Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5...

7
02.04.15 1 Treatment of PPHN in Premature Infants Inhaled Nitric Oxide Therapy in Neonates 26th March 2015, Liverpool 1 Prof. Dr. H. Hummler Disclosure Speaker fee for presentaHons 2 3 ConstrucHon started in 1377 Highest tower of any church in the world: 161.53 m,768 steps to a plaPorm 143 m >2000 seats, 20.000 guests reported 4 * 14. March, 1879 Bahnhofstrasse 20, Ulm, Germany Albert Einstein Albert Einstein Memorial Ulm Children‘s Hospital University of Ulm, Germany Division of of Neonatology 18 bed ICU 24 bed Intermediate Care – CPAP 6 bed special care unit with F/T Rooming of the mother VLBWI: n=120/year, ELBWI: n=60/year 5 Pulmonary Hypertension in Neonates Mortality and Morbidity Mortality Depending on underlying disease GBSSepsis: up to 50% Median (MinMax): 11(433)% Morbidity BPD Neurologic damage secondary to hypoxemia 6 Walsh-Sukys et al. Pediatrics 2000;105:14

Transcript of Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5...

Page 1: Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5 Inhaled’Nitric’Oxide’for’Premature’Infants’ with’Severe’Respiratory’Failure’

02.04.15  

1  

Treatment  of  PPHN    in  Premature  Infants  

Inhaled  Nitric  Oxide  Therapy  in  Neonates  26th  March  2015,  Liverpool  

1  Prof.  Dr.  H.  Hummler  

Disclosure  

•  Speaker  fee  for  presentaHons  

2  

3  

•  ConstrucHon  started  in  1377  •  Highest  tower  of  any  church  in  the  

world:  161.53  m,768  steps  to  a  plaPorm  143  m  

•  >2000  seats,  20.000  guests  reported   4  

*  14.  March,  1879  Bahnhofstrasse  20,  Ulm,  Germany  

Albert  Einstein  

Albert  Einstein    Memorial  Ulm  

Children‘s  Hospital    University  of  Ulm,  Germany  

•  Division  of  of  Neonatology  –  18  bed  ICU  –  24  bed  Intermediate  Care  –  CPAP  –  6  bed  special  care  unit  with  F/T  Rooming  of  the  mother  –  VLBWI:  n=120/year,  ELBWI:  n=60/year  

5  

Pulmonary  Hypertension  in  Neonates  Mortality  and  Morbidity  

•  Mortality  –  Depending  on  underlying  disease  ■  GBS-­‐Sepsis:  up  to  50%  

–  Median  (Min-­‐Max):  11(4-­‐33)%  

•  Morbidity  –  BPD  –  Neurologic  damage  secondary  to  hypoxemia  

6  Walsh-Sukys et al. Pediatrics 2000;105:14

Page 2: Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5 Inhaled’Nitric’Oxide’for’Premature’Infants’ with’Severe’Respiratory’Failure’

02.04.15  

2  

Generally  Accepted  Principles    for  Treatment  of  PPHN  

•  Maintain  physiology  unHl  PVR  drops  and/or  underlying  disease(s)  improve  

•  Correct  severe  metabolic  acidosis  -­‐  do  not  alkalize  –  By  hypervenHlaHon  –  associated  with  BPD  –  By  giving  excessive  Na-­‐Bicarbonate  –  associated  with  

increased  organ  damage  –  Both  are  associated  with  brain  damage  and  hearing  

deficit  •  Maintain  blood  pressure  to  limit  R-­‐L-­‐ShunHng  

7  

Targets  for  Current  or  Emerging  Therapies  in  Pulmonary  Arterial  Hypertension  

8  Humbert M et al. N Engl J Med 2004;351:1425

Treatments  Described  for  Neonates  with  PPHN    

•  Inhaled  Nitric  Oxide  (iNO)  •  Prostacyclin  –  Intravenously  –  via  Aerosol  

•  Sildenafil  •  Milrinone  •  Bosentan  •  Magnesiumsulfate  

9  

Proposed  Effects  of  Nitric  Oxide  on  the  Respiratory  System  

10  Martin et al. NEJM 2005;353:82

n engl j med

353;1

www.nejm.org july

7, 2005

editorials

83

the infants in the trial by Mestan et al. and 35 per-cent in the trial by Van Meurs et al. were black. Raceor ethnic group is a very crude marker of potentialbiologic differences in drug response, known aspharmacogenomics.

4

However, there are no previ-ous data in infants to suggest differential respon-siveness to nitric oxide between blacks and whites.

Whereas the trial by Mestan et al. was a single-center study, the study by Van Meurs et al. was largerand involved many centers. Drug delivery was per-formed by blinded personnel, and outcomes wereevaluated by observers blinded to therapy, minimiz-ing the chance of bias in the outcome assessments.

Even with these precautions, however, small trialshave been shown to overestimate the effects oftreatment, as compared with multicenter studies.

5

It is likely that this is caused in part by the variationsin concomitant processes of care that occur amongcenters as opposed to the processes within a singlecenter.

In the study by Mestan et al., the finding of a de-crease in the rate of neurodevelopmental impair-ment at two years of age in patients who had beentreated with inhaled nitric oxide as infants, as com-pared with those who had been treated with placebo(24 percent vs. 46 percent, respectively), is impres-

Figure 1. Proposed Effects of Nitric Oxide on the Development of the Respiratory System.

Endogenously released and exogenously inhaled nitric oxide (NO) may influence many facets of perinatal lung develop-ment, including lung parenchyma, bronchi, and vascular structures. This schematic figure depicts a fetal or preterm lung during the transition from a saccular to an alveolar stage, corresponding to 25 to 28 weeks of gestation. Endogenous ni-tric oxide is released primarily from epithelial and endothelial cells that contain nitric oxide synthase, and it is implicated in the structural and functional aspects of the development of pulmonary vasculature and airway smooth muscle. Nitric oxide also contributes to growth of the lung parenchyma and to extracellular matrix deposition and may modulate sur-factant and inflammation in the developing lung. Animal models of bronchopulmonary dysplasia that have deficient lev-els of nitric oxide synthase show that inhaled nitric oxide can preserve lung growth. The implications of supplementation with inhaled nitric oxide in preterm infants are currently uncertain. The upward arrows indicate increased and the down-ward arrows decreased.

Neutrophil

Surfactant

Terminal sac(future alveoli)

Elastic fibersElastic fibers

FibroblastFibroblast

CapillaryCapillary

SmoothSmoothmuscle cellmuscle cell

ArterioleArteriole

Elastic fibers

Fibroblast

Epithelium

Capillary

Smooth-muscle cell

Arteriole

Growth

Elastin production

Inflammation

Surfactant function

Lung parenchyma

Vasorelaxation

Angiogenesis

Vasculature

Bronchodilation

Airway smooth-muscleproliferation

Bronchi

NO

NO

NO

NO

The New England Journal of Medicine Downloaded from nejm.org by HELMUT HUMMLER on March 26, 2015. For personal use only. No other uses without permission.

Copyright © 2005 Massachusetts Medical Society. All rights reserved.

Smooth  Muscle  Cell  

11  

iNO  is  the  Treatment  of  Choice    in  Full-­‐term  Neonates  with  PPHN  

•  RaHonale:  pulmonary  vasodilataHon  –  Treatment  of  pulmonary  hypertension  +  extrapulmonary  R-­‐L  Shunts  (Higgenbojam  et  al.  AJRCCM  1988;13:A107;  Kinsella  et  al.  Lancet  1992;  240:819,  Roberts  et  al.  Lancet  1992;  340:818)  

–  Improvement  of  V/Q-­‐Match  (Rossaint  et  al.  N  Engl  J  Med  1993;328:399)  

•  Reduces  the  need  for  ECMO  –  12  RCT‘s:  RR  0,65  (0,55-­‐0,76)    (www.nichd.nih.gov/

cochraneneonatal/Finer/Finer.htm)  

12  

Page 3: Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5 Inhaled’Nitric’Oxide’for’Premature’Infants’ with’Severe’Respiratory’Failure’

02.04.15  

3  

iNO  for  Treatment  of  PPHN  in  Term  Newborns      Death  or  ECMO  

13  www.nichd.nih.gov/cochraneneonatal/Finer/Finer.htm

RR  0,65  (0,55-­‐0,76)    

RR  1,0  (0,53-­‐1,90)        

iNO  for  Treatment  of  PPHN  in  Term  Newborns      Change  in  PO2  aoer  30-­‐60  min  

14  www.nichd.nih.gov/cochraneneonatal/Finer/Finer.htm

RD  +45  (35,  56)  

RCT  of  Early  vs.  Delayed  Use  of  iNO    in  Newborns  with  PPHN  

•  Term  infants  (n=56)  with  moderate  respiratory  failure  (OI  10-­‐30)  less  than  48h  of  age  were  randomized  to  –  iNO  20  ppm  –  Control  group  (rescue  with  iNO  if  OI  >40)  

•  Results:  –  7/28  (25%)  vs.  17/28  (61%)  [iNO  vs.  Control-­‐paHents]  

developed  an  OI>40.    –  OI  decreased  and  was  significantly  lower  in  iNO  vs.  

Controls  –  Deaths:  1  (early  iNO)  vs.  2  paHents  (Control)  

•  Conclusion:  Early  use  of  iNO  in  term  infants  with  moderate  respiratory  failure  improves  oxygenaHon  and  decreases  the  probability  of  severe  respiratory  failure  

15  Gonzales et al. J Perinatol 2010;30:420

PPHN  ist  not  Limited  to  Full-­‐term  Neonates  

•  FG  24+2  wks,  740  g  •  IntubaHon,  mech.  VenHlaHon,  Surfactant  2x  •  SpO2  slowly  ↓  to  37  %  (PaO2:  18  mmHg)  

16  Case University of Ulm

CXR  

17  Case University of Ulm

Echo   Use  of  iNO    University  of  Ulm  

18  

0  2  4  6  8  10  12  14  16  18  20  

2005   2006   2007   2008   2009   2010   2011   2012   2013   2014  

Preterm  

Full-­‐term  

No.  of  Infan

ts  

•  There  was  a  6-­‐fold  increase  (0.3  to  1.8%)  in  the  use  of  iNO  in  infants  <34  wks  GA  between  2000  and  2008.  Largest  increase  occurred  among  infants  with  23-­‐26  wks  GA  (0.8  to  6.6%)  (Clark  et  al.  J  Perinatol  2010;30:800)  

Page 4: Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5 Inhaled’Nitric’Oxide’for’Premature’Infants’ with’Severe’Respiratory’Failure’

02.04.15  

4  

iNO  in  Preterm  Infants  for  PPHN  What’s  the  evidence?  

•  1990’s:  Case-­‐reports  and  cohort  studies  (Rescue):  –  OxygenaHon  ↑  –  “High”  mortality  and/or  –  “High”  rate  of  IVH  (IVH  Grade  ¾)  ➜  However:  selected  paHent  populaHon  (high  risk  

for  complicaHons)  

•  30%  of  all  newborns  with  PPHN  do  not  respond  to  iNO  (Travadi  et  al.  Pediatr  Pulmonol  2003;36:529)  

19  Peliowski et al. J Pediatr 1995;126:450; Abman et al. Pediatrics 1993;92:606; Van Meurs et al. Pediatr Pulmonol 1997;24:319

Cochrane  Review:  iNO  for  Respiratory  Failure  in  Preterm  Infants  Death  

20  Barrington&Finer Cochrane Neonatal Reviews 13.10.2010, (www.nichd.nih.gov/cochrane_data/barringtonk_05)

RR (95% CI) 1.04 (0.90; 1.20)

Study entry <3d based on oxygenation

Study entry >3d based on BPD risk

RR (95% CI) 1.06 (0.64; 1.74) Studies on routine use in intubated infants

RR (95% CI) 0.91 (0.74; 1.11)

Cochrane  Review:  iNO  for  Respiratory  Failure  in  Preterm  Infants  BPD  @  36  wks  PMA  

21  Barrington&Finer Cochrane Neonatal Reviews 13.10.2010, (www.nichd.nih.gov/cochrane_data/barringtonk_05)

RR (95% CI) 0.89 (0.76; 1.04)

Study entry <3d based on oxygenation

Study entry >3d based on BPD risk

RR (95% CI) 0.89 (0.78; 1.02) Studies on routine use in intubated infants

RR (95% CI) 0.94 (0.84; 1.05)

Cochrane  Review:  iNO  for  Respiratory  Failure  in  Preterm  Infants  IVH  Grade  3/4  

22  Barrington&Finer Cochrane Neonatal Reviews 13.10.2010, (www.nichd.nih.gov/cochrane_data/barringtonk_05)

RR (95% CI) 1.20 (0.98; 1.47)

Study entry <3d based on oxygenation

Studies on routine use in intubated infants

RR (95% CI) 0.90 (0.74; 1.11)

Cochrane  Review:  iNO  for  Respiratory  Failure  in  Preterm  Infants  Other  Outcome  Variables  

(Study  entry  based  on  oxygenaHon)  

23  Barrington&Finer Cochrane Neonatal Reviews 13.10.2010, (www.nichd.nih.gov/cochrane_data/barringtonk_05)

Outcome   Studies   ParDcipants   RR  (95%  CI)  Death  or  BPD   8   958   0.94  (0.87,  1.01)  IVH  (all  grades)   3   254   1.00  (0.73,  1.37)  IVH  or  PVL   8   901   1.08  (0.88,  1.33)  ROP  (≥Stage  3)   3   261   0.97  (0.64,  1.47)  Neurodev.  disability   2   208   1.05  (0.78,  1.40)  Cerebral  Palsy   2   209   1.85  (0.93,  3.71)  Conclusions:  •  In  very  sick  preterm  infants  who  meet  the  criteria  for  poor  oxygenaHon,  rescue  therapy  with  iNO  does  not  improve  their  survival,  survial  without  BPD,  or  brain  injury…  •  …there  is  some  evidence  of  a  potenHal  increase  in  severe  IVH  or  IVH+PVL.  •  In  view  of  these  findings,  iNO  should  not  be  rouHnely  used  for  preterm  infants  as  a  rescued  therapy  in  cases  of  hypoxic  respiratory  failure.  

Inhaled  Nitric  Oxide  for  Premature  Infants  with  Severe  Respiratory  Failure  

•  NICHD  network,420  VLBWI,  <34  wks  GA,  OI  >10  aoer  surfactant  Tx  

•  RCT:  iNO:  5  ppm  vs.  placebo,  10  ppm  if  response  “incomplete”  (∆PaO2  >20  mmHg),  weaning  acc.  to  protocol,  duraHon  max.  14d  

•  Prim  Outcome:  death  or  BPD  (O2  @36  wks  GA)  •  Trial  closed  aoer  the  second  interim  analysis  (2/3  recruitment)…  –  …incidence  of  IVH  Grade  3/4  or  PVL  was  significantly  

higher  in  the  iNO  group  (39%  vs.  27%,  p=0.02)  –  420/440  infants  were  recruited  at  this  Hme  

24  Van Meurs et al. NEJM 2005;353:13

Page 5: Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5 Inhaled’Nitric’Oxide’for’Premature’Infants’ with’Severe’Respiratory’Failure’

02.04.15  

5  

Inhaled  Nitric  Oxide  for  Premature  Infants  with  Severe  Respiratory  Failure  

25  Van Meurs et al. NEJM 2005;353:13

n engl j med

353;1

www.nejm.org july

7, 2005

inhaled nitric oxide for critically ill preterm infants

17

nificant differences between treatment groups inthe baseline characteristics (Table 1) or status atthe time of randomization (Table 2). The distribu-tion by birth weight did not differ significantly be-tween the two treatment groups, with an overall dis-tribution of 47 percent in the infants who weighed401 to 750 g, 28 percent in those who weighed 751to 1000 g, and 25 percent in those who weighed1001 to 1500 g. The mean (±SD) oxygenation indexat randomization was 24.6±16.3 for the first oxy-genation-index stratum, and 20.4±17.4 for the sec-ond stratum.

The baseline characteristics for eligible infantswho did not undergo randomization were similarto those for enrolled infants. The reasons for notenrolling were refusal of the parent (31 percent);unavailability of the parent (5 percent); or consentnot being sought because of the recommendationof the attending physician (17 percent), unavail-ability of equipment (9 percent), use of high-fre-quency jet ventilation (8 percent), or other reasons(30 percent).

primary outcome

There was no difference between the incidence ofthe primary outcome (bronchopulmonary dyspla-sia or death) between the group given inhaled ni-tric oxide and the placebo group (80 percent vs. 82percent; relative risk, 0.97; 95 percent confidenceinterval, 0.86 to 1.06; P=0.52) (Table 3). The rate ofbronchopulmonary dysplasia was 60 percent in thegroup given inhaled nitric oxide and 68 percent inthe placebo group (relative risk, 0.90; 95 percentconfidence interval, 0.75 to 1.08; P=0.26), and therate of death was 52 percent in the group given in-haled nitric oxide and 44 percent in the placebogroup (relative risk, 1.16; 95 percent confidence in-terval, 0.96 to 1.39; P=0.11). There were no discern-ible differences between the group given inhalednitric oxide and the placebo group for the follow-ing variables: age at death (20 vs. 24 days, P=0.54)or cause of death (respiratory failure, 49 percentvs. 42 percent; neurologic insult, 4 percent vs. 1 per-cent; infection, 5 percent vs. 10 percent; necrotiz-ing enterocolitis, 8 percent vs. 2 percent; supportwithdrawn, 19 percent vs. 26 percent; or other, 16percent vs. 19 percent; P=0.13 for the equality ofthe distribution between the two treatment groups).

secondary outcomes

The frequency of severe intraventricular hemor-rhage or periventricular leukomalacia was not sig-

* Plus–minus values are means ±SD.† Race or ethnic group was self-reported.

‡ Data were not available for all infants.

Table 1. Baseline Characteristics of the Infants.*

CharacteristicInhaled Nitric Oxide

(N=210)Placebo (N=210)

Birth weight — g 840±264 837±260

Gestational age — wk 26±2 26±2

Male sex — no. (%) 133 (63) 127 (60)

Mother’s race or ethnic group — no. (%)†

White 95 (45) 96 (46)

Black 69 (33) 78 (37)

Hispanic 36 (17) 32 (15)

Other 10 (5) 4 (2)

Born at study hospital — no. (%) 165 (79) 159 (76)

Prenatal corticosteroids — no. (%)‡ 119 (70) 114 (67)

Delivery by cesarean section — no. (%) 144 (69) 139 (66)

Apgar scores <4 at 1 min — no. (%)‡ 92 (55) 87 (52)

Apgar scores <4 at 5 min — no. (%)‡ 27 (16) 22 (13)

Cause of respiratory failure — no. (%)

Respiratory distress syndrome 192 (91) 190 (90)

Sepsis or pneumonia 6 (3) 10 (5)

Aspiration syndromes 1 (<1) 0

Idiopathic persistent pulmonary hypertension of the newborn

6 (3) 5 (2)

Suspected pulmonary hypoplasia 5 (2) 5 (2)

* Plus–minus values are means ±SD.† The oxygenation index was calculated as 100 ¬ the fraction of inspired oxygen

¬ mean airway pressure (in centimeters of water) ÷ the partial pressure of ar-

terial oxygen (in millimeters of mercury).

Table 2. Status of Infants at Randomization.*

StatusInhaled Nitric Oxide

(N=210)Placebo (N=210)

Age — hr 26±23 28±22

Oxygenation index† 23±17 22±17

Surfactant — no. of doses given 2±1 2±1

Type of ventilation — no. (%)

High-frequency oscillatory ventilation 116 (55) 116 (55)

High-frequency flow interruption 9 (4) 8 (4)

Conventional mechanical ventilation 85 (40) 86 (41)

Inotropic support — no. (%) 127 (60) 126 (60)

Sedation or analgesia — no. (%) 155 (74) 150 (71)

Paralytic agents — no. (%) 31 (15) 25 (12)

Postnatal corticosteroids — no. (%) 20 (10) 22 (10)

Pulmonary air leaks — no. (%) 26 (12) 31 (15)

Pulmonary hemorrhage — no. (%) 22 (10) 15 (7)

Seizures — no. (%) 8 (4) 6 (3)

Copyright © 2005 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org at KIZ - ABT LITERATURVERWALTUNG on October 23, 2005 .

n engl j med

353;1

www.nejm.org july

7, 2005

inhaled nitric oxide for critically ill preterm infants

17

nificant differences between treatment groups inthe baseline characteristics (Table 1) or status atthe time of randomization (Table 2). The distribu-tion by birth weight did not differ significantly be-tween the two treatment groups, with an overall dis-tribution of 47 percent in the infants who weighed401 to 750 g, 28 percent in those who weighed 751to 1000 g, and 25 percent in those who weighed1001 to 1500 g. The mean (±SD) oxygenation indexat randomization was 24.6±16.3 for the first oxy-genation-index stratum, and 20.4±17.4 for the sec-ond stratum.

The baseline characteristics for eligible infantswho did not undergo randomization were similarto those for enrolled infants. The reasons for notenrolling were refusal of the parent (31 percent);unavailability of the parent (5 percent); or consentnot being sought because of the recommendationof the attending physician (17 percent), unavail-ability of equipment (9 percent), use of high-fre-quency jet ventilation (8 percent), or other reasons(30 percent).

primary outcome

There was no difference between the incidence ofthe primary outcome (bronchopulmonary dyspla-sia or death) between the group given inhaled ni-tric oxide and the placebo group (80 percent vs. 82percent; relative risk, 0.97; 95 percent confidenceinterval, 0.86 to 1.06; P=0.52) (Table 3). The rate ofbronchopulmonary dysplasia was 60 percent in thegroup given inhaled nitric oxide and 68 percent inthe placebo group (relative risk, 0.90; 95 percentconfidence interval, 0.75 to 1.08; P=0.26), and therate of death was 52 percent in the group given in-haled nitric oxide and 44 percent in the placebogroup (relative risk, 1.16; 95 percent confidence in-terval, 0.96 to 1.39; P=0.11). There were no discern-ible differences between the group given inhalednitric oxide and the placebo group for the follow-ing variables: age at death (20 vs. 24 days, P=0.54)or cause of death (respiratory failure, 49 percentvs. 42 percent; neurologic insult, 4 percent vs. 1 per-cent; infection, 5 percent vs. 10 percent; necrotiz-ing enterocolitis, 8 percent vs. 2 percent; supportwithdrawn, 19 percent vs. 26 percent; or other, 16percent vs. 19 percent; P=0.13 for the equality ofthe distribution between the two treatment groups).

secondary outcomes

The frequency of severe intraventricular hemor-rhage or periventricular leukomalacia was not sig-

* Plus–minus values are means ±SD.† Race or ethnic group was self-reported.

‡ Data were not available for all infants.

Table 1. Baseline Characteristics of the Infants.*

CharacteristicInhaled Nitric Oxide

(N=210)Placebo (N=210)

Birth weight — g 840±264 837±260

Gestational age — wk 26±2 26±2

Male sex — no. (%) 133 (63) 127 (60)

Mother’s race or ethnic group — no. (%)†

White 95 (45) 96 (46)

Black 69 (33) 78 (37)

Hispanic 36 (17) 32 (15)

Other 10 (5) 4 (2)

Born at study hospital — no. (%) 165 (79) 159 (76)

Prenatal corticosteroids — no. (%)‡ 119 (70) 114 (67)

Delivery by cesarean section — no. (%) 144 (69) 139 (66)

Apgar scores <4 at 1 min — no. (%)‡ 92 (55) 87 (52)

Apgar scores <4 at 5 min — no. (%)‡ 27 (16) 22 (13)

Cause of respiratory failure — no. (%)

Respiratory distress syndrome 192 (91) 190 (90)

Sepsis or pneumonia 6 (3) 10 (5)

Aspiration syndromes 1 (<1) 0

Idiopathic persistent pulmonary hypertension of the newborn

6 (3) 5 (2)

Suspected pulmonary hypoplasia 5 (2) 5 (2)

* Plus–minus values are means ±SD.† The oxygenation index was calculated as 100 ¬ the fraction of inspired oxygen

¬ mean airway pressure (in centimeters of water) ÷ the partial pressure of ar-

terial oxygen (in millimeters of mercury).

Table 2. Status of Infants at Randomization.*

StatusInhaled Nitric Oxide

(N=210)Placebo (N=210)

Age — hr 26±23 28±22

Oxygenation index† 23±17 22±17

Surfactant — no. of doses given 2±1 2±1

Type of ventilation — no. (%)

High-frequency oscillatory ventilation 116 (55) 116 (55)

High-frequency flow interruption 9 (4) 8 (4)

Conventional mechanical ventilation 85 (40) 86 (41)

Inotropic support — no. (%) 127 (60) 126 (60)

Sedation or analgesia — no. (%) 155 (74) 150 (71)

Paralytic agents — no. (%) 31 (15) 25 (12)

Postnatal corticosteroids — no. (%) 20 (10) 22 (10)

Pulmonary air leaks — no. (%) 26 (12) 31 (15)

Pulmonary hemorrhage — no. (%) 22 (10) 15 (7)

Seizures — no. (%) 8 (4) 6 (3)

Copyright © 2005 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org at KIZ - ABT LITERATURVERWALTUNG on October 23, 2005 .

n engl j med

353;1

www.nejm.org july

7

,

2005

The

new england journal

of

medicine

18

nificantly different between the group given in-haled nitric oxide and the placebo group accordingto concurrent local radiology readings (39 percentvs. 32 percent, respectively; relative risk, 1.25; 95percent confidence interval, 0.95 to 1.66; P=0.11)(Table 3) or by central reading performed after thetrial was terminated (37 percent vs. 38 percent; rel-ative risk, 0.97; 95 percent confidence interval, 0.74to 1.27; P=0.81). The local reading was based onthe worst results of evaluation among ultrasoundexaminations of the head performed during the ad-ministration of the study gas, at 28±3 days, and af-ter 28 days of age. Ultrasound examinations of thehead were not available for 86 infants, 93 percentof whom had died. Death occurred by 14 days in91 percent and before 28 days in 98 percent. Thecentral reading was based on the worst results ofevaluation among all ultrasound examinations ofthe head performed during hospitalization. Therewere no significant differences in the two treatmentgroups with respect to the days on oxygen, the

length of assisted ventilation, the length of hospi-talization, the incidence of air leak, threshold ret-inopathy of prematurity, or “physiological broncho-pulmonary dysplasia” for survivors (Table 3).

Thirty minutes after administration of the studygas, at a concentration of 5 ppm, the group giveninhaled nitric oxide had a significant increase inthe PaO

2

and a significant decrease in the oxygena-tion index as compared with the placebo group (Ta-ble 4). The PaO

2

and the oxygenation index showedno significant change in either group when the con-centration of the study gas was increased to 10 ppm.More than 70 percent of the infants in the placebogroup did not have a response to the study gas; theseinfants had a significantly shorter length of timeon the study gas (39 vs. 76 hours).

There were 26 deviations from the protocol. Fiveineligible infants were randomly assigned to a studygroup. One infant received the wrong study gas.Four incidents of unblinding occurred. Sixteen in-fants received open-label inhaled nitric oxide: sev-

* Plus–minus values are means ±SD. CI denotes confidence interval, IVH intraventricular hemorrhage, and PVL periven-tricular leukomalacia.

† Values were adjusted for center, birth-weight group, and oxygenation-index entry stratum.‡ The outcome of death or bronchopulmonary dysplasia is for 208 infants in the placebo group.§ This outcome is for infants who were alive at 36 weeks (109 in the group receiving inhaled nitric oxide and 127 in the

placebo group).¶ Results of ultrasound examinations of the head were available for 179 infants in the group receiving inhaled nitric oxide

and for 155 in the placebo group.¿ This outcome is for infants who survived (101 in the group receiving inhaled nitric oxide and 117 in the placebo group).** This outcome was defined according to the protocol of Walsh et al.,

18

for 100 infants in the group receiving inhaled ni-tric oxide and for 115 infants in the placebo group.

††Examination for retinopathy of prematurity was performed in 98 infants in the group receiving inhaled nitric oxide and

112 infants in the placebo group.

Table 3. Primary and Secondary Outcomes.*

Outcome

InhaledNitric Oxide

(N=210)Placebo(N=210)

Relative Risk(95% CI)† P Value

Primary — no. (%)

Death or bronchopulmonary dysplasia‡ 167 (80) 170 (82) 0.97 (0.86–1.06) 0.52

Death 109 (52) 93 (44) 1.16 (0.96–1.39) 0.11

Bronchopulmonary dysplasia§ 65 (60) 86 (68) 0.90 (0.75–1.08) 0.26

Secondary

Grade 3 or 4 IVH or PVL — no. (%)¶ 69 (39) 50 (32) 1.25 (0.95–1.66) 0.11

Oxygen use — days¿ 84±63 91±61 0.91

Physiological bronchopulmonary dysplasia — no. (%)**

50 (50) 69 (60) 0.87 (0.68–1.10) 0.17

Length of hospitalization — days¿ 101±47 111±48 0.65

Duration of ventilation — days¿ 39±45 47±53 0.56

Incidence of air leak — no. (%)¿ 35 (35) 37 (32) 1.12 (0.78–1.61) 0.55

Threshold retinopathy of prematurity — no. (%)†† 29 (30) 36 (32) 1.16 (0.81–1.64) 0.42

Copyright © 2005 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org at KIZ - ABT LITERATURVERWALTUNG on October 23, 2005 .

Inhaled  Nitric  Oxide  for  Premature  Infants  with  Severe  Respiratory  Failure  

26  Van Meurs et al. NEJM 2005;353:13

n engl j med

353;1

www.nejm.org july

7

,

2005

The

new england journal

of

medicine

20

nitric oxide in premature infants have shown var-ied results. In a trial of 80 premature infants withsevere hypoxemic respiratory failure, Kinsella et al.reported a decrease in the number of days on a ven-tilator and a trend toward a decreased incidenceof bronchopulmonary dysplasia.

10

The Franco–

Belgian randomized trial of inhaled nitric oxideshowed no significant decrease in bronchopulmo-nary dysplasia or death in a cohort of premature in-fants with a median oxygenation index of approxi-mately 20.

11,12

A recent trial by Schreiber et al.studied a less critically ill cohort with a median oxy-

* Data were not available for all infants in the categories of bronchopulmonary dysplasia and grade 3 or 4 intraventricular hemorrhage (IVH) or periventricular leukomalacia (PVL). Some infants had bronchopulmonary dysplasia and died. CI denotes confidence interval.

† Values were adjusted for center, birth-weight group, and oxygenation-index stratum.

Table 5. Post Hoc Analysis According to Birth Weight, Type of Ventilation, and Oxygenation Index.*

VariableInhaled Nitric

Oxide PlaceboRelative Risk

(95% CI)† P Value

no. (%)

Birth weight

≤1000 g 158 158

Death or bronchopulmonary dysplasia 141 (89) 133 (85) 1.04 (0.96–1.13) 0.29

Death 98 (62) 76 (48) 1.28 (1.06–1.54) 0.01

Bronchopulmonary dysplasia 49 (73) 65 (73) 1.02 (0.85–1.23) 0.84

Grade 3 or 4 IVH or PVL 55 (43) 39 (33) 1.40 (1.03–1.88) 0.03

>1000 g 52 52

Death or bronchopulmonary dysplasia 26 (50) 35 (69) 0.72 (0.54–0.96) 0.03

Death 11 (21) 17 (33) 0.65 (0.36–1.18) 0.16

Bronchopulmonary dysplasia 16 (38) 21 (57) 0.68 (0.45–1.05) 0.08

Grade 3 or 4 IVH or PVL 14 (27) 11 (30) 0.95 (0.53–1.69) 0.86

Type of ventilation

Conventional mechanical ventilation 85 86

Death or bronchopulmonary dysplasia 69 (81) 63 (74) 1.04 (0.91–1.19) 0.55

Death 53 (62) 34 (40) 1.46 (1.10–1.92) 0.01

Bronchopulmonary dysplasia 17 (52) 33 (60) 0.90 (0.65–1.24) 0.53

Grade 3 or 4 IVH or PVL 29 (43) 24 (36) 1.20 (0.80–1.78) 0.37

High-frequency ventilation 125 124

Death or bronchopulmonary dysplasia 98 (78) 105 (85) 0.93 (0.84–1.04) 0.21

Death 56 (45) 59 (48) 0.96 (0.75–1.24) 0.75

Bronchopulmonary dysplasia 48 (63) 53 (75) 0.89 (0.72–1.10) 0.29

Grade 3 or 4 IVH or PVL 40 (36) 26 (30) 1.41 (0.96–2.08) 0.08

Oxygenation index

≤17 100 110

Death or bronchopulmonary dysplasia 71 (71) 83 (75) 0.93 (0.81–1.08) 0.37

Death 45 (45) 40 (36) 1.27 (0.96–1.68) 0.09

Bronchopulmonary dysplasia 30 (51) 50 (66) 0.80 (0.61–1.06) 0.12

Grade 3 or 4 IVH or PVL 30 (33) 27 (30) 1.18 (0.79–1.76) 0.42

>17 110 100

Death or bronchopulmonary dysplasia 96 (87) 85 (86) 1.02 (0.92–1.12) 0.75

Death 64 (58) 53 (53) 1.11 (0.88–1.40) 0.39

Bronchopulmonary dysplasia 35 (70) 36 (72) 0.98 (0.77–1.24) 0.85

Grade 3 or 4 IVH or PVL 39 (45) 23 (35) 1.38 (0.97–1.96) 0.07

Copyright © 2005 Massachusetts Medical Society. All rights reserved. Downloaded from www.nejm.org at KIZ - ABT LITERATURVERWALTUNG on October 23, 2005 .

Inhaled  Nitric  Oxide  for  Premature  Infants  with  Severe  Respiratory  Failure  

27  Van Meurs et al. NEJM 2005;353:13

Inhaled  Nitric  Oxide  for  Premature  Infants  with  Severe  Respiratory  Failure  

28  Van Meurs et al. NEJM 2005;353:13

•  Conclusions  –  The  use  of  iNO  in  criHcally  ill  premature  infants  weighing  less  than  1500g  does  not  decrease  the  rates  of  death  or  BPD  

–  Further  trials  are  required  to  determine  whether  inhaled  nitric  oxide  benefits  infants  with  a  BW  of  1000g  or  more  

NIH  Consensus  Conference  Statement:    Inhaled  Nitric-­‐Oxide  Therapy  for  Premature  Infants  

•  “…  the  available  evidence  does  not  support  use  of  iNO  in  early-­‐rouHne,  early-­‐rescue,  or  later-­‐rescue  regimens  in  the  care  of  premature  infants  of  <34  weeks  gestaHon  who  require  respiratory  support.  

•  There  are  rare  clinical  situaHons,  including  pulmonary  hypertension  or  hypoplasia,  that  have  not  been  inadequately  studied  in  which  iNO  may  have  benefit  in  infants  of  <34  weeks  ‘  gestaHon.  In  such  situaHons,  clinicians  should  communicate  with  families  regarding  the  current  evidence  on  its  risks  and  benefits  as  well  as  remaining  uncertainHes.  

29  Cole et al. Pediatrics 2011;127:363

Use  of  Inhaled  Nitric  Oxide  in  Preterm  Infants  AAP  Commijee  on  Fetus  and  Newborn  

•  “The  results  of  randomized  controlled  trials,  tradiHonal  meta-­‐analyses,  and  an  indiviualized  paHent  data  meta-­‐analysis  study  indicated  that  neither  rescue  nor  rouHne  use  of  iNO  improves  survival  with  respiratory  failure”  (Evidence  quality,  A,  grade  of  recommendaHon,  strong)  

30  Kumar and Committee on Fetus and Newborn. Pediatrics 2014;133:164

Page 6: Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5 Inhaled’Nitric’Oxide’for’Premature’Infants’ with’Severe’Respiratory’Failure’

02.04.15  

6  

Infants  aoer  Prolonged  Preterm  Rupture  of  Membranes  (PPROM)  with  respiratory  failure  

•  Decreased  proinflammatory  cytokines  and  nitrite  +  nitrate  levels  were  low,  but  increased  during  iNO  treatment  (Aikio  et  al.  J  Pediatr  2012;161:397)  –  SuggesHng  that  there  may  be  a  transient  deficiency  in  the  inflammatory  response  including  a  defect  in  nitric  oxide  generaHon  in  the  airspaces.  

31  

Inhaled  Nitric  Oxide  in  Preterm  Infants:  An  Individual-­‐PaHent  Data  Meta-­‐analysis  of  RCTs  (MAPPiNO)  •  Significant  heterogeneity  in  paHent  populaHons  between  

trials  and  within  trials  •  Individual  paHent  data  Meta-­‐analysis  provides  more  

uniformity  •  Data  from  3298  infants  in  12  trails  

32  Askie et al. Pediatrics 2011;128:729

Inhaled  Nitric  Oxide  in  Preterm  Infants:  An  Individual-­‐PaHent  Data  Meta-­‐analysis  of  RCTs  (MAPPiNO)  

33  Askie et al. Pediatrics 2011;128:729

Inhaled  Nitric  Oxide  in  Preterm  Infants:  An  Individual-­‐PaHent  Data  Meta-­‐analysis  of  RCTs  (MAPPiNO)  

34  Askie et al. Pediatrics 2011;128:729

Conclusions:  •  RouHne  use  of  iNO  for  treatment  of  respiratory  failure  in  preterm  infants  cannot  be  recommended.    •  The  use  of  a  higher  starHng  dose  might  be  associated  with  improved  outcome,  but  because  there  were  differences  in  the  designs  of  these  trials,  it  requires  further  examinaHon.  

Inhaled  Nitric  Oxide  in  Preterm  Infants:  An  Individual-­‐PaHent  Data  Meta-­‐analysis  of  RCTs  (MAPPiNO)  

35  Askie et al. Pediatrics 2011;128:729

Off-­‐Label  Use  of  Inhaled  Nitric  Oxide  Aoer  Release  of  NIH  Consensus  Statement  

Pediatrix  Medical  Group  2009-­‐2013  •  iNO  use  in  preterm  infants  23-­‐29  wks  GA:  5.03%  to  6.19%  (23%  increase)  

36  Elisworth et al. Pediatriacs 2015;135 (April) currently online

Among all neonates ,34 weeksadmitted to level III or IV PMG NICUsin 2013, iNO utilization rates wereinversely proportional to gestationalage (Fig 2). For example, 13.9% ofall 23- to 24-week infants weretreated with iNO, compared with0.6% of 33-week neonates. Of allneonates who received iNO therapyin 2013, nearly half (46%; Fig 3)were ,34 weeks’ gestation and thus

received this drug off-label. Becauseonly 1.3% of iNO-exposed patientswere treated at level II NICUs, datafor these patients were not includedin the above analyses.

Specifics regarding the age atinitiation for all neonates andduration of use (first course) forthose with complete data aredisplayed in Tables 2 and 3,respectively. There were no

significant differences in eitherpattern of use within gestational agecohorts from 2009 to 2013. Infants,34 weeks’ gestation accounted formore than half of all iNO days eachyear of the study period.

DISCUSSION

We demonstrate that off-labelprescription of iNO to pretermneonates has not declined in theyears after the NIH statementdiscouraging routine use in thispopulation.22 Similar to NRN-affiliated clinicians,24 we detecteda small decrement in iNO use in 2011among premature infants, though thischange was not statisticallysignificant. By extending our analysisthrough 2013, we were able todetermine that the overall rate of off-label iNO use among all gestationalage subgroups persisted at itsbaseline level and the rate increasedamong neonates ,30 weeks’gestation. Between 2009 and 2013,for the 79 434 infants 23 to 29 weekscared for at the 703 hospitals in theUnited States participating in the

TABLE 1 Distribution of iNO Use in PMG NICUs

Discharge Year P

2009 2010 2011 2012 2013

Total patients in CDW, n 79 883 82 778 85 149 85 994 86 767iNO-treated patients, n (%) 1049 (1.3) 1120 (1.4) 1085 (1.3) 1159 (1.3) 1263 (1.5) .2EGA, median (10th–90th) 35 (24–40) 35 (24–40) 36 (24–40) 34 (24–40) 34 (24–40) .6EGA group, n (%), wka .223–29 392 (37) 397 (35) 366 (34) 441 (38) 476 (38) —

30–33 99 (9) 97 (9) 86 (8) 107 (9) 106 (8) —

$34 556 (53) 621 (55) 630 (58) 602 (52) 674 (53) —

Birth weight, median (10th–90th) 2.27 (0.62–3.71) 2.42 (0.60–3.80) 2.59 (0.62–3.75) 2.20 (0.59–3.79) 2.27 (0.60–3.78) .01Boy, n (%) 614 (59) 666 (59) 638 (59) 684 (59) 721 (57) .4Race/ethnicity, n (%)a .1White 504 (48) 548 (49) 498 (46) 560 (48) 631 (50) —

Hispanic 223 (21) 251 (22) 261 (24) 227 (20) 224 (18) —

African American 211 (20) 221 (20) 222 (20) 263 (23) 258 (20) —

Asian 29 (3) 31 (3) 20 (2) 30 (3) 32 (3) —

American/Alaska Native 15 (1) 16 (1) 10 (1) 10 (1) 19 (2) —

Pacific Islander 3 (0) 3 (0) 5 (0) 6 (1) 11 (1) —

Other 64 (6) 50 (4) 69 (6) 63 (5) 88 (7) —

Cesarean delivery, n (%) 704 (67) 772 (69) 731 (67) 768 (66) 858 (68) .9Outborn, n (%) 419 (40) 445 (40) 404 (37) 416 (36) 456 (36) .4Disposition, n (%)a .7Alive 586 (56) 604 (54) 604 (56) 634 (55) 713 (56) —

Died 231 (22) 246 (22) 213 (20) 264 (23) 261 (21) —

Transfer 232 (22) 270 (24) 268 (25) 261 (23) 289 (23) —

a Based on 2-tailed x2 testing evaluating the group.

FIGURE 1Change in percentage of infants treated with iNO at PMG NICUs within 3 gestational age groupingsfrom 1997 to 2013.

PEDIATRICS Volume 135, number 4, April 2015 3 by Helmut Hummler on March 22, 2015pediatrics.aappublications.orgDownloaded from

Page 7: Speaker’fee’for’presentaons’ Treatmentof’PPHN’’ … · 2015. 4. 13. · 02.04.15 5 Inhaled’Nitric’Oxide’for’Premature’Infants’ with’Severe’Respiratory’Failure’

02.04.15  

7  

Off-­‐Label  Use  of  Inhaled  Nitric  Oxide  Aoer  Release  of  NIH  Consensus  Statement  

37  Elisworth et al. Pediatriacs 2015;135 (April) currently online

Vermont Oxford Network, the rate ofiNO utilization increased from 6.7%to 6.9% (unpublished data providedby the Vermont Oxford Network).

iNO use within PMG has acceleratedmost rapidly among extremelypreterm neonates, a subgroup thatnow accounts for nearly half of all

iNO use in the NICU despite thepotential for morbidities in thispopulation.11,28 Given increased iNOutilization in higher-acuity units,24 itmay be that iNO is directed at morecritically ill neonates for whichevidence of benefit and safety of useis most limited.6–16 The observationthat neonatologists wouldincreasingly prescribe iNO ina manner contrary to clinicalevidence and expert opinion22,23 isfascinating and provocative.

We suspect that off-label iNOutilization is driven by the idea thatiNO promotes increased survival.Despite no clear evidence that there isimproved survival in iNO-exposedpremature infants, the immediatephysiologic effect of iNO is welldescribed, with an increase in oxygensaturation being readily apparent inmany infants who are exposed toiNO.6,29,30 We speculate that thisphysiologic effect likely leads manyneonatologists to attribute thesurvival of iNO-exposed neonates toiNO therapy, when in fact a number ofother factors could have led to thatinfant’s outcome. We acknowledgethat it is possible that iNO may betherapeutic in the premature neonate,but clearly its role has not beendelineated. For example, there may bea role for use in infants withpremature rupture of membranes,oligohydramnios, and pulmonaryhypoplasia, but currently there are noprospective studies in thispopulation.31 Perhaps the history ofiNO eventually will resemble that ofanother 1-time controversial therapy,extracorporeal membraneoxygenation. Once regarded as unsafeand founded on suboptimal clinicalevidence,32,33 extracorporealmembrane oxygenation is nowregarded as lifesaving therapy witha clear role for utilization in selectgroups of neonates.34

Until that time, we must consider theincreased costs that the use of iNOtherapy contributes to caring forcritically ill neonates. Among the 456

FIGURE 2Percentage of infants treated with iNO at PMG (level III or IV) NICUs stratified by gestational age in2013.

FIGURE 3Distribution of total iNO use by gestational age in PMG (level III or IV) NICUs in 2013.

TABLE 2 Age at Initiation of First Course of Therapy

EGA Group DOL iNO Started, d 2009 2010 2011 2012 2013

23–29 wk 0–7 227 (58) 208 (52) 200 (55) 252 (57) 261 (55)8–28 104 (27) 117 (29) 97 (27) 96 (22) 130 (27).28 61 (16) 72 (18) 69 (19) 93 (21) 85 (18)

30–33 wk 0–7 87 (88) 80 (82) 71 (83) 91 (85) 90 (85)8–28 5 (5) 6 (6) 5 (6) 7 (7) 8 (8).28 7 (7) 11 (11) 10 (12) 9 (8) 8 (8)

$34 wk 0–7 532 (96) 588 (95) 597 (95) 565 (94) 641 (95)8–28 20 (4) 22 (4) 16 (3) 26 (4) 20 (3).28 4 (1) 11 (2) 17 (3) 11 (2) 13 (2)

Data presented as n (%). DOL, day of life.

4 ELLSWORTH et al by Helmut Hummler on March 22, 2015pediatrics.aappublications.orgDownloaded from

Vermont Oxford Network, the rate ofiNO utilization increased from 6.7%to 6.9% (unpublished data providedby the Vermont Oxford Network).

iNO use within PMG has acceleratedmost rapidly among extremelypreterm neonates, a subgroup thatnow accounts for nearly half of all

iNO use in the NICU despite thepotential for morbidities in thispopulation.11,28 Given increased iNOutilization in higher-acuity units,24 itmay be that iNO is directed at morecritically ill neonates for whichevidence of benefit and safety of useis most limited.6–16 The observationthat neonatologists wouldincreasingly prescribe iNO ina manner contrary to clinicalevidence and expert opinion22,23 isfascinating and provocative.

We suspect that off-label iNOutilization is driven by the idea thatiNO promotes increased survival.Despite no clear evidence that there isimproved survival in iNO-exposedpremature infants, the immediatephysiologic effect of iNO is welldescribed, with an increase in oxygensaturation being readily apparent inmany infants who are exposed toiNO.6,29,30 We speculate that thisphysiologic effect likely leads manyneonatologists to attribute thesurvival of iNO-exposed neonates toiNO therapy, when in fact a number ofother factors could have led to thatinfant’s outcome. We acknowledgethat it is possible that iNO may betherapeutic in the premature neonate,but clearly its role has not beendelineated. For example, there may bea role for use in infants withpremature rupture of membranes,oligohydramnios, and pulmonaryhypoplasia, but currently there are noprospective studies in thispopulation.31 Perhaps the history ofiNO eventually will resemble that ofanother 1-time controversial therapy,extracorporeal membraneoxygenation. Once regarded as unsafeand founded on suboptimal clinicalevidence,32,33 extracorporealmembrane oxygenation is nowregarded as lifesaving therapy witha clear role for utilization in selectgroups of neonates.34

Until that time, we must consider theincreased costs that the use of iNOtherapy contributes to caring forcritically ill neonates. Among the 456

FIGURE 2Percentage of infants treated with iNO at PMG (level III or IV) NICUs stratified by gestational age in2013.

FIGURE 3Distribution of total iNO use by gestational age in PMG (level III or IV) NICUs in 2013.

TABLE 2 Age at Initiation of First Course of Therapy

EGA Group DOL iNO Started, d 2009 2010 2011 2012 2013

23–29 wk 0–7 227 (58) 208 (52) 200 (55) 252 (57) 261 (55)8–28 104 (27) 117 (29) 97 (27) 96 (22) 130 (27).28 61 (16) 72 (18) 69 (19) 93 (21) 85 (18)

30–33 wk 0–7 87 (88) 80 (82) 71 (83) 91 (85) 90 (85)8–28 5 (5) 6 (6) 5 (6) 7 (7) 8 (8).28 7 (7) 11 (11) 10 (12) 9 (8) 8 (8)

$34 wk 0–7 532 (96) 588 (95) 597 (95) 565 (94) 641 (95)8–28 20 (4) 22 (4) 16 (3) 26 (4) 20 (3).28 4 (1) 11 (2) 17 (3) 11 (2) 13 (2)

Data presented as n (%). DOL, day of life.

4 ELLSWORTH et al by Helmut Hummler on March 22, 2015pediatrics.aappublications.orgDownloaded from

Inhaled  Nitric  Oxide  for  the  Preterm  Infant:  Evidence  vs.  PracHce  

•  Three  possibliHes  –  Lack  of  awareness  of  the  evidence  (-­‐)  –  Neonatologists’  view  that  the  evidence  may  not  be  generizable  

in  a  parHcular  situaHon  (+)  –  Neonatologists’  insHnct  to  ajempt  to  normalize  physiology  (++)  

•  Need  for  focused  trials  –  iNO  on  preterm  infants  with  evidence  of  PH  (robust  entry  

criteria  using  ABG,  echo  …)  –  iNO  in  preterm  infants  aoer  PPROM  

•  Some  quesHons  may  be  answered  using  large  databases  –  Call  for  registering  paHents  undergoing  off-­‐label  treatment  to  

databases  such  as  the  exisHng  “European  Inhaled  Nitric  Oxide  Registry”  (www.medscinet.net/ino  )  

38  Finer & Evans Pediatrics 2015;135 April, currently online

Conclusions  

•  No  rouHne  use  of  iNO  in  preterm  infants  with  respiratory  failure  

•  Individualized  approach  –  Severe  hypoxic  respiratory  failure  (based  on  applied  

pathophysiology)    ■  PPHN  should  be  proven  (by  echocardiography)  in  preterm  infants    ■  Preterm  infants  born  aoer  PPROM?  ■  Preterm  infants  with  early  onset  sepsis?  

•  Parents  should  be  informed/involved  if  iNO  is  used  in  preterm  infants  

•  PaHents  should  be  treated  within  the  context  of  RCTs  and/or  registered  in  a  database  –  Database  should  include  long-­‐term  outcomes  

39  

Thank  you  very  much!  

40