Spectral description -...

15
1 The turbulence fact : Definition, observations and universal features of turbulence 2 The governing equations 3 Statistical description of turbulence 4 Turbulence modeling 5 Turbulent wall bounded flows 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based on the equations of the dynamics in fully developed turbulence HIT// thomas.gomez@univ- lille1.fr 278/374 6 Homogeneous Isotropic Turbulence Spectral description Spectral equations Spectral phenomenological description Closure spectral theory Passive scalar dynamics Free decaying turbulence HIT// thomas.gomez@univ- lille1.fr 279/374 Spectral description Fourier transform Direct ˆ f (k)= 1 2Z +1 -1 f (x)e -ıxk dx Inverse f (x)= Z +1 -1 ˆ f (k)e ıxk dk k : wavenumber i 2 = -1 HIT/Spectral description/ thomas.gomez@univ- lille1.fr 280/374 Spectral description Velocity correlation tensor Physical space R ij (x, r,t) u 0 i (x,t)u 0 j (x + r,t) R ij (x, r,t)= Z +1 -1 dk 1 Z +1 -1 dk 2 Z +1 -1 dk 3 Φ ij (x, k,t)e ık·r Fourier space : Spectral correlation tensor Φ ij (x, k,t) Φ ij (x, k,t)= 1 (2) 3 Z +1 -1 dr 1 Z +1 -1 dr 2 Z +1 -1 dr 3 R ij (x, r,t)e -ık·r k : wavenumber i 2 = -1 HIT/Spectral description/ thomas.gomez@univ- lille1.fr 281/374

Transcript of Spectral description -...

Page 1: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

1 The turbulence fact : Definition, observations and universal features ofturbulence

2 The governing equations

3 Statistical description of turbulence

4 Turbulence modeling

5 Turbulent wall bounded flows

6 Homogeneous Isotropic Turbulence

7 Homogeneous Shear Flows

8 Results based on the equations of the dynamics in fully developedturbulence

HIT// [email protected] 278/374

6 Homogeneous Isotropic TurbulenceSpectral descriptionSpectral equationsSpectral phenomenological descriptionClosure spectral theoryPassive scalar dynamicsFree decaying turbulence

HIT// [email protected] 279/374

Spectral description

Fourier transformDirect

f(k) =1

2⇡

Z +1

�1f(x)e�ıxk dx

Inverse

f(x) =

Z +1

�1f(k)eıxk dk

k : wavenumberi2 = �1

HIT/Spectral description/ [email protected] 280/374

Spectral description

Velocity correlation tensorPhysical space

Rij(x, r, t) ⌘ u0i(x, t)u0

j(x + r, t)

Rij(x, r, t) =

Z +1

�1dk1

Z +1

�1dk2

Z +1

�1dk3�ij(x,k, t)eık·r

Fourier space : Spectral correlation tensor �ij(x,k, t)

�ij(x,k, t) =1

(2⇡)3

Z +1

�1dr1

Z +1

�1dr2

Z +1

�1dr3Rij(x, r, t)e�ık·r

k : wavenumberi2 = �1

HIT/Spectral description/ [email protected] 281/374

Page 2: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Spectral description

Reynolds stress tensorPhysical space

Rij(x,0, t) ⌘ u0i(x, t)u0

j(x, t)

Rij(x, t) =

Z +1

�1dk1

Z +1

�1dk2

Z +1

�1dk3�ij(x,k, t)

Fourier space :spectral density of kinetic energy ⌘ kinetic energy spectrum E(k, t).

K ⌘ 1

2u0

iu0

i(t) =

1

2Rii(t) =

Z +1

0E(k, t)dk

HIT/Spectral description/ [email protected] 282/374

Spectral description

HypothesisHomogeneity in space :

All the statistical quantities are invariant under any arbitrary spacetranslationIn practice

Rij(x, r, t) ⌘ u0i(x, t)u0

j(x+ r, t) = Rij(r, t)

r

u(x + r)u(x)

x

x + r

HIT/Spectral description/ [email protected] 283/374

Spectral description

HypothesisIsotropy

All the statistical quantities are invariant under any arbitrary rotationof the reference frame

Skew isotropy6= full isotropyThe mirror symmetry property is not satisfied. The mirror symmetryis defined by the invariance of all averaged quantities depending on thefluctuating fields against reflexions on arbitrary planes.Mirror symmetry means equipartitions between right and left handedhelical motions.

HIT/Spectral description/ [email protected] 284/374

Spectral description

Turbulent kinetic energy spectrumHomogeneous turbulence

E(k, t) ⌘Z +1

�1dk1

Z +1

�1dk2

Z +1

�1dk3

1

2�ij(k, t)�(|k| � k)

�ij(k, t) assumed independent of x (HT).

HIT/Spectral description/ [email protected] 285/374

Page 3: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Kinetic energy density spectrum

Stationnary random process, Cramer’s theorem

�ij(k) =1

(2⇡)3

Z

IR3

Rij(r)e�ık·r dr

Consider

u⇤i(k)uj(k0) =

1

(2⇡)6

ZZui(x)uj(x0)eı(k·x�k0·x0) dx dx0

=1

(2⇡)6

ZZui(x)uj(x0)eı(k·x�k0·x0) dx dx0

=1

(2⇡)6

ZZRij(r)e

�ık0·reı(k�k0)·x dx dr

=1

(2⇡)3

ZRij(r)e

�ık0·r dr · �(k � k0)

= �ij(k0) · �(k � k0) � dirac function

HIT/Spectral description/ [email protected] 286/374

Kinetic energy density spectrum

PropertiesHomogeneity

Rij(r) = Rji(�r) =) �⇤ij

(k) = �ij(�k) = �ji(k) , 8 k

Incompressibility

ui(x)@uj(x + r)

@rj

= 0 =) ki�ij(k) = kj�ij(k) = 0 , 8 k

Decomposition : Symmetric (real) + Antisymmetric (pure imaginary)

�ij(k) = �(s)ij

(k) + �(a)ij

(k)

Remark :Rij(0) = ui(x)uj(x) =

Z�ij(k) dk

=) �ij(k) represents a density of contributions to ui(x)uj(x) inwavenumber space.

HIT/Spectral description/ [email protected] 287/374

Energy spectrum function E(k)

Mean kinetic energy spectrum u2/2

1

2u2 =

1

2

Zu⇤

i(k)e�ık·x dk

Zui(k0)e+ık0·x dk0

=1

2

ZZu⇤

i(k)ui(k0)e�ı(k�k0)·x dk dk0

=1

2

ZZ�ii(k

0)�(k � k0)e�ı(k�k0)·x dk dk0

=1

2

Z�ii(k) dk

Energy spectrum E(k) defined by

E(k) =1

2

Z

S(k)�ii(k) dS =) 1

2u2 =

Z 1

0E(k) dk

S(k) sphere of radius k in Fourier space.

HIT/Spectral description/ [email protected] 288/374

Spectral equations

Dynamics equationsMomentum equation

@

@tuj + ⌫k2uj = �ıPjlm(k)

Z

p+q=kul(p, t)um(q, t)dp

| {z }sj(k,t)

(42)

Projection operator

Pijl(k) =1

2(Pij(k)kl + Pil(k)kj) , Pij(k) =

✓�ij � kikj

k2

Perpendicular to kP (k)v ? k, 8v

HIT/Spectral equations/ [email protected] 289/374

Page 4: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Spectral equations

Dynamics equationsIncompressibility

r · u = 0 =) k · u(k) = 0 , 8k

Exercice :Write the momentum equation in the Fourier space as written in (42)p. 289.

HIT/Spectral equations/ [email protected] 290/374

Spectral equations

Triadic interactionsClassification of Waleffe 1992

Forward

Forward

Forward

Backward

HIT/Spectral equations/ [email protected] 291/374

Spectral equations

Lin equationEquation for the spectral density

�ij(k, t)�(k � p) = u⇤i(p, t)uj(k, t)

=) @

@tE(k, t) + 2⌫k2E(k, t) = T (k, t)

Non linear transfer term

T (k, t) = ⇡k2(u⇤i(k, t)si(k, t) + ui(k, t)s⇤

i(k, t))

Wheresj(k, t) = �ıPjlm(k)

Z

p+q=kul(p, t)um(q, t) dp

HIT/Spectral equations/ [email protected] 292/374

Spectral equations

Budget equationBy integration of the Lin equation

@

@t

Z +1

0E(k, t)dk

| {z }K(t)

+ 2⌫

Z +1

0k2E(k, t)dk

| {z }"(t)

=

Z +1

0T (k, t)dk

Conservative non-linear transfer termZ +1

0T (k)dk = 0

HIT/Spectral equations/ [email protected] 293/374

Page 5: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Spectral equations

Budget equationBy integration of the Lin equation

@

@t

Z +1

0E(k, t)dk

| {z }K(t)

+ 2⌫

Z +1

0k2E(k, t)dk

| {z }"(t)

=

Z +1

0T (k, t)dk

Conservative non-linear transfer termZ +1

0T (k)dk = 0

HIT/Spectral equations/ [email protected] 294/374

Spectral equations

Spectral flux

HIT/Spectral equations/ [email protected] 295/374

Spectral phenomenological description

SpectrumScenario of "cascade energy" of Ridcharson and of the viscous cut-off.Kolmogorov HypothesisReynolds numberCharacteristic scales

HIT/Spectral phenomenological description/ [email protected] 296/374

Spectral phenomenological description

Kolmogorov spectrum

Characteristic scalesTurn-over timesIntegral, Taylor,Viscous lengthscalesKinetic energy

Reynolds numbers

HIT/Spectral phenomenological description/ [email protected] 297/374

Page 6: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Spectral description

characteristic scales of the spectrum

Scales Integral Taylor Kolmogorov

Space Lu =K3/2

"�g =

r10K⌫

"⌘ =

✓⌫3

"

◆1/4

Time ⌧u =K"

⌧� =

r15⌫

"⌧⌘ =

r⌫

"

Reynolds number ReL =K2

⌫"Re� =

r20

3

Kp⌫"

Re⌘ = 1

HIT/Spectral phenomenological description/ [email protected] 298/374

Spectral description

Kolmogorov theory : HypothesisHypothesis 1 : At small scales l ⌧ L11,1, the two-points statisticalmoments, separated by a distance r and at two times separated by a delay⌧ can be expressed by using only the quantities ", ⌫, r, ⌧ .Hypothesis 2 : At small scales ⌘ ⌧ l ⌧ L11,1, the two-points statisticalmoments separated by a distance r and at two times separated by a delay⌧ can be expressed by using only the quantities ", r, ⌧ . The viscosity ⌫ isnot needed anymore, this means that these scales are very weakly affectedby the Joule dissipation and only experience non linear effects representedby ".

=) E(k) = C"2/3k�5/3

HIT/Spectral phenomenological description/ [email protected] 299/374

Spectral phenomenological description

Inertial rangeBoundary layersGrid turbulenceChannel flowsShear layers

Kolmogorov spectrum

E(k) = C"2/3k�5/3

HIT/Spectral phenomenological description/ [email protected] 300/374

Spectral modeling

Budget equationSolve the Lin equation

@

@tE(k, t) + 2⌫k2E(k, t) = T (k, t)

By modeling the transfer term with an expression which preserve thekinetic energy conservation

Z +1

0T (k)dk = 0 =)

Zk

0T (k0)dk0 = �

Z +1

k

T (k0)dk0 = 0

Then we can seek for the function F such as

T (k) = � @

@kF (k)

HIT/Closure spectral theory/ [email protected] 301/374

Page 7: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Spectral modeling

Obukhov Model 1941Function F (k) ?

Rij

@ui

@xj

= �" = F (k)

By dimensional analysis

Rij =

Z +1

k

E(p)dp,@ui

@xj

=

Zk

0p2E(p)dp

!1/2

HIT/Closure spectral theory/Obukhov Model 1941 [email protected] 302/374

Spectral modeling

Heisenberg and Weizsacker 1948Function F (k) ?

F (k) = 2⌫t(k)

Zk

0p2E(p)dp

Spectral eddy viscosityHeisenberg

⌫t(k) =89K�3/2

0

Z +1

k

pp�3E(p)dp

Stewart & Townsend 1952 : c > 1

⌫t(k) =

✓Z +1

k

p�(1+1/2c)E1/2c(p)dp

◆c

HIT/Closure spectral theory/EVM [email protected] 303/374

Spectral modeling

Heisenberg and Weizsacker 1948Function F (k) ?

F (k) = 2⌫t(k)

Zk

0p2E(p)dp

Spectral eddy viscosityGeneralization of Stewart and Townsend 1951

⌫t(k) =X

i

ai

✓Z +1

k

p�(1+1/2ci)E1/2ci(p)dp

◆ci

with ai > 0 and ci > 0

HIT/Closure spectral theory/EVM [email protected] 304/374

Spectral model

HIT/Closure spectral theory/EVM [email protected] 305/374

Page 8: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Passive scalar dynamics

Spectrum of free decaying turbulenceDefinition : Variance spectrum

K✓(t) =

Z +1

0E✓(⇠, t)d⇠, "✓(t) = 2

Z +1

0⇠2E✓(⇠, t)d⇠

Inertial range : Kolmogorov spectrum

E(k) = C"2/3k�5/3

Dimensional analysis

E✓(k) = c�"✓"�1/3k�5/3

HIT/Passive scalar dynamics/ [email protected] 306/374

Passive scalar dynamics

Stan Corrsin

HIT/Passive scalar dynamics/ [email protected] 307/374

Passive scalar dynamics

G. K.BatchelorPortrait by RupertShephard 1984this portrait hangs inDAMTP, CambridgeDepartment foundedunder Batchelor’s leader-ship in 1959

HIT/Passive scalar dynamics/ [email protected] 308/374

Passive scalar dynamics

George BatchelorRecently elected FRSIn his office at the old CavendishLaboratoryOctober 1956

HIT/Passive scalar dynamics/ [email protected] 309/374

Page 9: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Passive scalar dynamics

Scalar spectrumOne-dimensional power spectraVelocity (circles)Temperature (squares)Measured in a jet near the peakshear off-center positionAdapted from Corrsin andUberoi (1951)

HIT/Passive scalar dynamics/ [email protected] 310/374

Passive scalar dynamics

Similitude hypothesisAdditional dimensionless parameter : The Prandtl number

Pr =⌫

General case Pr ⇠ 1

Case Pr ⌧ 1

Case Pr � 1

HIT/Passive scalar dynamics/ [email protected] 311/374

Passive scalar dynamics

Characteristic scalesTheory Kolmogorov Batchelor Obukhov–Corrsin

Sim. hyp. 1 (b), 3(a), 3(b) 1(a), 1(b) 1(b), 2Variables "T , ", ⌫ "T , ⌧⌘ , "T , ",

Length ⌘ ⌘B =p⌧⌘ = ⌘/

pPr ⌘OC = (3/")1/4 = ⌘Pr�3/4

Time ⌧⌘ ⌧B = ⌧⌘ ⌧OC =p

/" = ⌘Pr�1/2

Scalar ⌃⌘ =p"T ⌧⌘ ⌃B = ⌃⌘ ⌃OC = "T

p/" = ⌃⌘Pr�1/4

HIT/Passive scalar dynamics/ [email protected] 312/374

Passive scalar dynamics

Inertio - convective rangeInertial range

E(k) = C"2/3k�5/3

Inertio - convective range

E✓(k) = c�"✓"�1/3k�5/3

HIT/Passive scalar dynamics/ [email protected] 313/374

Page 10: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Passive scalar dynamics

When Pr 6= 1

Case Range LengthscalesPr ⌧ 1 inertio-convective L�1

T⌧ k ⌧ 1/⌘OC

inertio-diffusive 1/⌘OC ⌧ k ⌧ 1/⌘visco-diffusive 1/⌘ ⌧ k

Pr � 1 inertio-convective L�1T

⌧ k ⌧ 1/⌘visco-convective 1/⌘ ⌧ k ⌧ 1/⌘B

visco-diffusive 1/⌘B ⌧ k

HIT/Passive scalar dynamics/ [email protected] 314/374

Passive scalar dynamics

Similitude hypothesis : Case Pr � 1

k 2 [1/⌘, 1/⌘✓]The passive scalar fluctuations are strongly damped by the viscouseffects, whereas the scalar fluctuations are not affected by thediffusion. The scalar fields fluctuations are driven by the velocity shearfield. This velocity shear can be evaluated by using the dimensionalanalysis as the inverse of the Kolmogorov time scale, i.e. ⌧�1

⌘=p

"/⌫.The dimensional analysis says that E✓ = E✓(k, "✓, ⌧⌘), =)

E✓(k) = c�"✓⌧⌘k�1

Proposed for the first time by Batchelor in 1959, experimentallyconfirmed in 1963.

HIT/Passive scalar dynamics/ [email protected] 315/374

Passive scalar dynamics

HIT/Passive scalar dynamics/ [email protected] 316/374

Passive scalar dynamics

HIT/Passive scalar dynamics/ [email protected] 317/374

Page 11: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Free decaying turbulence

Spectral description

10−5

100

105

10−20

10−10

100

k

E(k

)

t=0

t=103

t=107

t=1011

HIT/Free decaying turbulence/KE [email protected] 318/374

Free decaying turbulence

Question : Can we predict the behavior of free decaying turbulence ?

HypothesisHITDefine the relevant parameters

Reynolds numberInitial conditionsSpectrum at large scales (IR) : k�

...

Algebraic decay ?

K(t) / t�n

HIT/Free decaying turbulence/KE [email protected] 319/374

Kinetic energy decay exponents Meldi & Sagaut 2012

HIT/Free decaying turbulence/KE [email protected] 320/374

Kinetic energy decay exponents Meldi & Sagaut2012

HIT/Free decaying turbulence/KE [email protected] 321/374

Page 12: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Kinetic energy decay exponents Meldi & Sagaut2012

HIT/Free decaying turbulence/KE [email protected] 322/374

Kinetic energy decay exponents

HIT/Free decaying turbulence/KE [email protected] 323/374

Kinetic energy decay exponents

HIT/Free decaying turbulence/KE [email protected] 324/374

Free decaying turbulence

Method : Comte-Bellot CorrsinHypothesis

Spectrum shape

E(k, t) =

⇢Aks kL(t) 1, 1 s 4K0"

2/3k�5/3 kL(t) � 1

Algebraic decayK(t) / t�n

Results

L(t) / (t � t0)2/(3+s)

"(t) = �dK(t)dt

=) K(t) / t"(t)

K(t) / (t � t0)�2(s+1)/(3+s)

HIT/Free decaying turbulence/KE [email protected] 325/374

Page 13: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Passive scalar decay exponents

HIT/Free decaying turbulence/KE [email protected] 326/374

Kinetic energy decay exponents : High Reynolds numberregime

s = 1 s = 2 s = 3 s = 4 s = +1K(t) / t�1 / t�6/5 / t�4/3 / t�10/7 / t�2

"(t) / t�2 / t�11/5 / t�7/3 / t�17/7 / t�3

L(t) / t1/2 / t2/5 / t1/3 / t2/7 CsteReL(t) Cste / t�1/5 / t�1/3 / t�3/7 / t�1

HIT/Free decaying turbulence/KE [email protected] 327/374

Kinetic energy decay exponents

Small Reynolds number regime

K(t) ⇠Z 1/L(t)

0Aksdk

K(t) ⇠Z 1/(�

p⌫t)

0Aksdk =

A

s + 1

✓1

�p

◆(s+1)/2

t�(s+1)/2

K(t) / t�(s+1)/2, "(t) / t�(s+3)/2,L(t) / t(3�s)/4, ReL(t) / t(1�s)/2

HIT/Free decaying turbulence/KE [email protected] 328/374

Passive scalar decay exponents

Small Reynolds number regime

K(t) ⇠Z 1/L(t)

0Aksdk

K(t) ⇠Z 1/(�

p⌫t)

0Aksdk =

A

s + 1

✓1

�p

◆(s+1)/2

t�(s+1)/2

K(t) / t�(s+1)/2, "(t) / t�(s+3)/2 .

K✓(t) / t?, "✓(t) / t?,L(t) / t(3�s)/4, ReL(t) / t(1�s)/2

HIT/Free decaying turbulence/KE [email protected] 329/374

Page 14: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Scalar dynamics in free decaying turbulence

HypothesisHITAlgebraic decay

K(t) / t�n

K✓(t) / t�n✓

Previous worksReference Re PredictionsCorrsin (1951) High K / t�10/7 KT / t�6/7

Corrsin (1951) Low K / t�5/2 KT / t�3/2

Nelkin & Kerr (1981) High K / t�6/5 KT / t�6/5

Ristorcelli & Livescu (2004) High K / t�1 KT / t�1

HIT/Free decaying turbulence/Scalar [email protected] 330/374

Passive scalar decay exponents

A few experimental/DNS data

HIT/Free decaying turbulence/Scalar [email protected] 331/374

Passive scalar decay exponents

Method : Comte-Bellot Corrsin extended to the scalarHypothesis

Spectrum shape

E✓(k, t) =

⇢AT k

p kL(t) 1, 1 s 4c�"

�1/3"✓k�5/3 kL(t) � 1

Algebraic decayK(t) / t�n

Results

"✓ / (t � t0)�(s+2p+5)/(3+s)

K✓ / (t � t0)�2(p+1)/(3+s)

Rc = K"

"✓K✓

= s+1p+1

HIT/Free decaying turbulence/Scalar [email protected] 332/374

Passive scalar decay exponents : High Reynolds numberregime

p s = 1 s = 2 s = 3 s = 4 s = +11 / t�1 / t�4/5 / t�2/3 / t�4/7 Cste

K✓(t) 2 / t�3/2 / t�6/5 / t�1 / t�6/7 Cste4 / t�5/2 / t�2 / t�5/3 / t�10/7 Cste1 / t�2 / t�9/5 / t�5/3 / t�11/7 / t�1

"✓(t) 2 / t�5/2 / t�11/5 / t�2 / t�13/7 / t�1

4 / t�7/2 / t�3 / t�8/3 / t�17/7 / t�1

1 = 1 = 3/2 = 2 = 5/2 ⇠ 1Rc 2 = 2/3 = 1 = 4/3 = 5/3 ⇠ 1

4 = 2/5 = 3/5 = 4/5 = 1 ⇠ 1

HIT/Free decaying turbulence/Scalar [email protected] 333/374

Page 15: Spectral description - Researchthomas-gomez.net/images/Lectures/Turbulence/turbulence_lectures_… · 6 Homogeneous Isotropic Turbulence 7 Homogeneous Shear Flows 8 Results based

Decay exponents : High and low Reynolds numbers

HIT/Free decaying turbulence/Scalar [email protected] 334/374