SPANISH FACILITIES AND FIRST RESULTS IN...

1
NIPO: 074-13-003-6 SPANISH FACILITIES AND FIRST RESULTS IN MEASURING THERMODYNAMIC TEMPERATURE USING THE RADIANCE METHOD J. M. Mantilla 1 , M. J. Martín 1 , M. Hernanz 2 , J. Campos 2 , A. Pons 2 , D. del Campo 1 1 Centro Español de Metrología, Tres Cantos, Spain • 2 Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Spain Design and construction of an imaging filter radiometer to be absolutely calibrated in a laser based facility Currently, the dissemination of the kelvin at high temperatures, according to the International Temperature Scale (ITS-90), is realised at Centro Español de Metrología (CEM) by using the fixed points of Ag and Cu and a standard radiation thermometer. Recently, absolute radiometry has been proposed by the CCT Working Group 5 [1] to be included in future revisions of the Mise-en-Practique for the kelvin (MeP-K). Centro Español de Metrologia (CEM) in collaboration with Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC) has been working in the following lines linked to this new alternative to disseminate the kelvin: Absolute calibration of commercial radiation thermometers, by using a facility based on a monochromator and a high stability lamp [2]. Development of a filter radiometer to measure thermodynamic temperature [4]. It has been designed by CEM based in NPL previous work [3]. This filter radiometer can be calibrated with a laser based experimental setup. Absolute calibration of LP2 in a monochromator based facility Radiancemeter, common for both facilities: trap detector + two precision apertures at a fixed distance Improvements In a near future: all the experimental setups will be at CEM (except the cryogenic radiometer) in order to avoid transportation of the radiometer. Monochromator based sources: A new lamp more intense and stable: Hamamatsu Super Quiet Xe-Hg 500 W (model L8288). Laser sources: • Calibration with a Kr laser at one wavelength instead of using a tuneable dye laser • In the next year: supercontinuum laser Radiometer (FIRA2): • Filter seems OK, but a new scan with 0,3 mm diameter aperture will be done on its surface. • Field stop: instead of a blackened SiNi 0,9 mm aperture, a tilted stainless steel 0,9 mm aperture (less sensitive to the high t) [1] G. Machin, P. Bloemberger, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Wooliams, Y. Yamada, H. Yoon. Int. J. Thermophys. (2010) 31:1779-1788 [2] J. M. Mantilla, M. J. Martín, M. Hernanz, J. Campos, A. Pons, D. del Campo. Int. J. Thermophys. (2014) 35(3): 493-503 [3] M. R. Dury, T. M. Goodman, D. H. Lowe, G. Machin, E. Wooliams. AIP Conf. Proc. (2013) 1552: 65-70 [4] J. M. Mantilla, M. J. Martín, M. Hernanz, J. Campos, A. Pons y D. del Campo. NEWRAD’14 Congress, Helsinki, 2014. 9,00E-05 9,50E-05 1,00E-04 1,05E-04 1,10E-04 1,15E-04 1,20E-04 1,25E-04 1,30E-04 1,35E-04 1,40E-04 Aged filter 1,00E-04 1,05E-04 1,10E-04 1,15E-04 1,20E-04 1,25E-04 1,30E-04 1,35E-04 1,40E-04 1,45E-04 1,50E-04 Initial filter FIRA2 drifts t ref , o C 1084,62 1324 1737,90 2474,20 2474,20 0,24 0,32 0,52 0,96 0,96 1084,74 1323,74 1737,31 2472,36 2471,76 -0,12 0,26 0,59 1,84 2,44 t FIRA2 , o C t ref - t FIRA2 , o C U, o C InK measurements t ref , o C 1084,62 1324 1737,90 2474,20 0,36 0,45 0,65 1,13 1084,56 1324,01 1738,18 2474,65 0,06 -0,01 -0,27 -0,45 t LP2 , o C t ref - t LP2 , o C U, o C

Transcript of SPANISH FACILITIES AND FIRST RESULTS IN...

Page 1: SPANISH FACILITIES AND FIRST RESULTS IN …digital.csic.es/bitstream/10261/135924/1/Spanish.pdfSPANISH FACILITIES AND FIRST RESULTS IN MEASURING THERMODYNAMIC TEMPERATURE USING THE

NIP

O: 0

74-1

3-00

3-6

SPANISH FACILITIES AND FIRST RESULTS IN MEASURING THERMODYNAMIC TEMPERATURE USING

THE RADIANCE METHODJ. M. Mantilla1, M. J. Martín1, M. Hernanz2, J. Campos2, A. Pons2, D. del Campo1

1Centro Español de Metrología, Tres Cantos, Spain • 2Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Spain

Design and construction of an imaging filter radiometer to be absolutely calibrated in a laser based facility

Currently, the dissemination of the kelvin at high temperatures, according to the International Temperature Scale (ITS-90), is realised at Centro Español de Metrología (CEM) by using the fixed points of Ag and Cu and a standard radiation thermometer. Recently, absolute radiometry has been proposed by the CCT Working Group 5 [1] to be included in future revisions of the Mise-en-Practique for the kelvin (MeP-K). Centro Español de Metrologia (CEM) in collaboration with Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC) has been working in the following lines linked to this new alternative to disseminate the kelvin:

Absolute calibration of commercial radiation thermometers, by using a facility based on a monochromator and a high stability lamp [2].

Development of a filter radiometer to measure thermodynamic temperature [4]. It has been designed by CEM based in NPL previous work [3]. This filter radiometer can be calibrated with a laser based experimental setup.

Absolute calibration of LP2 in a monochromator based facility

Radiancemeter, common for both facilities: trap detector + two precision apertures at a fixed distance

ImprovementsIn a near future: all the experimental setups will be at CEM (except the cryogenic radiometer) in order to avoid transportation of the radiometer.

Monochromator based sources:A new lamp more intense and stable: Hamamatsu Super Quiet Xe-Hg 500 W (model L8288).

Laser sources:• Calibration with a Kr laser at one wavelength instead of using a tuneable dye laser• In the next year: supercontinuum laser

Radiometer (FIRA2):• Filter seems OK, but a new scan with 0,3 mm diameter aperture will be done on its surface.• Field stop: instead of a blackened SiNi 0,9 mm aperture, a tilted stainless steel 0,9 mm aperture(less sensitive to the high t)

[1] G. Machin, P. Bloemberger, K. Anhalt, J. Hartmann, M. Sadli, P. Saunders, E. Wooliams, Y. Yamada, H. Yoon. Int. J. Thermophys. (2010) 31:1779-1788[2] J. M. Mantilla, M. J. Martín, M. Hernanz, J. Campos, A. Pons, D. del Campo. Int. J. Thermophys. (2014) 35(3): 493-503[3] M. R. Dury, T. M. Goodman, D. H. Lowe, G. Machin, E. Wooliams. AIP Conf. Proc. (2013) 1552: 65-70[4] J. M. Mantilla, M. J. Martín, M. Hernanz, J. Campos, A. Pons y D. del Campo. NEWRAD’14 Congress, Helsinki, 2014.

9,00E-059,50E-051,00E-041,05E-041,10E-041,15E-041,20E-041,25E-041,30E-04

1,35E-04

1,40E-04

Aged filter 1,00E-041,05E-041,10E-041,15E-041,20E-041,25E-041,30E-041,35E-04

1,40E-04

1,45E-04

1,50E-04

Initial filter

FIRA2 drifts

tref, oC1084,62

13241737,902474,202474,20

0,240,320,520,960,96

1084,741323,741737,312472,362471,76

-0,120,260,591,842,44

tFIRA2, oC tref - tFIRA2, oC U, oC

InK measurements

tref, oC1084,62

13241737,902474,20

0,360,450,651,13

1084,561324,011738,182474,65

0,06-0,01-0,27-0,45

tLP2, oC tref - tLP2, oC U, oC