SPE. WMOG-15 session i

26
Lima, Peru 3 – 4 September 2015 Argentina Water Management for Hydraulic Fra From Conventional to Unconventional Reservoirs. What we have learned and what we need to consider SPE Water Management for Oil and Gas: Best Practices and New Technologies Workshop Juan C. Bonapace - (Halliburton)

Transcript of SPE. WMOG-15 session i

Page 1: SPE. WMOG-15 session i

Lima, Peru3 – 4 September 2015

Argentina Water Management for Hydraulic Fracture

From Conventional to Unconventional Reservoirs.What we have learned and what we need to consider

SPE Water Management for Oil and Gas: Best Practices and New Technologies Workshop

Juan C. Bonapace - (Halliburton)

Page 2: SPE. WMOG-15 session i

Presentation Outline• Introduction• Water reuse—recent history

– Conventional (case history GSJ)– Unconventional

• Water recycling• Sources of water• Type of treatments• Unconventional water logistic• No traditional waters

– Clay inhibition, Fracture fluid, damage by pH and total suspended solids (TSS)

• Conclusions

Page 3: SPE. WMOG-15 session i

IntroductionHydraulic fracturing in Argentina• Oil and gas reservoirs since 1960• Conventional, tight, and shale• Performed at the five productive basins• Depths: 300 to 4500 m• Bottomhole temperature (BHT): 100 to 300°F• Reservoir pressures: subnormal to overpressure• Formation permeability: high, medium, low, and

ultralow perms• Multi-layer reservoirs and multi-target wells

Type of treatment• Conventional fracture, slickwater, water-frac, and

special treatments for proppant flowback or high-water-cut zones

Type of fluid • Oil-based systems, alcohol-water mixtures, foams,

and water-based fluids currently used

Page 4: SPE. WMOG-15 session i

Reuse of Water: Recent HistoryConventional Reservoirs• 2004—Neuquén Basin

– Have performed an evaluation project using water from water wells (low salinity) to adjust the formulation of standard fracturing fluid used (low temperature, guar-borate)

• 2005—Gulf of San Jorge Basin – Initiated a project to identify alternative sources of water for use in the

fracturing fluid used in regular operations (low to medium temperature, guar-borate)

– More than 2,000 fracture stages were completed using this water.– In 2012, 90 to 100% of treatments were performed with produced water.

SPE-151819. “Water Conservation: Reducing Fresh Water Consumption by Using Produced Water for Base Fluid in Hydraulic Fracturing Case Histories in Argentina”

Page 5: SPE. WMOG-15 session i

Case History: Gulf of San Jorge • Sources of water: Muster lake• Cities:

– Comodoro Rivadavia– Rada Tilly– Sarmiento– Caleta Olivia

• Population: 280,000 • Water consumption: 78 512 m3/DFracturing activity

History of field production

Page 6: SPE. WMOG-15 session i

Initial Phase (2005 to 2007)• Identifying different sources in the

field• Water analysis• Fracturing-fluid analysis• First fracturing treatment performed• Water loading platformsSources of water Water analysis tests

Fracturing fuid tests

Page 7: SPE. WMOG-15 session i

Pilot: Implementation Phase (2007 and 2008)• Work procedure• Fracturing fluids analysis• Water chemical-physical analysis• Water-bacteriologist analysis• Only one loading platform

> 1,790 Total fracturing stages17% Fresh water reduction6994 m3 Produced water consumption

Page 8: SPE. WMOG-15 session i

Development Phase (2009 and 2010)• New water source identification• Introduction of pre-blender mixing units• Water and fluid analysis• Reformulation of fracturing fluids• Construction of new loading platforms

840 Total fracturing stages35% Fresh water reduction13 176 m3 produced water consumption

2009

763 Total fracturing stage55% Fresh water reduction21 805 m3 produced water consumption

2010

Pre-blender unit

New loading platforms

Page 9: SPE. WMOG-15 session i

Case History Summary: Gulf of San Jorge

Updated information:• In 2011, 80% of the hydraulic fracturing was performed with produced water.• From 2012 to present, a fresh water reduction of approximately 90 to 100%

has been maintained.• Currently, this practice is the standard with this operator.

Page 10: SPE. WMOG-15 session i

Reused Water: Recent HistoryUnconventional reservoirs

• 2011—Neuquén Basin – Los Molles Formation: A mixture of fresh

water (85%) and produced water (15%) was used for hydraulic fracture (10 stages) in a horizontal well.

• 2013—Gulf of San Jorge Basin – D-129 Formation: Operator decided to

use 100% produced water (low salinity < 10,000 TDS) for five hydraulic fracturing stages in a vertical well.

• 2014—Neuquén Basin – Vaca Muerta Formation: One operator started to use flowback water in

regular treatments. 30 to 50% fresh water consumption has been decreased in the fracturing stages (flowback water is used in slickwater and linear gel system in hybrid fracturing design).

Page 11: SPE. WMOG-15 session i

Water Recycling 2. EconomicTotal Cost of Water = acquisition + transfer to well + transfer from well to disposal + disposal • Bakken = 6 to 15 US$/bbl• Eagle Ford = 2 to 6 US$/bbl• Marcellus = 4 to 20 US$/bblNote: Does not include brine for clay stabilization

3. Type of water treatments

1. Current water cycle—hyd.fracture

4. Recycle approaches to handle variability

Page 12: SPE. WMOG-15 session i

Water Recycling 5. Technical concerns for water reuse 6. An integrated approach

• Effective water treatments• Fluid formulation (high TDS)• Effective biocide• Effective logistical engineering• Multiple technologies applied

7. Recycle and reuse 8. Benefits

Page 13: SPE. WMOG-15 session i

Water Recycling

Page 14: SPE. WMOG-15 session i

Sources of Water: Neuquén BasinSources of water• Fresh water, rivers, lakes, and water wells• Used for conventional reservoirs development

Neuquina Basin (unconventional) • Primary sources of water are rivers, Limay, Neuquén,

and Colorado).

• Other sources are lakes, such as Cerro Colorado and Pellegrini.

• Groundwater sources, wells with low salinity (< 5,000 TDS), need a permit from regulatory authorities and water is not suitable for human consumption or farm landing.

Page 15: SPE. WMOG-15 session i

Sources of Water: Neuquén BasinType of fresh water• Limay, Neuquén, and Colorado rivers• Water wells (different fields)

Water requirements• Normally used in fracturing fluids

Area South South South West West West West East EastGroup of Wells C C D D H H H S XType Water River (Limay) River (Limay) River (Nqn) River (Nqn) Well #1 Well #2 Well #3 River (Colorado) River (Colorado)

Specific gravity 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.003pH 6 to 8 7.71 7.44 8.11 8.03 9.14 8.73 8.71 7.77 7.56Resistiviy (ohms-cm) 59.551 17.346 3.525 1.012 3.331 2.450 2.618 0.633 0.785Temperatura (°C) 15 to 40 24.4 24.5 21.0 20.7 20.6 19.9 20.4 22.9 23.2

Carbonate (mgL) < 600 0 0 0 0 0 7.2 14.4 0 0Bicarbonate (mgL) < 600 67.1 54.9 158.7 268.5 278.2 244.1 258.7 585.8 561.3Chloride (mgL) < 30,000 2.0 10.0 620.2 80.0 348.1 428.2 372.2 1,450.6 1,660.1Sulfate (mgL) < 500 7.5 155.0 50.0 85.0 475.0 650.0 625.0 1,750.0 1,750.0Calcium (mgL) 50 to 250 1.6 48.1 34.7 83.4 8.0 1.6 0.0 1,002.0 1,202.4Magnesium (mgL) 10 to 100 2.0 9.7 8.1 17.5 1.0 1.0 1.0 170.2 170.2Barium (mgL) 0 0 0 0 0 0 0 0 0Strontium (mgL) 0.02 0.02 1.3 1.2 n/a n/a n/a 10.08 11.40Total Iron (mgL) 1 to 20 0.12 0.17 0.20 0.10 0.17 0.07 0.05 0.23 0.38Aluminum (mgL) 0.002 0.002 0.002 0.002 0.020 0.020 0.020 0.020 0.020Boron (mgL) 0 to 20 0.0 0.0 0.2 10.9 n/a n/a n/a 0.30 0.30Potassium (mgL) 100 to 500 0.0 0.0 2.6 13.3 0.0 0.0 0.0 22.5 15.0Sodium (mgL) 2,000 to 5,000 24.7 27.8 427.7 51.7 546.5 682.1 646.7 504.3 408.9

TDS (mgL) < 50,000 105 306 1,302 599 1,657 2,014 1,918 5,486 5,769TSS (mgL) < 50 2.5 2.6 5.6 0.3 30.0 16.0 7.5 4.8 0.4

Water Requirements

Water characteristics • Underground water sources

have higher values in terms of pH, sulphates, TDS, total suspended solids (TSS), chlorides, bicarbonates, and sodium.

Page 16: SPE. WMOG-15 session i

Vaca Muerta (hyd. fracturing) Tight reservoirs (hyd. fracturing)

• Hybrid (SW-LG-XL or SW-XL) or 100%SW

• (J)—no use of FR but used scale inhibitor if needed to use LG or XL (is a 20ppt CMHPG-Zr)

• (G)—no use of clay stabilizer• Mostly XL fluid used (is a 20 ppt guar-

borate)

• Hybrid (SW-LG-XL or SW-XL) or 100% XL

• Some operators use CMHPG-Zr fluid

Type of Treatments: Unconventional

Page 17: SPE. WMOG-15 session i

Unconventional Water LogisticStorage systems• Mobile fracturing tanks (80 m3)—B• Circular tanks (1000 to 5500 m3)—A• Pits or dams

– Small (15 000 m3)—C– Large (35 000 m3)—D

Water handling• Trucks • Piping system (tubing or aluminum

pipe) from 300 m to 1.5 Km—C• Centrifugal pumps (40 to 60 bbl/min)

A–B

Exploratory wells• Mobile fracturing tanks and trucks

(Cuyana and GSJ basins)

(from SPE-174118)

Page 18: SPE. WMOG-15 session i

Unconventional Water LogisticMulti-Horizontal Well Pad - (B)

• 3 Hztal wells and 33 frac stages• Completion time: 11 days • Water volumen: 60,000m3• Storage capacity: 5,500m3

Primary System (A)• New Water Well #2 (1,000 m3/D) • Storage capacity: 16,000 m3• Distance: 1.5 Km• 8 inch aluminum pipe and centrifugal

pumps

Alternative System (C)• Water Well #1 (1,300 m3/D) • Storage capacity: 18,000 m3 (two water

storage)• Distance: 800 m to 2.3 Km – (Ww#1 =

4.5 Km)• 8 inch aluminum pipe and centrifugal

pumps• 4 ½ inch tubing from Ww#1

(from SPE-174119)

Page 19: SPE. WMOG-15 session i

No Traditional Waters: Flowback and Produced Water

Area West South South South South South East West West West WestGroup of Wells D D D D A C G H H H HSub-Group D#1a D#2a D#3a D#3b A#1a C#1a G#1a H#7a H#1a H#2a H#3aReservoir Tight Tight Tight Tight Shale Shale Shale Shale Shale Shale ShaleType Water FB FB FB FB PROD FB PROD PROD FB FB FB

Specific gravity 1.042 1.018 1.060 1.060 1.130 1.045 1.065 1.136 1.074 1.123 1.143pH 6.38 6.69 6.00 5.98 5.62 6.35 5.74 6.48 6.74 5.06 5.25Resistiviy (ohms-cm) 0.109 0.176 0.026 0.024 n/a 0.082 0.074 0.026 0.067 0.030 0.023Temperatura (°C) 21.1 21.2 21.6 21.6 n/a 20.8 21.2 20.2 26.0 23.0 24.0

Carbonate (mgL) 0 0 0 0 0 0 0 0 0 0 0Bicarbonate (mgL) 353.9 2,257.7 109.8 85.4 257.3 610.2 195.3 146.4 1,196.0 131.8 107.4Chloride (mgL) 30,011.9 15,005.9 118,546.8 126,049.8 86,837.6 37,014.8 58,022.9 118,546.8 67,026.5 106,041.9 131,051.8Sulfate (mgL) 370.0 420.0 40.0 35.0 0.0 0.0 235.0 0.0 10.0 262.5 137.5Calcium (mgL) 3,206.4 1,402.8 13,306.6 15,711.4 15,967.9 6,012.0 15,230.4 21,643.0 7,134.2 23,406.7 17,955.8Magnesium (mgL) 1,264.6 413.4 1,459.2 1,167.4 4,902.9 1,264.6 729.6 2,140.2 1,702.4 3,988.5 2,723.8Barium (mgL) 0 0 0 0 725 100 0 800 800 0 0Strontium (mgL) 270.0 0.3 948.0 840.0 n/a n/a 702.0 2,078.0 n/a 2,120.0 4,210.0Total Iron (mgL) 118.50 194.00 26.50 21.75 38.00 56.25 21.50 21.25 575.00 243.75 6.50Aluminum (mgL) 0.002 0.002 0.020 0.020 n/a 0.050 0.020 0.020 0.020 0.020 0.020Boron (mgL) 7.8 2.0 10.2 8.4 n/a 7.7 21.3 29.8 24.2 10.4 17.2Potassium (mgL) 535.0 0.0 1,015.0 1,028.8 2,150.5 0.0 750.0 2,750.0 250.0 998.0 2,130.0Sodium (mgL) 13,149.7 8,381.8 57,821.5 60,450.3 27,250.3 14,590.7 18,178.5 45,234.5 32,225.5 34,489.0 59,261.3

TDS (mgL) 49,010 28,076 192,325 204,550 138,129 58,187 93,363 190,562 110,920 171,682 217,584TSS (mgL) 569.2 27.7 84.0 119.0 n/a 666.0 356.5 714.5 163.0 310.4 235.6

Untreated Water Type Treated Water

Area West East East West West West

Group of wells H J S H H H

Subgroup T-H#1a T-J#1a T-S#1a T-H#2c T-H#7a T-H#4b

Reservoir Shale Shale Shale Shale Shale Shale

Type water FB FB FB FB PRO FB

Treated method I II II III IV filtered

Specific gravity 1.060 1.094 1.160 1.070 1.125 1.060

pH 7.84 5.87 8.00 7.32 9.12 6.38

Resistivity (ohms-cm) 0.075 0.049 0.028 0.047 n/a 0.046

Temperature (°C) 19.5 21.1 21.9 18.1 n/a 21.8

Carbonate (mgL) 0 0 36 0 66.5 0.0

Bicarbonate (mgL) 219.7 170.9 1,073.9 244.1 0.0 268.5

Chloride (mgL) 59,523.5 85,033.6 121,548.0 61,524.3 104,687.0 67,526.7

Sulfate (mgL) 0.0 325.0 130.0 6,375.0 5.0 80.0

Calcium (mgL) 6,332.6 14,909.8 28,216.3 3,206.4 155.0 16,354.6

Magnesium (mgL) 729.0 1,167.4 155.7 1,945.6 857.0 1,264.6

Barium (mgL) 110 0 0 0 874 0

Strontium (mgL) 1,400.0 1,080.00 7,550.00 177.00 1,846.0 2,960.0

Total iron (mgL) 0.45 11.00 5.50 2.60 1.32 18.25

Aluminum (mgL) 0.020 0.002 0.020 0.002 0.920 0.020

Boron (mgL) 12.0 13.7 1.5 8.2 22.8 63.0

Potassium (mgL) 16.0 1,945.0 4,390.0 253.1 2,066.0 1,497.5

Sodium (mgL) 29,984.4 34,054.7 46,580.6 35,389.8 47,182.0 21,242.7

TDS (mgL) 96,916 137,617 197,746 108,940 172,097 108,251

TSS (mgL) 4.4 34.6 16.0 4.3 10.1 98.0

Table 4—Physical and chemical results for four samples of flowback and produced water.

Treated

• Treatment methods: I to III, chemical coagulation, flocculation, and separation; IV, electrocoagulation, pH adjustment, weir tank separation, and multimedia filtration, the last sample was only filtered .

• Treatment effect: reduction of iron and TSS

Page 20: SPE. WMOG-15 session i

No Traditional Waters: Clay Inhibition

Tight-CST Ratio Tight-XRD

Type Group Wells Subgrup Percentage

(%) TDS

(mg/L) Clay Stabilizer

(gpt) DI — — 100 0 1.4

Produced H H#7a. 100 190,562 No

*Clay stabilizer = quaternary ammonium salt

Table 5—Water evaluated in tight and shale formation .

Capillary Suction Time:Shale formations are more sensitive than the tight formations (higher % clay). Testing performed and compared to traditional clay stabilizer used.No traditional water showed a higher inhibition capacity than traditional stabilizer.

Page 21: SPE. WMOG-15 session i

No Traditional Waters: Fracturing Fluid• Recent, studies and development of fracturing fluids using no traditional

waters (several authors)• A new CMHPG-metallic fluid was developed at laboratory conditions. This

fluid can be formulated using a blend of water or 100% nontraditional water treated or only filtered, and has a very good proppant transport capacity and less residue than traditional guar-borate fluid currently used.

• This fluid was tested at different BHT 120, 150, and 220°F, typical condition for tight and shale reservoirs in Argentina.

Test No. Water TDS (mg/L) Type Test BHT

(°F) Gel Load

(ppt) 1 South Zone—D#3a filtered 192,325 Stabilitiy 150 25

2 South Zone—D#3a filtered 192,325 Stabilitiy 150 30

3 South Zone—D#3a filtered 192,325 Break 150 25

4 West Zone—T-H#4b 108,250 Stabilitiy 220 25

5 West Zone—T-H#4b 108,250 Stabilitiy 220 30

6 West Zone—T-H#4b 108,250 Break 220 30

*For more details about water, refer to Tables 3, 4, and 6. Sample D#3a was filtered in the laboratory.

System Water Type Fields/Wells Percentage (%)

TDS (mg/L)

20-ppt Guar.borate Fresh water B#a 100 2,014

20-ppt CMHPG-Zr Blend B#a+F#1 50:50 70,542

20-ppt CMHPG-Zr Treated B#4T 100 108,940

Table 8—Formulations of two sets of XL gel tested.

Note: From SPE-174118, SPE-174119

Page 22: SPE. WMOG-15 session i

No Traditional Waters: (Damage, pH and TSS)

Damage by pH effect Damage by TSS effect

(from SPE-174118, SPE-174119)

Page 23: SPE. WMOG-15 session i

Conclusions• Flowback and produced water have high levels of TDS, TSS, Ca, Mg, Fe, and

B. Treatment methods used reduced TSS and Fe, but it is possible to use only filtered water.

• Treat the water “just enough” and adjust fluid chemistry; insignificant reduction of waste

• Nontraditional waters evaluated‒ There is no need not use a clay stabilizer.‒ It needs to be filtered (high content of TSS can impact negatively in

proppant pack).‒ High pH fracture fluid produces flocculent or insoluble components

(negative impact).

• A new fracture fluid can be formulated using a blend of water or 100% nontraditional water treated or only filtered, and have a very good proppant transport capacity and less residue than traditional guar-borate fluid currently used.

Page 24: SPE. WMOG-15 session i

Conclusions (continued)

• Reduces water cost ‒ Acquisition + transfer + transfer to disposal + disposal

• Minimize fresh water consumption

• Water reuse is a key factor for sustainable unconventional developments.

Page 25: SPE. WMOG-15 session i

• Bonapace, J.C., Giglio, M., Moggia, J., a.et al. 2012. Water Conservation: Reducing Fresh Water Consumption by Using Produced Water for Base Fluid in Hydraulic Fracturing - Case Histories in Argentina. Presented at the SPE Latin America and Caribbean Petroleum Engineering Conferences, Mexico, Mexico City, 16-18 April. SPE-151819-MS.

• Bonapace, J.C., Alric, F., Angeloni, a.et al. 2015. Water Management: What We Have Learned and What We Need to Consider for Developing a Shale Play in Argentina. Presented at the SPE Latin America and Caribbean Health, Safety, Environment and Sustainability Conference, Colombia, Bogota, 7–8 July. SPE-174118-MS.

• Bonapace, J.C. 2015. Water Management for Tight and Shale Reservoir: A Review of What Has Been Learned and What Should Be Considered for Development in Argentina. Presented at the SPE Latin America and Caribbean Health, Safety, Environment and Sustainability Conference, Colombia, Bogota, 7–8 July. SPE-174119-MS.

References

Page 26: SPE. WMOG-15 session i

THANKS

QUESTIONS?