SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process...

35
SPECTROSCOPY OF 1D MATERIALS IN SINGLE-WALLED CARBON NANOTUBES H. Kuzmany Fakultät für Physik der Universität Wien, Wien, A Content THE SQUEEZED SPACE INSIDE Filling the tubes MAGNETIC PEAPODS ESR, rotor state, tuning the pea distance DOUBLE-WALLED CNTs: Pair spectra, catalytic growth 13 C SWCNT: NMR, spin gap, Tomonaga-Luttinger behavior Co-operations U Wien TU Budapest Oxford U IFW Dresden AIST Tsukuba U Erlangen U Paris Sud MPI Dresden U Sofia U Bologna FeCp 2 @(10,10)

Transcript of SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process...

Page 1: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

SPECTROSCOPY OF 1D MATERIALS IN SINGLE-WALLED CARBON NANOTUBES

H. KuzmanyFakultät für Physik der Universität Wien, Wien, A

Content

THE SQUEEZED SPACE INSIDEFilling the tubes

MAGNETIC PEAPODSESR, rotor state, tuning the pea distance

DOUBLE-WALLED CNTs:Pair spectra, catalytic growth

13C SWCNT: NMR, spin gap,Tomonaga-Luttinger behavior

Co-operationsU WienTU BudapestOxford UIFW DresdenAIST Tsukuba U ErlangenU Paris Sud MPI DresdenU SofiaU Bologna

FeCp2@(10,10)

Page 2: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.00.51.01.52.02.53.03.54.04.55.0

Es33

Em11

Es22

Inverse Diameter (nm-1)

Tran

sitio

n En

ergy

(eV)

Es11

0.7 0.50.60.81.01.21.6Diameter (nm-1)

2.0

KATAURA PLOT

Hans Kuzmany: PHYSICS OF CARBON NANOPHASES

Fig. 6.12

プレゼンター
プレゼンテーションのノート
Fig. 6.12 H. Kataura et al., Synth. Met.103 (1999) 2555-2558 (modified) Due to the proportionality of the transition energies to 1/dt the energies can be plotted in a linear Diagram versus the inverse tube diameter (Kataura plot). Small deviations from linearity appear for small tube diameters and for high transition energies. They originate from deviation of the band structure of graphene from an ideal cone (trigonal warping). The blue board marks the visible spectral range. The dashed red line connects transitions for one tube.
Page 3: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

The squeezed space inside

Page 4: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

150 200 250 300 350 4001,5

1,6

1,7

1,8

1,9

2,0

2,1

2,2

2,3

2,4

2,5

2,6

Eii (e

V)

RBM Frequency (cm-1)

FAMILY BEHAVIOR FOR RBM RAMAN RESONANCES

Popov-Kataura plot

Open symbols: Symmetry adapted non orthogonal TBv. Popov 2003 +corrections

Filled symbols:experiment, HiPco(averaged from Fantini et al., Telg et al., 2004)

(6,4)

(7,2)

(8,0)

DWCNT

22

16

17

19

2024

27Families: (2n+m) mod 3 = 0, 1, 2

プレゼンター
プレゼンテーションのノート
In the diameter range of the inner shell tubes the family behavior of the tubes is very well expressed. 2m+n (3) = 0 (metallic), 2m+n (3) = 1 (sc I), 2m+n (3) = 2 (sc II) Fam 16: (6,4), (7,2), (8,0); Fam 17: (6,5), 7,2), (8,0) Fam 19: (7,5), (8,3), (9,1); Fam 27: (9,9), (10,7), (11,5), (12,3), 13,1)
Page 5: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

500 1000 1500 2700Nor

mal

ized

Inte

nsiti

es (a

rb. u

.)

Raman shift (cm-1)

vRBM = C/d(n,m)

RAMAN SCATTERING FROM SWCNTs

RBMD

G

G‘

647

488

14 Raman active modes (8 for zig-zag, armchair)

All Raman lines disperse!

プレゼンター
プレゼンテーションのノート
From the four Raman lines three are highly dispersive. Whereas the D-line and the G‘-line exhibit a continuous up shift with increasing laser energy the RBM-line shows characteristic line pattern for each laser.
Page 6: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

DOUBLE RESONANCE SCATTERING FOR D-LINE AND G‘-LINE

Double resonance for graphite

Triple resonance for nanotubes

G‘

Page 7: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Disp

DISPERSION OF G-LINESVienna Ab initio Simulation Package, VASP

selected modes

O. Dubay et al., PRL 2002

(T)

O. Dubai et al., PRL2002

DWCNT

Page 8: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Filling SWCNTs

Page 9: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

FILLING SINGLE_WALLED CARBON NANOTUBES

B The filling processes Filling from Process characterization Examples Vapour phase

Clean but thermal stability of filler is required

C60, C70, metallofullerenes

Liquid phase (melt)

Simple if melt exists Medium filling temperature

Alkali halides, ferrocene

(Solution) Low temperature but solvent may also enter

Fullerenes, N@C60, C59N

Supercritical CO2

Clean, low filling temperature but needs special equipment to handle sc CO2 , long filling times

Functionalized fullerenes

A Opening the tubesexposure to air at 450-650 0C, 2 h re-closing is possible by heating in vacuum at 800 0C, 6 h

Page 10: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

S. Iijima (2004)

K. Suenaga IWEP2006

K. SuenagaWONTON 2005

Fig.6.32

J. Sloan (2002)

Hybride filling: C60-FeI2

Doped PeapodMetallofullerenes

T. Okazaki (2005)

1D MATERIALS @ SWCNTs

Classical peapod

プレゼンター
プレゼンテーションのノート
Fig. 6.32 TEM images, various authors, 2005/2006 Top left: alternating filling of tubes with C60 and FeCl2 Top right: peapods, after doping with potassium. The potassium atoms are inside the tubes. Bottom left: functional fullerenes make chemical bonds to the tube from the inside Bottom right: reactions of the C60 molecules with each other (fusion process)
Page 11: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

EXPERIMENTAL OBSERVATION OF PEAPODS

Fig. 6.31

150 300 450 600 750 1350 1500 1650

Inte

nsity

(arb

. u.)

x10

RBM Hg(4

)H

g(3)

A g(1)

x50

Raman shift (cm-1)

488.0 nm, 90 K

Hg(2

)

D-m

ode

A g(2)

Hg(7

)

x10

G-m

ode

x1

Raman scattering

R. Pfeiffer, 2003

Filling with magnetic peapods (N@C60, C59N)

Transformation to DWCNT

プレゼンター
プレゼンテーションのノート
Fig. 6.31 R. Pfeiffer, J. Bernardi (2003) Left: TEM picture of peapods, as recorded by J. Bernardi at the TU Wien Right: Raman spectrum of peapods; the red circled lines come from the tubes, the other sharp lines from the C60 molecules
Page 12: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Magnetic peapods

Page 13: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

S i k

LINEAR SPIN CHAINS WITH C59N@SWCNTs

for C59N:S=1/2I = 1

Dimer

C59N-XM2

Spin Engineering

322 324 326

C59N:C60@SWCNT

600 oC vac.ES

R si

gnal

(arb

.u.)

C59N-XM2:C60@SWCNTBefore heat treatment

N@C60:C60

Magnetic Field (mT)

F. Simon et al., PRL 2006

Spinconcentration is only about 10% of C59N-XM2concentration!

Spinconcentration is only about 10-6

Spinconcentration zero

C

Heterodimer

Heterodimer

プレゼンター
プレゼンテーションのノート
Linear spinchains with C59N@SWCNTs
Page 14: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

250 300 350 400 4500.0

0.2

0.4

0.6

0.8

I hete

rodi

mer/I to

tal

T (K)

F=E-TSIhetero/Itotal=1/(1+expΔF/kBT

)Ebinding=2800 K, S2-S1=9kB

DYNAMICS OF THE SPIN CARRYING STATE

Heterodimer/monomer

Ground state: spins at C60-> siglet state

Excited state: spins at C59N -> hyperfine triplet

0,09

0,10

0,11

0,12

0 50 100 150 200 250 3000,00

0,02

0,04

0,06

0,08

860660460

260

60

a)

hombroadening T1fit

b)ΔH

(mT)

ΔHH

om (T

)

Temperature (K)

T1 (nsec)

T (K)

C59N:C60@SWCNT

Monomer:motional narrowing!

Heterodimer:Korringa behavior

F. Simon, PRL 2006

Page 15: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

ON TRANSFORMATION TO DWCNT: IS N INSERTED INTO THE INNER-SHELL TUBE?

expected: 0.14% line shift

RBM: 0.5 cm-1

2D: 3.5 cm-1

observed: 2D: 3 cm-1

2430 2520 2610

Red: DWNT transformed from (C59

N)2@SWNT

Blue: DWNT transformed from (C60)n@SWNTBlack: SWNT

Raman shift (cm-1)

Ram

an In

tens

ity (a

rb. u

nits

)

1064 nm, 80 K

15481545

プレゼンター
プレゼンテーションのノート
Oberton der D Linie gemessen mit 1064 nm Laser
Page 16: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Double-walled carbon nanotubes, pair spectra

Page 17: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Linewidths down to 0.4 cm-1

10x more narrow than for standard tubes

The interior is a Nano-cleanroom

100 200 300 400 500 600 700 800 1300 1400 1500 1600

Nor

mal

ized

Inte

nsity

(arb

. u.)

x20 90 Kx50 x20 x1

Raman shift (cm-1)

SWCNTs

C60 peapods

DWCNTs

inner RBMsx5 x5

Pfeiffer et al., PRL2003

RAMAN

GROWING DWCNTs FROM PEAPODS

There are too many lines!!

Page 18: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

RAMAN MAP

RBM RAMANLINESDWCNT vs CoMoCat

The two cluster of lines originate from the same inner tube((6,5), (6,4))

プレゼンター
プレゼンテーションのノート
Tube-Tube interaction is responsible for the splitting. More than one type of tube can grow in a particular outer tube and vice versa.
Page 19: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Color code: Raman Intensity

RESONANCE PROFILE OF CLUSTER COMPONENTES

All lines in the in the cluster come from the same inner but different outer tubes.

Lase

r Ene

rgie

Phononen Frequenz

-2 mV/cm-1

R. Pfeiffer et alPRB 2005

330 335 340 345 350 355 360 365

Exp.

Inte

nsity

(arb

. u.)

RBM frequency (cm-1)

Exp: intensity normalized by cross section

Page 20: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

COMPARISON OF CLUSTERED LINES WITH CALCULATION

Exp: intensity normalized by cross section

(6,4)

(6,4)

V. Popov, 2005Continuum model

(6,4)

(6,4)

プレゼンター
プレゼンテーションのノート
Experiment: normale Auflösung
Page 21: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

COMPARISON OF CLUSTERED LINES WITH CALCULATION

Calculatd with Gaussian profilPair spectra

V. Popov, 2005Continuum model

Exp: intensity normalized by cross section

(6,4)

(6,4)

R. Pfeifferet al. 2005

Page 22: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

FERROCENE IN SWCMTs

No Raman spectrum could be observed after filling at 100 0C for several daysFeCp2

H. Shiozawa et al., 2007

2 h, 600 0C

1 h, 1150 0C

Photoemission spectroscopy

Page 23: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

150 200 250 300 350 400

(FeCp2)n@SWCNTs, 1150°C, 1h (FeCp2)n@SWCNTs, 600°C, 8h (C60)n@SWCNTs, 1150°C, 24h

676 nm (1.83 eV), 80 K, NR

Sca

led

Inte

nsoi

ty (a

rb. u

.)

Raman shift (cm-1)

RAMAN SCATTERING FOM FeCp2 AND C60 GROWN DWCNTs

290 300 310 320 330 340 350 360 370

(6,4)

(17,

3),(1

5.6)

(16,

2), (

14,5

)

(14,

7),(1

8,1)

(13,

8),(1

6,4)

(12,

9),(1

1,10

)(1

7,2)

,(15,

5),(1

8,0)

(14,

6),(1

6,3)

,(13,

7)(1

7,1)

,(12,

8)

(14,

6) (11,

9),(1

5,4)

,(10,

10)

Nor

mal

ized

inte

nsity

Raman shift (cm-1)

(13,

6)

S

(17,

0)

(16,

3)

A

B

C

(6,5)a

600 0C

C601150 0C

1150 0C

Page 24: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

a) As filled

b) After heat treatment at 1150 oC

c) after heat treatment at 600 oC

d) Fe3C particle with simulation

a b c

d

HR-TEM FOR FERROCENE FILLED SWCNTs

K. Suenaga, 2007

Fe3C+C

FeCp2

Growth from catalytic reaction

プレゼンター
プレゼンテーションのノート
D: schwrze Punkte sind Fe, färbige Punkte (lila) Fe3C Simulation (Pbmn, a=0.4523 , b=0.5089 , c=0.6743 nm Bei längerer Auslagerung bei 600 oC wandelt sich das Fe-Karbid in Fe-Oxid um. Fe-Ox ist außerhalb der Röhrchen
Page 25: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

13C precursor grown DWCNT

Page 26: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

150 200 250 300 350

676 nm

12C60-DWCNT

12-13C60-DWCNT

Ram

an si

gnal

(a.u

.)

Raman shift (cm-1)

RBM line

1260 1280 1300 1320 1340 1360 1380 1400

29%13C60 DWCNTs

12C60 DWCNTs

568 nm

Inte

nsity

(arb

. u.)

Raman shift (cm-1)

19 cm-1

D line

SPECTROSCOPY FOR 13C-SWCNT

プレゼンター
プレゼンテーションのノート
Fig. 8.17 F. Simon et al. 2005, unpublished P.M. Singer et al., NMR Evidence for Gapped Spin Excitations in Metallic Carbon Nanotubes, Phys. Rev. Lett. 95, (2005) 236403 NMR: T1 aus free induction decay nach /2 Impuls(3usec), M(t) gestreckte Exponentialverteilung. Feldabhängigkeit : 1/T1T = A+B/H wie für 1D Leiter, 1/T1T wird aus n() berechnet nach: 1/T1T = α()n()n(+)(-f(T, )/), α() wird aus A+B‘/ berechnet. Der Überschuss im Maximum von 1/T1T könnte LL Verhalten sein. Okazaki beobachtet quenching der Lumineszenz!!!
Page 27: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

CHECKING THE ROLE OF TOLUENE

2500 2600 2700 2800 2900

1.1 %

515 nm, RT

26.5 %

54 %

74 %

Ram

an si

gnal

(arb

.u.)

Raman shift (cm-1)

13C enriched toluene+C60

0 10 20 30 40 50 60 70 800

2

4

6

8

10

12

x=1

x=74

x=54

x=26.5

1.1+0.130(6)*x

13C

enr

ichm

ent o

f inn

er tu

bes (

%)

13C content of toluene (%)

As evaluated from the RBM first spectral moment

Page 28: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Singer et al., PRL 2005

From spin-echo sequence

13C-SWCNT@12C-SWCNTsRELAXATION OF MAGNETIC MOMENTS

stretched exponential [ ]β)/(exp)0()( 1

eTtMtM −=

プレゼンター
プレゼンテーションのノート
2 Orders of magnitude enhancement of sensitivity, 89% 13C enhancement Signal recovery after saturation magnetization yields M(t), t/Te1 is a scaled relaxation time. Not equal 1 means a distribution of T1. Te1 prop to mean relaxation time <T> (T1e=<T>/Γ(1/), Γ is gamma function)
Page 29: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

LONGITUDINAL NUCLEAR SPIN RELAXATION T1

prop H1/2

Singer et al., PRL 2005

Description by a gaped DOS

Page 30: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

DYNAMICS OF NUCLEAR SPINS

1D spin diffusion Korringa relaxation

1/TT1exp= 940 (μsK)-1

1/TT1 = A + B/√H

プレゼンター
プレゼンテーションのノート
Field dependence of 1/TT1 = A+B/√H. B-term is typical for 1D spin diffusion (electron spin diffuse, cut off for small fields is not yet reached. A is the nondiffusive part to the relaxation Korringa: The correct slope is obtained for the dipole-dipol interaction (r=aCC) and the correct n(F) which depends on tube diameter (n(F = (2√3/π2Vpp)(a/d)
Page 31: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

i) High T: 1/TT1 constant, independent from Tfor all tubes, Korringa behavior

ii) T<150K: 1/TT1 increases dramatically

iii) Below 20 K a spin gap appears

Description with a gaped DOS, Δ = 20 K,

-0,1 0,0 0,1

DO

S (a

rb.u

.)

E(eV)

RESULTS FROM NMR RELAXATION

Origin of gap:Not field-induced (independent of field

Not curvature-induced (100 meV expected)

Not longitudinal quantization (distribution expected)

Possible: Peierls or spin-Peierls gap

Origin of metallization:Intertube interaction

Charge tansfer

Page 32: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

W. Song et al. 2005

METALLIZATION FROM TUBE-TUBE INTERACTION

From first principle calculations

(V. Zolyomi et al. 2007)

General: gap closes or at least gets reduced

Page 33: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

TOMONAGA-LUTTINGER DESCRIPTION FOR T1

For 1D electronic system a correlated ground state is expected ->

TL-liquid instead of Fermi liquid

H. Ishii et al., 2003from PES: α =0.46 (g=0.18)

TLL is described by bosonization of the fermions

The FL description above uses a gap already at room temperature wich violates 2Δ/KBTc > 3.52 rule(mean field not applicable)

Here: TLL (ungaped) and Luther- Emery (gaped) description were combined

B. Dora et al., PRL 2007

At low T:a spin gaped LEL

Above 30K: normal TLL

Page 34: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

Summ

SUMMARY

The inside of SWCNTs: a narrow space for preparation of new structures.

1D materials from magnetic molecules can be prepared inside.

Nanotubes growth inside: clean room conditions

Raman line pattern of the RBM modes for DWCNTs: pair spectra

Catalytic reactions inside: tube growth at 600 0C

13C DWCNTs: with inner tubes almost exclusively 13C. Raman: G’-anomalyNMR: inner tubes: metallic, with a spin gap of 3.5 meV appearing at 20 K,Best described by TLL and LE liquids

Page 35: SPECTROSCOPY OF 1D MATERIALS IN SINGLE ...maruyama/visitors/Kuzmany...Filling from Process characterization Examples Vapour phase Clean but thermal stability of filler is required

ACKNOWLEDGEMENT

Co-worker, in Wien international Projects R. Pfeiffer A. Janossy (TU Budapest) FWF, Projekt 14893 F. Simon V. Popov (U Sofia, Namur) Projekt 17345 M. Milnera H. Alloul (U Paris Sud) Projekt 14386 T. Pichler (+IFW Dresden) F. Singer (U Paris Sud) M. Hulman K Suenaga (AIST, Tsukuba) W. Plank H. Kataura (AIST, Tsukuba) EU, FUNCARS H. Peterlik A. Hirsch (U Erlangen) PATONN H. Shiozawa (IFW Dresden) NANOTEMP IMPRESS