Spatiotemporal+ patterns of+epiphyseal+bone+ loss after+ … · 2015. 6. 9. · Title: Microsoft...

1
Spatiotemporal patterns of epiphyseal bone loss after spinal cord injury an investigation using peripheral Quantitative Computed Tomography (pQCT) Sylvie Coupaud 1,2 , Alan McLean 2 , Mariel Purcell 2 , Matthew Fraser 2 , David Allan 2 1. Department of Biomedical Engineering, University of Strathclyde, Glasgow UK 2. Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK OBJECTIVES: This paper describes spatial and temporal distributions of bone loss in the paralysed limbs of patients during their first year after spinal cord injury (SCI). The objectives are to illustrate the intersubject variability in spatiotemporal patterns of bone loss after SCI, and to explore the potential factors affecting them. METHODS: Twentysix inpatients of the Queen Elizabeth National Spinal Injuries Unit in Glasgow with a motorcomplete SCI leading to paraplegia or tetraplegia were scanned using pQCT within 5 weeks of injury. Scans were repeated at 4, 8 and 12 months postinjury. Two epiphyseal scans were taken in the lower leg, at 4% (distal) and 96% (proximal) of total bone length, and another at the distal femur (4%). RESULTS: The different spatial patterns of epiphyseal bone loss include a “centralised” or “diffuse” pattern, versus a “speckled” or “mottled” pattern. An example of the pQCT time series at the distal tibia, for a patient exhibiting speckled/mottled bone loss, is given in Figure 1. (a) (b) (c) (d) Figure 1: pQCT time series at the distal L tibia (4% of total bone length), at: (a) Baseline (<5 weeks) (b) 4 months (c) 8 months and (d) 12 months postSCI; Images are for a male patient with motorcomplete SCI. The intersubject variability in temporal patterns of bone loss suggests that some patients exhibit “fast” and others “slow” bone loss. An example of the pQCT time series at the distal tibia, for a patient exhibiting slow bone loss, is given in Figure 2. (a) (b) (c) (d) Figure 2: pQCT time series at the distal L tibia (4% of total bone length), at: (a) Baseline (<5 weeks) (b) 4 months (c) 8 months and (d) 12 months postSCI; Images are for a male patient with motorcomplete SCI. CONCLUSIONS: Different spatiotemporal patterns of bone loss can be identified early after SCI, but further work is needed to identify factors affecting them, and to use spatiotemporal pattern classification to inform the development of new early treatments against further bone loss.

Transcript of Spatiotemporal+ patterns of+epiphyseal+bone+ loss after+ … · 2015. 6. 9. · Title: Microsoft...

Page 1: Spatiotemporal+ patterns of+epiphyseal+bone+ loss after+ … · 2015. 6. 9. · Title: Microsoft Word - BRS Abstract 2014_Coupaud_images in text.docx Created Date: 1/27/2015 10:19:20

Spatiotemporal   patterns   of   epiphyseal   bone   loss   after   spinal   cord   injury   –   an  investigation  using  peripheral  Quantitative  Computed  Tomography  (pQCT)    Sylvie  Coupaud1,2,  Alan  McLean2,  Mariel  Purcell2,  Matthew  Fraser2,  David  Allan2    

1. Department  of  Biomedical  Engineering,  University  of  Strathclyde,  Glasgow  UK  2. Queen  Elizabeth  National  Spinal  Injuries  Unit,  Southern  General  Hospital,  Glasgow,  UK  

 OBJECTIVES:   This   paper   describes   spatial   and   temporal   distributions   of   bone   loss   in   the   paralysed  limbs  of  patients  during  their  first  year  after  spinal  cord  injury  (SCI).  The  objectives  are  to  illustrate  the  intersubject  variability   in   spatiotemporal  patterns  of  bone   loss  after  SCI,   and   to  explore   the  potential  factors  affecting  them.    METHODS:  Twenty-­‐six  inpatients  of  the  Queen  Elizabeth  National  Spinal  Injuries  Unit  in  Glasgow  with  a  motor-­‐complete  SCI   leading   to  paraplegia  or   tetraplegia  were  scanned  using  pQCT  within  5  weeks  of  injury.  Scans  were  repeated  at  4,  8  and  12  months  post-­‐injury.  Two  epiphyseal  scans  were  taken  in  the  lower  leg,  at  4%  (distal)  and  96%  (proximal)  of  total  bone  length,  and  another  at  the  distal  femur  (4%).    RESULTS:   The   different   spatial   patterns   of   epiphyseal   bone   loss   include   a   “centralised”   or   “diffuse”  pattern,  versus  a  “speckled”  or  “mottled”  pattern.  An  example  of  the  pQCT  time  series  at  the  distal  tibia,  for  a  patient  exhibiting  speckled/mottled  bone  loss,  is  given  in  Figure  1.    

      (a)       (b)       (c)       (d)  Figure  1:  pQCT  time  series  at  the  distal  L  tibia  (4%  of  total  bone  length),  at:  (a)  Baseline  (<5  weeks)  (b)  4  months  (c)  8  months  and  (d)  12  months  post-­‐SCI;  Images  are  for  a  male  patient  with  motor-­‐complete  SCI.    The  intersubject  variability  in  temporal  patterns  of  bone  loss  suggests  that  some  patients  exhibit  “fast”  and   others   “slow”   bone   loss.   An   example   of   the   pQCT   time   series   at   the   distal   tibia,   for   a   patient  exhibiting  slow  bone  loss,  is  given  in  Figure  2.  

 

      (a)       (b)       (c)       (d)  Figure  2:  pQCT  time  series  at  the  distal  L  tibia  (4%  of  total  bone  length),  at:  (a)  Baseline  (<5  weeks)  (b)  4  months  (c)  8  months  and  (d)  12  months  post-­‐SCI;  Images  are  for  a  male  patient  with  motor-­‐complete  SCI.    CONCLUSIONS:   Different   spatiotemporal   patterns   of   bone   loss   can   be   identified   early   after   SCI,   but  further   work   is   needed   to   identify   factors   affecting   them,   and   to   use   spatiotemporal   pattern  classification  to  inform  the  development  of  new  early  treatments  against  further  bone  loss.