Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P...

18
Spectroscopic signatures of bond-breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC

Transcript of Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P...

Page 1: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Spectroscopic signatures of bond-

breaking internal rotation in HCP.

Mark S Child and Matt P JacobsonOxford University UK

UK EPSRC

Page 2: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Outline

• Classical origin and validity of the polyad approximation for a Hamiltonian with the

angular periodicity of HCP.

• Vibrational/rotational level stucture in lowest (pure bending) polyad components.

Page 3: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Spherical pendulum Hamiltonian

Quantum states, semiclassical theory and

validity of the polyad approximation

Part 1

Page 4: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

The model

HC

P

θ

ˆ ˆ ˆSep FermH H H Expressed in

trigonometric form

Page 5: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Hamiltonian components2 2

0

2 2s

2

ˆ ˆ sin2

ˆ ˆ +2

ˆ sin

Sep

s s

Ferm s

H BJ V

p q

H V q

Spherical pendulum (Bend)

CP stretch

Scaled parameter values0

0

100, 9, 0.25, 3

5 / 2

s

bende s

V B V

BV

Fermi resonance coupling

Energy unit ~ 147 cm-1

Page 6: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Spherical harmonic expansion , , , ,b bj

v k j k j k v k

Spherical pendulum states

Page 7: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Periodic orbits

Bifurcation diagramshowing onset and

frequencies of periodic orbits

Classical Fourier components closely related to ‘spherical pendulum’ matrix elements

Pendulum frequency variation

Semiclassical considerationsPoints are

Quantum level separations

Page 8: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Polyad attributes

Fraction of eigenstatenot attributable to a single

2:1 polyad

Reduced bending energy

/ 2s pE N

Vertical columns indicate ‘good polyads’

vs 2p s bN v v

Page 9: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Improved bending potential

and rotation-vibration coupling

parameters

Part 2

Page 10: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Extended RKR bending potential with bending frequency plot

Page 11: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Bending energy vs vibrational

angular momentum

HCP ‘monodromy’ plot

Page 12: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Coriolis splittings at nb =10 and nb

=40

Page 13: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

2 2 2

2 2

( , 0) ( )[ ( 1) ]

[ ( 1) ]

bE E n k gk B k J J k

D J J k

Vibration rotation constants

Page 14: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Conclusions

• Trigonometric (spherical potential) Hamiltonian form imposes necessary periodicity.

• Eventually invalidates any harmonic oscillator based representation.

• 2:1 Fermi polyad model valid almost up to saddle point, provided matrix elements take account of angular periodicity.

• RKR based bending potential predicts large energy variation of vib-rotn parameters – in line with experimental observations.

Page 15: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

RKR procedure2

2

2 2

0 02 2

0

( )

1/ 2

( ) ( ) ( )

( ) ( ) ( )2 2

( ) adiabatic stretching eigen function

RKR equation

( ) ( )

( ) bending level for

t

t

bend eff

r CP R GH

v U

stretch

dH f V

d

fr R

d dv

f U E v

E v v

0

Page 16: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Quantum monodromy plot

Note shape change as unit cell is transported around O

Page 17: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.

Accuracy of polyad approximation

Notes

• Barrier max at E=100 units

• 1 unit ~ 140 cm-1

Page 18: Spectroscopic signatures of bond- breaking internal rotation in HCP. Mark S Child and Matt P Jacobson Oxford University UK UK EPSRC.