Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny...

58
Spatial risk analysis and modelling in insurance Gumbel lecture, Statistische Woche 2007 Evgeny Spodarev | Institut f ¨ ur Stochastik | 26. September 2007 Joint Work with Wolfgang Karcher

Transcript of Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny...

Page 1: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Spatial risk analysis and modellingin insurance

Gumbel lecture, Statistische Woche 2007

Evgeny Spodarev | Institut fur Stochastik | 26. September 2007 Joint Work with Wolfgang Karcher

Page 2: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 2 Motivation | Evgeny Spodarev | Institut fur Stochastik

Natural disasters

Hundred year flood, 2002 Winter storm “Kyrill”, 2007

Page 3: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 3 Motivation | Evgeny Spodarev | Institut fur Stochastik

Property/Casualty reinsurance (Munich Re)

Intensity field of occurance and tracks of cyclones in thenorthwest Pacific, 1945–2004.

Intensity field Cyclone tracks

Page 4: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 4 Motivation | Evgeny Spodarev | Institut fur Stochastik

Motor car insurance (Bavaria)

Significant changes of the number of cancellations ofinsurance policies.

Centers of postal code regions Extrapolated numbers of cancelations (1998)

Page 5: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 5 Motivation | Evgeny Spodarev | Institut fur Stochastik

Burglary insurance (Austria)

Significant changes of the claims expectancy in burglaryinsurance.

Centers of postal code regions Changes of the claims expectancy

Page 6: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 6 Motivation | Evgeny Spodarev | Institut fur Stochastik

Spatial insurance data

{Z (xi)}ni=1

observed spatial risks inobservation window W ⊆ R2.

Page 7: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 7 Motivation | Evgeny Spodarev | Institut fur Stochastik

Problem setting

I Spatial mapping of risks

I Statistical analysis of risks

I Spatial modelling of risks: medium and large claims

I Simulation and prediction of risks

Page 8: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 8 Motivation | Evgeny Spodarev | Institut fur Stochastik

Methodological Approach

I Classical Risk TheoryI Spatial Statistics (Geostatistics)I Stochastic GeometryI Image Analysis

Further Applications

I Biology, MedicineI Geology: exploration of mineral resourcesI Materials SciencesI Physics, AstronomyI Road traffic problems

Page 9: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 9 Motivation | Evgeny Spodarev | Institut fur Stochastik

Applications

Cancer Research: Gleason grading

Original image Grey-scale image

Histological slice of prostate tissue

Page 10: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 10 Motivation | Evgeny Spodarev | Institut fur Stochastik

Applications

Astronomy: Analysis of the cosmic radiation

Cosmic Microwave Background Radiation (WMAP mission, NASA)

Page 11: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 11 Motivation | Evgeny Spodarev | Institut fur Stochastik

Applications

Simulation and prediction of city road traffic (DLR, Berlin)

City road network / downtown Berlin Mean velocity field

Page 12: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 12 Contents | Evgeny Spodarev | Institut fur Stochastik

Contents

Spatial mapping of risks

Statistical analysis of risks

Spatial modelling of risks: medium and large claims

Simulation and prediction of risks

Outlook: open problems

Page 13: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 13 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Contents

Spatial mapping of risks

Statistical analysis of risks

Spatial modelling of risks: medium and large claims

Simulation and prediction of risks

Outlook: open problems

Page 14: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 14 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Spatial mapping of risks

Examples of extrapolation methods:

I Randomly coloured mosaicsI KrigingI Geoadditive regression modelsI Radial methodsI SplinesI Whittaker SmoothingI ...

Page 15: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 15 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Randomly coloured mosaics (Epidemiology)

Voronoi tessellation

I A Voronoi tessellation is based on a given locally finiteset of points (the nuclei) B ⊂ R2.

I A point belongs to a certain cell containing a nucleusx ∈ B if its nearest neighbour with respect to B is x .

I Cells may represent postal code regions, counties, ...I Colors may represent the number of diseased persons,

claim sizes, number of claims, ...

Page 16: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 16 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Ordinary Kriging (D. Krige (1952))

{Z (xi)}ni=1

observed spatial risks inobservation window W ⊆ R2.

I Estimation of the value Z (y) based on the valuesof the neighboring sample points.

Page 17: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 17 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Ordinary Kriging

I AssumptionsI E(Z (x)) = c for all x .I γ(h) = 1

2 E[(Z (x + h)− Z (x))2

]depends on the

length and the orientation of a given vector h, butnot on x in W .

I Notationxi : locations of the sample pointsZ (xi) : values of the sample pointsn : number of sample pointswi : weights

I Estimator: Z (y) =∑n

i=1 wiZ (xi), where∑n

i=1 wi = 1.I The weights wi are chosen such that the estimation

variance σ2E = Var(Z (y)− Z (y)) is minimized.

Page 18: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 18 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Ordinary Kriging

Quality of ground water in Baden-Wurttemberg

Drilling points Nitrate concentration, 1994

Page 19: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 19 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Geoadditive regression models (L. Fahrmeir et al. (2007))

I GLMs: The (conditional) expectation µi = E(yi |xi)of the response yi is linked to a linear combinationηi = zT

i β of the covariates zi = (zi1, ..., zip)T via a linkfunction h, i.e. µi = h(ηi).

I Geoadditive regression models : Generalization of thelinear predictor to a geoadditive predictor:

µi = h(ηi),

ηi = zTi β + f1(zi,p+1) + ... + fp(zi,p+d) + fgeo(xi)

I f1(zi,p+1), ..., fp(zi,p+d): nonlinear effects of continuouscovariates zi,p+1, ..., zi,p+d .

I fgeo(xi): geographical effect of the location xi :

fgeo(xi) = fstructured(xi) + funstructured(xi)

Page 20: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 20 Spatial mapping of risks | Evgeny Spodarev | Institut fur Stochastik

Geoadditive regression models

I f1, ..., fp are approximated by a linear combination ofB-spline curves:

fj(z) =m∑

l=1γljBl(z), j = 1, ..., p

where Bl are the B-spline basis functions.

I Analoguous, fstructured and funstructured are approxi-mated by a linear combination of B-spline planes.

I The parameters (β and the coefficients of theB-spline curves and planes) are estimated witha Bayesian approach.

Page 21: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 21 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Contents

Spatial mapping of risks

Statistical analysis of risks

Spatial modelling of risks: medium and large claims

Simulation and prediction of risks

Outlook: open problems

Page 22: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 22 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Univariate analysis: Classical risk theory

Collective Risk Model:

I Z (xi): amount of the claim measured at xi

I N: number of claimsI Total claim amount: S = Z (x1) + ... + Z (xN).I N, Z (x1), Z (x2), ... are assumed to be independent.

Calculation of the total claim amount distribution:

I Panjer-AlgorithmI ApproximationsI Numerical Simulation

Here: Z (x1), Z (x2), ... are usually spatially dependent!

Page 23: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 23 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: geometry of observation points

Models for observation points: spatial point processes

Poisson process Cluster process Hard-core process

Page 24: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: geometry of risks

Correlation structure:

Random Field {Z (x)} is stationary of second order.

I E(Z (x)) = c for all x .

I Variogram: γ(h) = 12E

[(Z (x + h)− Z (x))2

]

I γ(·) depends on the length and the orientation of agiven vector h, but not on the position of h in W .

I Covariance function: C(h) = E [Z (x) · Z (x + h)]− c2

I γ(h) = C(0)− C(h)

Page 25: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 25 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: variogram

γ(h) = 12E

[(Z (x + h)− Z (x))2

]

Page 26: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 26 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: excursion sets

Classification of dangerous risk zones

z

x

y0

For regular Z , ΞZ (y) = {x ∈ R2 : Z (x) ≥ y} is arandom closed set in the sense of G. Matheron (1975).

Page 27: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 27 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: examples of excursion sets

Significant changes of the nitrate Dangerous risk zones for the

concentration in ground water, burglary insurance, Austria

Baden-Wurttemberg, 1993–1994

Page 28: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 28 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: Minkowski functionals

Basic notations of mathematical morphology:

K class of compact convex sets in R2

R = {n⋃

i=1Ki : Ki ∈ K, i = 1, ..., n, ∀n} convex ring

Br (a) ball with center in a and radius r

K1 ⊕ K2 =⋃

x∈K2

(K1 + x) Minkowski-Addition

K1 ª K2 =⋂

x∈K2

(K1 + x) Minkowski-Subtraction

Page 29: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 29 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: Minkowski functionals

Dilation: parallel set K ⊕ Br (o) of K

Image operations:

I Dilation: K 7→ K ⊕ (−B)

I Erosion: K 7→ K ª (−B)

Page 30: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 30 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: Minkowski functionals

Steiner formula in R2:

I For K ∈ K and r > 0

V2(K ⊕ Br (o)) = V2(K ) + rV1(K ) + πr2V0(K ),

I V0, V1, and V2 are called intrinsic volumes(Minkowski functionals, Quermaßintegrals)

They can be defined by additivity on the convexring R.

Page 31: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 31 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: Minkowski functionals

Geometrical meaning: For K ∈ R, K 6= ∅

V2(K ) = A(K ) surface area

2V1(K ) = S(K ) boundary length

V0(K ) = χ(K ) Euler characteristic (“porosity”),where χ(K ) = #{clumps} −#{wholes}

Page 32: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 32 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: Minkowski functionals

Approaches for the calculation of individual Vj(K ), j = 0, 1, 2

I J. Serra (1982)

I W. Nagel, J. Ohser et al. (1996, 2000, 2002, 2003)

I V. Robins (2002)

I J. Rataj et al. (2002, 2004, 2005)

I M. Kiderlen (2007)

Page 33: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 33 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: Minkowski functionals

Simultaneous calculation of Vj(K ) (E. S. et al. (2005-2007))

I Let Fi : R→ R, i = 0, 1, 2, be additive, continuousand motion invariant functionals. According to thetheorem of Hadwiger, it holds

Fi(K ) =2∑

j=0aijVj(K ) ∀K ∈ R.

I If F = (F0(K ), F1(K ), F2(K ))T can be calculated andA = (aij)

2i,j=0 is invertible,

I then V = (V0(K ), V1(K ), V2(K ))T can be determinedas the solution of the equation system F = AV :

V = A−1F

Page 34: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 34 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

Multivariate analysis: Minkowski functionals

I Example: Kinematic formula on R∫

K⊕Br (o)

V0(K ∩ Br (x)) dx =2∑

j=0r2−jκ2−jVj(K ) , K ∈ R

Fi(K ) =∫

K⊕Bri (o)

V0(K ∩ Bri (x)) dx , ri > 0, ri 6= rj , i = 0, 1, 2

V0(K )V1(K )V2(K )

=

πr20 2r0 1

πr21 2r1 1

πr22 2r2 1

−1

F0(K )F1(K )F2(K )

Page 35: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 35 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik

I Least squares method

Considering n > 3 functionals F0, . . . , Fn−1 yields anover-determined system of equations:

F ′ =

F0(K ). . .

Fn−1(K )

= A′x =

a00 a01 a02. . . . . . . . .

an−1 0 an−1 1 an−1 2

x0x1x2

The solution V ∗(K ) =(A′>A′

)−1A′>F ′ of the minimizationproblem

∣∣ F ′ − A′ V ∗(K )∣∣ = min

x∈R3

∣∣ F ′ − A′ x∣∣

provides a good approximation of (V0(K ), V1(K ), V2(K ))>.

Page 36: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 36 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Contents

Spatial mapping of risks

Statistical analysis of risks

Spatial modelling of risks: medium and large claims

Simulation and prediction of risks

Outlook: open problems

Page 37: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 37 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium claims

Gaussian random fields

I A random field {Z (x)} is called Gaussian ifthe distribution of (Z (x1), ..., Z (xn)) is multivariateGaussian for each 1 ≤ n < ∞ and x1, ..., xn ∈ W .

Page 38: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 38 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

All claim payments Medium claim payments

I Medium claims: Claim payments less than the95%-quantile of all claim payments.

I Goal: Spatial modelling of the deviationsR(y) = Z (y)− E(Z (y)) from the mean claim pay-ments m(y) = E(Z (y)) with Gaussian random fields.

I However, the distribution of the deviations is notGaussian (rather skewed and heavy-tailed).

Page 39: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 39 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium claims

I Application of a transformation of Box-Cox typemakes the data more normally distributed.

Original data Transformed data Reference plot

Page 40: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 40 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium claims

Kriged deviations Gaussian random field

Spatial risks of the storm insurance in Austria (cf. E.S., W. Karcher (2007))

Page 41: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 41 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Gaussian random fields: Excursion sets

I Z – sufficently smooth second–order stationaryisotropic Gaussian random field with E Z (x) = 0,Var Z (x) = σ2, C(|h|) = Cov

(Z (o), Z (h)

), τ = C′′(0)

I Excursion sets: ΞZ (y) = {x ∈ R2 : Z (x) ≥ y}I Mean intrinsic volumes (R. Adler (1981),

H. Tomita (1990)):

E(V2(ΞZ (y))) = Φ( yσ )

E(V1(ΞZ (y))) =

√|τ |4 e−

y2

2σ2

E(V0(ΞZ (y))) = y√2πσ

|τ |2π e−

y2

2σ2

where Φ denotes the standard normal distributionfunction.

Page 42: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 42 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Gaussian random fields: Excursion sets

I Furthermore:∣∣∣∣P

(supx∈W

Z (x) ≥ y)− E(V0(ΞZ (y)))

∣∣∣∣gets small if y is large.

I In addition, E(Vj(ΞZ (y))) may be used to evaluatethe accuracy of the model

Page 43: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 43 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium and large claims

Stable distributions:

I A random variable X is said to have a stable distri-bution if there is a sequence of i.i.d. random variablesY1, Y2, ... and sequences of positive numbers {dn}and real numbers {an}, such that

Y1+...+Yndn

+ and→ X

where d→ denotes convergence in distribution.

Page 44: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 44 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium and large claims

I A random variable X is stable if and only if forA, B > 0 ∃C > 0, D ∈ R:

AX1 + BX2d= CX + D

where X1 and X2 are independent copies of X .

I There exists a number α ∈ (0, 2] such that

Cα = Aα + Bα

I Also referred to as (α−)stable distribution

I For α = 2: normal distribution

I A random vector X = (X1, ..., Xd) is called stable if forA, B > 0 ∃C > 0, D ∈ Rd :

AX (1) + BX (2) d= CX + D

Page 45: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 45 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium and large claims

I Characteristic function of an α-stable randomvariable X :

E(eiθX )

=

{e−σα|θ|α(1−iβ(signθ) tan πα

2 +iµθ if α 6= 1e−σ|θ|(1+iβ 2

π(signθ) ln θ+iµθ if α = 1

I Characteristic function of an α-stable randomvector X = (X1, ..., Xd):

E(

ei·θT X)

=

e− R

Sd

|θT s|α(1−i(signθT s) tan πα2 Γ(ds)+iθT µ

if α 6= 1

e− R

Sd

|θT s|(1+i 2π

(signθT s) ln |θT s|Γ(ds)+iθT µ

if α = 1

where Γ is a finite measure on the unit sphere Sdof Rd and µ ∈ Rd .

Page 46: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 46 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium and large claims

I A random field {Z (x)} is called α-stable ifthe distribution of (Z (x1), ..., Z (xn)) is multivariateα-stable for each 1 ≤ n < ∞ and x1, ..., xn ∈ W .

I Goal: Spatial modelling of the deviationsR(y) = Z (y)− E(Z (y)) from the mean claim pay-ments m(y) = E(Z (y)) with α-stable random fields.

Page 47: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 47 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: medium and large claims

I Similarly to the case of medium claims,Minkowski functionals may be used...

I ...to assess the spatial risk structure

I ...to validate the modelI Closed formulas for the mean Minkowski functionals

of the excursion sets of α-stable random fields notknown

I ⇒ Monte-Carlo methods

Page 48: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 48 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Spatial modelling of risks: Storm data (Austria)

I Parameter estimation for the one-dimensional case:

α β σ µ

1.3562 0.2796 234.286 6.7787

I Back-Testing: Two-Sample Kolmogorov-Smirnov Test

First sample : the original data setSecond sample : simulated α-stable random variables

with the estimated parametersNull hypothesis : The original data comes from an

α-stable distribution with the esti-mated parameters.

Test result : Null hypothesis not rejected(p-value: 0.2013)

Page 49: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 49 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Contents

Spatial mapping of risks

Statistical analysis of risks

Spatial modelling of risks: medium and large claims

Simulation and prediction of risks

Outlook: open problems

Page 50: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 50 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Simulation and prediction

I Prediction: Prognosis of the risk situation for the next10–1000 years

I Tool for prediction: simulation

I Geostatistical simulationI Method to create a realization of a random field

based on a spatial model.I Conditional if the actual control data are honored:

the measured values at the control data locationscoincide with the corresponding values in thesimulated random field.

Page 51: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 51 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Simulation and Prediction: medium claims

I Modelling with Gaussian random fields

I Prediction: unconditional simulation

Unconditional simulation

Page 52: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 52 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Simulation and Prediction: medium claims

I Conditional simulation can be considered as anotherextrapolation method (alternative to kriging)

I Advantage: surface is Gaussian

Kriged deviations Conditional Simulation

Spatial risks of the storm insurance in Austria (cf. W. Karcher, E.S. (2007))

Page 53: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 53 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Storm insurance (Austria)

Kriging Conditional Simulation

Unconditional Simulation

Page 54: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 54 Spatial modelling of risks: normal and large claims | Evgeny Spodarev | Institut fur Stochastik

Simulation and Prediction: medium and large claims

I Modelling with α-stable random fields

I Prediction:Unconditional simulation (work in progress)

I Extrapolation:Conditional simulation (open problem)

Page 55: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 55 Outlook: open problems | Evgeny Spodarev | Institut fur Stochastik

Contents

Spatial mapping of risks

Statistical analysis of risks

Spatial modelling of risks: medium and large claims

Simulation and prediction of risks

Outlook: open problems

Page 56: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 56 Outlook: open problems | Evgeny Spodarev | Institut fur Stochastik

Outlook: open problems

I Expected Minkowski functionals of the excursionsets of α–stable random fields.

I Conditional simulation of α–stable random fields.

I Assessment of the accuracy of the model

Page 57: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 57 Outlook: open problems | Evgeny Spodarev | Institut fur Stochastik

ReferencesI R. Adler, J. Taylor, ”Random Fields and Geometry“, Springer, 2007I R. Guderlei, S. Klenk, J. Mayer, V. Schmidt, E. Spodarev ”Algorithms for

the computation of Minkowski functionals of deterministic and randompolyconvex sets” Image and Vision Computing 25 (2007), 464-474

I L. Fahrmeier, F. Sagerer, G. Sussmann, ”Geoadditive regression foranalyzing small-scale geographical variability in car insurance“, BlatterDGVFM 28 (2007), 47–65

I W. Karcher, E. Spodarev ”Spatial risks of the storm insurance in Austria“,Preprint (2007), in preparation

I C. Lantuejoul, ”Geostatistical Simulation“, Springer, 2002I J. Nolan ”Stable“, academic2.american.edu/ jpnolan/stable/stable.htmlI G. Samorodnitsky, M. Taqqu, ”Stable Non-Gaussian Processes“,

Chapman & Hall, 1994I V. Schmidt, E. Spodarev ”Joint estimators for the specific intrinsic

volumes of stationary random sets” Stoch. Proc. Appl. 115 (2005), No. 6,959-981

I H. Wackernagel, ”Multivariate Geostatistics“, Springer, 1995

Page 58: Spatial risk analysis and modelling in insurance...Seite 24 Statistical analysis of risks | Evgeny Spodarev | Institut fur Stochastik¨ Multivariate analysis: geometry of risks Correlation

Seite 58 Outlook: open problems | Evgeny Spodarev | Institut fur Stochastik

Image SourcesI S. Bohm, J. Grimm-Strele, V. Schmidt, B. Schneider,”Untersuchung der

Grundwasserbeschaffenheit in Baden-Wurttemberg mit Methoden derraumlichen Statistik”, Hydrologie und Wasserbewirtschaftung 47, no. 1, 2003,1-12

I H. Braxmeier, V. Schmidt, E. Spodarev ”Spatial extrapolation of anisotropic roadtraffic data” Image Analysis and Stereology 23 (2004), 185-198

I de.wikipedia.org/wiki/Bild:WMAP.jpgI E. Graf ”Kriging, Visualisierung und statistische Analyse von raumlich

segmentierten Versicherungsdaten” Diplomarbeit, Universitat Ulm, 2002I katrinadestruction.comI T. Mattfeldt, D. Meschenmoser, U. Pantle, V. Schmidt, ”Characterization Of

Mammary Gland Tissue Using Joint Estimators Of Minkowski Functionals”,Image Analysis and Stereology 26 (2007), 13-22

I Y. Njike ”Raum–Zeit-Prognose von raumlich aufgelosten Schadensdaten in derHaushaltsversicherung” Diplomarbeit, Universitat Ulm, 2006

I J. Rumpf, H. Weindl, P. Hoeppe, E. Rauch, V. Schmidt,”StochasticModelling of Tropical Cyclone Tracks”, to appear in Math. Meth. Oper. Res.(2007)

I spiegel.de