) region at frequen-

'iC(O), '$O(O), ?%S(O)

cies governed by the characteristics of the sampler Ab- sorption is a function of certain nuclei in the molecule. A plot of the frequencies of the absorption peaks versus peak intensities constitutes an NMR spectrum. This chapter covers proton magnetic resonance (lH NMR) spectrometry.

With some mastery of basic theory, interpretation of NMR spectra merely by inspection is usually feasible in greater detail than is the case for IR or mass spectra. The present account will suffice for the immediate lim- ited objective: identification of organic compounds in conjunction with other spectrometric information. Ref- erences are given at the end of this chapter.

We begin by describing some magnetic properties of nuclei. All nuclei carry a charge. In some nuclei this charge "spins" on the nuclear axis, and this circulation of nuclear charge generates a magnetic dipole along the axis (Fig. 4.1). The angular momentum of the spinning charge can be described in terms of quantum spin num- bers I; these numbers have values of 0, i, 1, $, and so on ( I = 0 denotes no spin). The intrinsic magnitude of

Nuclei with a spin number I of 1 or higher have a non- spherical charge distribution. This asymmetry is de- scribed by an electrical quadrupole moment which, as we shall see later, affects the relaxation time and, con- sequently, the linewidth of the signal and the coupling with neighboring nuclei. In quantum mechanical terms, the spin number I determines the number of orienta- tions a nucleus may assume in an external uniform mag- netic field in accordance with the formulas 21 + 1. We are concerned with the proton whose spin number I is 3.

Thus in Figure 4.2, these are two energy levels and a slight excess of proton population in the lower energy state (N, > Np) in accordance with the Boltzmann dis- tribution. The states are labeled a and /3 or 1 and - 1; AE is given by

the generated dipole is expressed in terms of nuclear where h is Planck's constant, which simply states that magnetic moment, p. AE is proportional to B, (as shown in Fig. 4.2) since h,

Relevant properties, including the spin number I, of y, and , are constants. B, represents the magnetic field several nuclei are given in Appendix H. The spin num- strength.* ber I can be determined from the atomic mass and the atomic number as shown in the next column.

Spectra of several nuclei can be readily obtained * The designations B (magnetic induction or flux density) and H (mag-

(e.g., i ~ , :H, I ~ C , I ~ N , I;F, ~ p ) since they have spin num- netic intensity) are often used interchangeably for magnetic field strength in NMR spectrometry. The SI term tesla (T), the unit of

hers I and a uniform 'pherical charge distribution measurement for B, supercedes the term gauss (G); 1 T = 104 G. The (Fig, 4.1)- Of these, far the most widely used in NMR frequency term hertz (Hz) supercedes cycles per second (cps). MHz . .

spectrometry are 'H (this chapter) and I3C (Chapter 5). is megahertz (lo0 HZ).

Page 145: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

4.2 Continuous-Wave (CW) NMR Spectrometry 145

FIGURE 4.1. Spinning charge on proton generates magnetic dipole.

Once two energy levels for the proton have been established, it is possible to introduce energy in the form of radiofrequency radiation (v,) to effect a transition between these energy levels in a stationary magnetic field of given strength B,,. The fundamental NMR equa- tion correlating the applied radiofrequency v, with the magnetic field strength is

since

The introduced radiofrequency vl is given in mega- hertz (MHz). A frequency of 100 MHz is needed at a magnetic field strength B,, of 2.35 tesla (T) for the pro- ton (or any other desired combination of vl and B, at the same ratio. See Appendix H). At this ratio, the sys- tem is in resonance; energy is absorbed by the proton, raising it to the higher energy state, and a spectrum re- sults. Hence the name nuclear magnetic resonance spec- trometry. The constant y is called the magnetogyric

Spin = + 1, $ 2

FIGURE 4.2. Two proton energy levels, from quantum mechanics, in a magnetic field of magnitude 23,. N is population. The direction of the magnetic field ( T T T ) is

I up, parallel to the ordinate, and B,, increases to the right.

ratio, a fundamental nuclear constant; it is the propor- tionality constant between the magnetic moment p and the spin number I.

The radiofrequency v, can be introduced either by con- tinuous-wave (CW) scanning or by a radiofrequency pulse.

4.2 Continuous- Wave (CW) NMR Spectrometry

The problem is how to apply radiofrequency (rf) elec- tromagnetic energy to protons aligned in a stationary magnetic field and how to measure the energy thus ab- sorbed as the protons are raised to the higher spin state. This can best be explained in classical mechanical terms, wherein we visualize the proton as spinning in an ex- ternal magnetic field. The magnetic axis of the proton precesses about the z axis of the stationary magnetic field B, in the same manner in which an off-perpendic- ular spinning top precesses under the influence of grav- ity (Fig. 4.3).

An assemblage of equivalent protons precessing in random phase around the z axis (i.e., in the direction of the stationary magnetic field B,) has a net macroscopic magnetization M, along the z axis, but none in the xy plane (Fig. 4.4).

When an applied rf (v,) is equal to the precessional frequency of the equivalent protons (Larmor frequency u, in MHz), the state of nuclear magnetic resonance is

Precessional

,---+---, Nuclear magnetic

B 0

FIGURE 4.3. Classical representation of a proton precessing in a magnetic field of magnitude B,, in analogy with a precessing spinning top.

Isaias
Highlight
Page 146: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 147: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 148: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 149: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 150: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 151: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 152: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 153: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 154: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 155: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 156: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 157: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 158: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 159: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 160: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 161: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 162: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 163: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 164: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 165: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 166: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 167: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 168: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 169: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 170: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 171: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 172: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 173: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 174: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 175: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 176: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 177: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 178: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 179: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 180: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 181: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 182: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 183: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 184: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 185: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 186: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 187: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 188: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 189: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 190: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 191: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 192: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 193: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 194: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 195: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 196: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 197: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 198: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 199: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 200: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 201: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 202: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 203: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 204: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 205: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 206: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 207: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 208: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 209: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 210: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 211: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 212: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 213: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 214: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 215: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 216: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 217: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 218: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 219: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 220: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 221: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 222: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 223: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 224: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 225: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 226: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 227: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 228: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 229: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 230: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 231: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 232: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 233: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 234: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 235: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 236: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 237: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 238: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 239: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 240: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 241: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 242: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 243: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 244: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 245: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 246: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 247: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 248: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 249: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 250: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 251: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 252: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 253: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 254: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 255: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 256: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 257: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 258: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 259: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 260: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 261: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 262: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 263: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 264: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 265: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 266: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 267: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 268: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 269: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 270: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 271: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 272: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 273: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 274: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 275: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 276: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 277: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 278: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 279: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 280: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 281: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 282: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 283: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 284: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 285: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 286: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 287: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 288: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 289: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 290: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 291: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 292: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 293: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 294: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 295: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 296: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 297: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 298: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 299: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 300: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 301: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 302: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 303: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 304: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein

CHAPTER 8

B. Solved Problems

Compound 8.1

We start by gathering information in order to establish a molecular formula. We assume that the weak peak at m/z 144 is the molecular ion peak. It is so small that the intensities of its isotope peaks cannot be accurately measured. Since m/z 144 is an even number, there are 0, 2, 4 . . . N atoms present. To begin, we tentatively assume that are no N, S, or halogen atoms present; this posture, of course, is quite shaky.

From left to right, the proton integrator in the 'H NMR spectrum reads: 2, 2, 2, 3, 3-calibrated against the presumed methyl singlet at 6 2.17. From high to low frequency the 13C and DEPT spectra read: C, C, CH,, CH,, CH,, CH,, CH,. Thus, there are 12 protons and 7 carbon atoms in the molecular formula. Note that the DEPT CH subspectrum is omitted since there are no CH groups. The most likely molecular formula under unit mass 144 is C,H120, (Chapter 2, Appendix A). The index of hydrogen deficiency is 2, and this should be immediately explored.

The IR spectrum shows a strong, broad C=O peak at about -1725 cm-I, which accounts for one unsatu- rated site and for one 0 atom. The 'T spectrum shows a ketone C=O group at -6 208, and an ester C=O group at -6 172.5; the latter assignment is reinforced by typical ethyl ester peaks in the IR spectrum at -1160 cm-' and -1030 cm-I. The broad peak at -1725 cm-I must represent both C=O groups. The three 0 atoms in the molecular formula are ac- counted for.

With this information in hand, interpretation of the 'H spectrum is straightforward. The methyl singlet men- tioned above must be attached to the ketone C=O group to give us one end of the molecule, CH,- C --,

I I 0

which also accounts for the base peak in the mass spectrum at m/z 43. The three-proton triplet and the strongly deshielded, two-proton quartet account for the - C -0-CH,-CH, moiety at the other end of

II

Filling in between the two ends of the molecule re- quires little imagination. All that remain in the 'H spec- trum are two two-proton triplets-surely two adjacent CH, groups. Hence:

CH3- C-CH2-CH2- C -0-CH2-CH, II 0

II 0

Ethyl levulinate, Ethyl 4-oxopentanoate

Let us return for a moment to the mass spectrum: Note that the loss of 15 units (loss of CH,) to give a moderate peak of m/z 129 provides confirmation that the weak peak at m/z 144 is indeed the molecular ion peak. Loss of 45 units to give the strong peak at m/z 99 provides further confirmation.

Assignment of the shifts of the CH, groups adjacent to the C=O groups is ambiguous. Assignment can be achieved by obtaining an HMBC spectrum (Chapter 6) which would show correlation (long-range coupling) be- tween the groups adjacent to the ketone C=O group (Chapter 6).

For further discussion, consider and reject the fol- lowing isomers of ethyl levulinate:

0 the molecule. Confirmation is provided by the strong peak at m/z 99 (characteristic loss of 0-CH,-CH,). The NMR spin systems are A,, A,X,, and A,X,.

Isaias
Highlight
Page 305: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 306: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 307: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 308: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 309: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 310: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 311: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 312: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 313: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 314: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 315: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 316: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 317: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 318: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 319: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 320: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 321: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 322: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 323: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 324: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 325: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 326: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 327: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 328: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 329: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 330: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 331: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 332: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 333: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 334: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 335: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 336: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 337: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 338: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 339: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 340: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 341: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 342: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 343: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 344: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 345: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 346: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 347: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 348: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 349: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 350: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 351: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 352: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 353: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 354: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 355: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 356: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 357: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 358: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 359: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 360: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 361: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 362: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 363: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 364: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 365: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 366: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 367: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 368: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 369: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 370: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 371: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 372: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 373: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 374: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 375: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 376: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 377: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 378: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 379: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 380: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 381: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 382: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 383: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 384: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 385: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 386: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 387: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 388: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 389: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 390: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 391: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 392: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 393: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 394: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 395: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 396: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 397: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 398: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 399: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 400: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 401: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 402: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 403: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 404: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 405: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 406: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 407: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 408: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 409: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 410: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 411: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 412: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 413: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 414: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 415: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 416: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 417: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 418: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 419: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 420: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 421: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 422: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 423: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 424: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 425: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 426: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 427: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 428: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 429: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 430: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 431: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 432: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 433: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 434: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 435: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 436: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 437: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 438: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 439: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 440: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 441: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 442: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 443: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 444: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 445: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 446: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 447: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 448: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 449: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 450: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 451: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 452: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 453: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 454: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 455: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 456: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 457: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 458: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 459: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 460: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 461: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 462: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 463: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 464: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 465: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 466: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 467: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 468: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 469: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 470: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 471: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 472: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 473: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 474: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 475: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein
Page 476: Spectroscopy.chemistry.nmr.FTIR.ms. .Silverstein