SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization...

24
SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel Rhodes NASA KSC

Transcript of SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization...

Page 1: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

SpaceLiner 100 Propulsion Task ForceCandidate Technology Evaluation and Assessment

&

Prioritization WorkshopHuntsville, Al.

April 10-11, 2001 Russel Rhodes NASA KSC

Page 2: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Purpose of Review• Provide a review of the “Technology Evaluation Process”

developed by the SPST in support of the SL-100 Functional Requirements and Key Objectives.– Focus is on Criteria Development and weighting used in Workshop– Supportive of Civil, DOD, and Commercial needs for Third Generation

Space Transportation Systems

• Challenge the affected technical community to consider the knowledge and information from this process in developing and justifying the technologies capable of satisfying SL-100 key objectives.– “Example: Two orders of magnitude decrease in costs & 10,000 times

safer than today's Space Transportation Sys.”

Page 3: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

The Evaluation Tool Development Process for Technical Benefit

Define Customer

What Doesthe Customer

Want?

Develop“Whats”

Customer

Weight the“Whats”

Determine the“Hows” for

Each “What”

Determine the“Hows” for

Each “What”

Establish Correlation of Each“How” to Every “What”

SynergyGroup

SynergyGroup

Establish RelativeMerit of Each “How”

Result

List of Prioritizedand Weighted

“Hows” WhichProduce the “Whats”

That the Customer Wanted

Evaluate Each Candidateon Each “How”

Evaluate Each Candidateon Each “How”

Prioritized List of Propulsion TechnologiesLikely to Achieve Goals

Prioritized List of Propulsion TechnologiesLikely to Achieve Goals

SynergyGroup

Tech. Candidates

Page 4: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

The Attributes of a Space Transportation System

Affordable / Low Life Cycle Cost Min. Cost Impact of Payloads on Launch Sys.

Low Recurring CostLow Cost Sensitivity to Flight GrowthOperation and SupportInitial AcquisitionVehicle/System Replacement

DependableHighly ReliableIntact Vehicle RecoveryMission Success

Operate on CommandRobustnessDesign Certainty

Environmental Compatibility Minimum Impact on Space Environ.

Minimum Effect on AtmosphereMinimum Impact all Sites

Public SupportBenefit GNPSocial Perception

ResponsiveFlexibleCapacityOperable Process Verification

Auto. Sys. Health VerificationAuto. Sys. Corrective ActionEase of Vehicle/SystemIntegrationMaintainableSimpleLaunch on DemandEasily SupportableResiliency

SafetyVehicle SafetyPersonnel SafetyPublic SafetyEquipment and Facility Safety

During the Technology R&D Phase:

During the Program Acquisition Phase:

Affordable / Low Life Cycle Cost Cost to Develop

Benefit Focused Schedule Risk Dual Use Potential

Affordable / Low Life Cycle Cost Cost to Acquire

Schedule Risk Technology Options Investor Incentive

Operating

Programmatics

How do weimprove in allthese phases?

Page 5: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

The Attributes Prioritized

But these are still

qualitative “whats” …

we required a more useful

expression of “how”...

3 fold scoring used -importance, plus need to

improve and whereare we now.

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Mission Success

Launch on Demand

Capacity

Flexible

Ease of Veh./Sys. Integration

Low Cost Sens. to Flt. Growth*

Min. Impact on Space Enviro.

Min. Cost Impact of Payloads on Launch Sys.

Social Perception

Process Verification

Equipment and Facility Safety

Intact Vehicle Recovery

Vehicle Safety

Public Safety

Personnel Safety

Min. Effect on Atmosphere

Min. Environ. Impact all Sites

Initial Acquisition

Veh./System Replacement

Resiliency

Design Certainty

Highly Reliable

Robustness

Benefit GNP

Maintainable

Auto. Sys. Health Verification

Auto. Sys. Corrective Action

Operate on Command

Simple

Easily Supportable

Operation and Support

Page 6: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Measurable Criteria - “How”

Used an IterativeStructured Process

Process forces theconsideration ofimprovement incustomer wants

Enviro

nmen

tal

Safety

Depen

dable

QFD Matrix for SL 100 Space Transportation

Propulsion Design Criteria Weighting (Operational Phase)

(Qua

lity

Cha

ract

eris

tic)

B

en

efi

t C

rite

ria

#pol

lutiv

e or

tox

ic m

ater

ials

(-)

# ac

res

perm

anen

tly a

ffect

ed (

-)

# of

kee

pout

zon

es (

-)

Am

ount

of e

nerg

y re

leas

e fro

m

unpl

anne

d re

actio

n of

pro

pella

nt (

-)

# of

tox

ic fl

uids

(-)

# of

pro

puls

ion

sub-

syst

ems

with

fa

ult

tole

ranc

e (+

)

# of

con

fined

spa

ces

on v

ehic

les

(-)

Am

ount

of r

espo

nse

time

to in

itiat

e sa

fe a

bort

(-)

% o

f tra

ject

ory

time

avai

labl

e fo

r ab

ort

(+)

# of

act

ive

com

pone

nts

requ

ired

to

func

tion

incl

udin

g fli

ght

oper

atio

ns (

-)

# of

com

pone

nts

with

dem

onst

rate

d hi

gh r

elia

bilit

y (+

)

# of

sys

tem

s re

quiri

ng m

onito

ring

due

to h

azar

ds (

-)

% o

f pro

puls

ion

subs

yste

ms

mon

itore

d to

cha

nge

from

haz

ard

to

safe

(+

)

# of

diff

eren

t flu

ids

in s

yste

m (

-)

(Demanded Quality) List Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ATTRIBUTES WEIGHTAffordable / Low Life Cycle Cost Min. Cost Impact of Payload on Launch Sys. 2.21 1 1 1 1 3 9 3 0 0 3 9 3 3 3 Low Recurring Cost Low Cost Sens. to Flt. Growth* 1.47 3 0 0 1 3 0 3 0 0 1 1 1 1 1 Operation and Support 6.9 9 0 3 9 9 3 9 1 1 9 9 9 9 9 Initial Acquisition 2.49 3 3 1 1 9 3 3 0 0 3 3 3 3 3 Vehicle/System Replacement 2.49 0 0 0 0 3 3 1 0 1 3 1 1 1 3Dependable Highly Reliable 3.45 3 0 0 1 3 9 3 1 1 9 9 9 9 3 Intact Vehicle Recovery 2.3 0 0 0 3 1 9 1 9 9 9 3 1 9 3 Mission Success 0.62 1 0 0 3 3 9 1 0 0 9 9 3 3 3 Operate on Command 6.9 3 0 0 1 9 3 3 0 1 9 9 9 3 9 Robustness 3.45 0 0 0 0 1 3 1 1 1 3 3 3 3 1 Design Certainty 3.45 0 0 0 0 0 3 1 0 0 3 9 3 3 3Responsive Flexible 1.11 1 0 1 0 1 0 0 0 0 1 1 1 0 0 Capacity 1.11 1 0 0 0 3 0 3 0 0 3 3 3 0 3 Operable Process Verification 2.3 3 0 1 0 3 3 1 0 0 3 9 1 1 9 Auto. Sys. Health Verification 6.9 0 0 0 1 3 9 3 1 1 9 3 9 9 3 Auto. Sys. Corrective Action 6.9 0 0 0 1 3 9 3 1 1 3 3 9 9 1

Page 7: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

SpaceLiner 100 Propulsion Task ForceSPST Task Charter • SPST Approach Complies with National Space Policy:

• Attributes are Anchored to the National Space Policy:

• SPST Flow Diagram Responds to National Space Policy:

• SPST Will Provide Recommended Functional Requirements Necessary to Develop Space Transportation Architectures, Concepts, and Systems that Surface the Technology Needs Required to Realize the Objectives of SpaceLiner 100 “3rd Generation RLV Feasible Concepts”

• SPST will Assist NASA in the Development of a Prioritized Portfolio of Technologies Capable of Reaching the SpaceLiner 100 3rd Generation RLV Objectives

SPST SPACELINER 100 PROPULSION TASK FORCE

”FUNCTIONAL REQUIREMENTS SUB-TEAM"

OBJECTIVE:• Develop SL-100 functional requirements capable of achieving the 3rd generation RLV objectives

• Develop the Technology Evaluation Criteria and Weights for both Technical Benefit and Programmatics for use in the AHP model to be used at a Technology Evaluation Workshop while anchoring on the existing SPST data base where possible. This sub-team accepted Garry Lyles challenge to further develop and take accountability for his algorithm for “Systems Approach to Safety,

Reliability, and Cost” and anchor the Evaluation Workshop Criteria to the algorithm

Page 8: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

SpaceLiner 100 Propulsion Task Force

• In addressing this objective, SpaceLiner 100 Propulsion Technology 3rd Generation RLV Evaluation Criteria--The First Step:

---Select the correct team make-up

---Must be balanced with Designers, Operators, Managers, and Technologists

---Required to bring the needed experience and knowledge together for consensus building to provide quality and creditable process

Page 9: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

SpaceLiner 100 Propulsion Task ForceFunctional Requirements Sub-Team Membership

• Russel Rhodes, NASA-KSC - Lead • Uwe Hueter, NASA-MSFC • Walt Dankhoff, SAIC • Bryan DeHoff, Aero.Tech.Serv. • Glen Law, Aerospace Corp. • Mark Coleman, CPIA• Robert Bruce, NASA-SSC• Ray Byrd, Boeing-KSC • Clyde Denison, NGC• Bill Pannell, NASA-MSFC

• Dan Levack, Boeing/Rocketdyne • Bill Escher, SAIC • Pat Odom, SAIC • David Christensen, LMCO • Jim Bray, LM-MAF • Tony Harrison, NASA-MSFC• Keith Dayton/John Robinson, Boeing Co • Andy Prince, MSFC• Carey McCleskey, NASA-KSC• Jay Penn, Aerospace Corp.• John Hutt, NASA-MSFC

•CUSTOMER PROVIDING EVALUATION INPUT:

Uwe Hueter, NASA-MSFC

Page 10: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

71% Influence (29% Other Factors)

Influence DiagrammingStresses importance of the

Dependability Attribute Objectives

on achieving SpaceLiner Goals

Safety

Cost

Operable

Responsive

Recurring Cost

Spaceliner Goals

Lyles Algorithm Influence Diagramming

Approach

41%

33%

52%

56%44%

(59% Other)

(67% Other)

(48% Other)

(Life Cycle Cost)Non-Recurring Cost

Dependable(Inherent Reliability)

SpaceLiner-100 Propulsion Task Force SpaceLiner 100 Key Attribute

Influence Relationships

Management Visibility of Influence Achieved when using Weighted Design Criteria for Technology Prioritization ( The How’s to achieve the What’s Desired )

Page 11: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

R&D Investment Influence on Achievement of SpaceLiner-100 Key ObjectivesOperations and DDT&E Integrated Key Attributes

Influence Relationships

100XCHEAPER

COST,$/LB

LOW DDT&E ACQUISITION

COST

10,000 X

SAFER

OPERABLE

LOW RECURRING

COSTRESPONSIVE

LOW NON-RECURRING

COST

INVESTORS INCENTIVE

LOW LIFE

CYCLE COST

SAFE

DEPENDABLEINHERENT

RELIABILITY

DUAL USE POTENTIAL

LOW COST R&D

BENEFIT FOCUSED

SHORT SCHEDULE

TECHNOLOGY OPTIONS

LOW RISK DDT&E

SHORT SCHEDULE

R&D

DDT&E

OPERS

OPERS

OPERS

COST FOCUS

ATTRIBUTES KEY

LOW RISK R&D

R&D ATTRTIBUTES

DDT&E ATTRIBUTES

OPERATIONS ATTRIBUTES

L I

F E

C

Y C

L E

C

O S

T

NO

N-R

EC

UR

RIN

G IN

VE

ST

ME

NT

GEN3

GOALS

FLEET

PURCHASE

Page 12: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

SpaceLiner-100 Propulsion Task ForceSpaceLiner-100 Assessment/Prioritization Process & Criteria

Sub-Team Products for SL-100 3rd Gen. RLV

• Developed Functional Requirements for SL-100 3rd Generation RLV

• Developed the Influence Diagram Algorithm with SPST 3rd Gen. RLV data base focusing on SL-100 Goals

• Established and weighted desired attributes focusing on the importance and need to improve to achieve the SL-100 performance requirements

• Established and weighted measurable design criteria and provided paretos

• Identified and selected the top 26 good discriminating design criteria with weights for use at evaluating top level technologies

Page 13: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

SpaceLiner-100 Propulsion Task ForceSpaceLiner-100 Assessment/Prioritization Process & Criteria

Sub-Team Products for SL-100 3rd Gen. RLV "Continued"

• Established programmatic factors and weighted measurable quality characteristics for both the Acquisition and R & D Phases and provided paretos

• Provided functional requirements, design criteria, and programmatic criteria to Technology Candidate Developers

• Provided Technical Benefit (Design Criteria) and Programmatics Criteria (Acquisition and R & D Phases) for use in the AHP evaluation tool

• Developed a definitions reference document to capture terminology used in this work to provide understanding and communications required for process usefulness

Page 14: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

BENEFIT (TECHNICAL) ATTRIBUTES WEIGHTING

Note: Weighting Factors are 1 to 5 with 5 being the most important

Attributes

Column A "Customer

Rank" (J.Mankins &

U.Hueter)

Column B Technology

Improvement "Now"

Column C Technology

Improvement "Plan"

Column D "Improvement

Ratio" (C/B)

Column E "Sales

Points"

Column F Score

(A*D*E)

Weighted Score F/Sum(F)

(Customer)

Affordable / Low Life Cycle Cost

Min. Cost Impact of Payloads on Launch Sys. 4 2 4 2.00 1 8.00 2.209

Low Recurring CostLow Cost Sens. to Flt. Growth* 4 3 4 1.33 1 5.33 1.473

Operation and Support 5 1 5 5.00 1 25.00 6.904

Initial Acquisition 3 1 3 3.00 1 9.00 2.486

Vehicle/System Replacement 3 1 3 3.00 1 9.00 2.486Dependable

Highly Reliable 5 2 5 2.50 1 12.50 3.452

Intact Vehicle Recovery 5 3 5 1.67 1 8.33 2.301

Mission Success 3 4 3 0.75 1 2.25 0.621

Operate on Command 5 1 5 5.00 1 25.00 6.904

Robustness 5 2 5 2.50 1 12.50 3.452

Design Certainty 5 2 5 2.50 1 12.50 3.452Responsive

Flexible 2 1 2 2.00 1 4.00 1.105

Capacity 4 4 4 1.00 1 4.00 1.105

OperableProcess Verification 5 3 5 1.67 1 8.33 2.301

Auto. Sys. Health Verification 5 1 5 5.00 1 25.00 6.904

Auto. Sys. Corrective Action 5 1 5 5.00 1 25.00 6.904

Ease of Vehicle/System Integration 2 1 2 2.00 1 4.00 1.105

Maintainable 4 1 4 4.00 1 16.00 4.419

Simple 5 1 5 5.00 1 25.00 6.904

Launch on Demand 2 1 2 2.00 1 4.00 1.105

Easily Supportable 5 1 5 5.00 1 25.00 6.904

Resiliency 3 1 3 3.00 1 9.00 2.486

Safety

Vehicle Safety 5 3 5 1.67 1 8.33 2.301

Personnel Safety 5 3 5 1.67 1 8.33 2.301

Public Safety 5 3 5 1.67 1 8.33 2.301

Equipment and Facility Safety 5 3 5 1.67 1 8.33 2.301Environmental Compatibility

Minimum Impact on Space Environ. 4 2 4 2.00 1 8.00 2.209

Minimum Effect on Atmosphere 3 1 3 3.00 1 9.00 2.486

Minimum Environ. Impact all Sites 3 1 3 3.00 1 9.00 2.486

Public Support

Benefit GNP 4 1 4 4.00 1 16.00 4.419

Social Perception 4 2 4 2.00 1 8.00 2.209TOTALS= 362.08 100.000

Systems Approach to Dependability, Responsiveness, Safety, and Affordability - Supporting SpaceLiner 100 Functional Requirements -

Page 15: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

BENEFIT (TECHNICAL) ATTRIBUTES WEIGHTING

Pareto

Auto. Sys. Health Verification 6.904

Auto. Sys. Corrective Action 6.904

Operate on Command 6.904

Simple 6.904

Easily Supportable 6.904

Operation and Support 6.904

Benefit GNP 4.419

Maintainable 4.419

Design Certainty 3.452

Highly Reliable 3.452

Robustness 3.452

Min. Effect on Atmosphere 2.486

Min. Environ. Impact all Sites 2.486

Initial Acquisition 2.486

Veh./System Replacement 2.486

Resiliency 2.486

Process Verification 2.301

Equipment and Facility Safety 2.301

Intact Vehicle Recovery 2.301

Vehicle Safety 2.301

Public Safety 2.301

Personnel Safety 2.301

Min. Impact on Space Enviro. 2.209 Min. Cost Impact of Payloads on Launch Sys. 2.209

Social Perception 2.209

Low Cost Sens. to Flt. Growth* 1.473

Launch on Demand 1.105

Capacity 1.105

Flexible 1.105

Ease of Veh./Sys. Integration 1.105

Mission Success 0.621

Page 16: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

BENEFIT (TECHNICAL) ATTRIBUTES WEIGHTING PRIORITIZED

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Mission Success

Launch on Demand

Capacity

Flexible

Ease of Veh./Sys. Integration

Low Cost Sens. to Flt. Growth*

Min. Impact on Space Enviro.

Min. Cost Impact of Payloads on Launch Sys.

Social Perception

Process Verification

Equipment and Facility Safety

Intact Vehicle Recovery

Vehicle Safety

Public Safety

Personnel Safety

Min. Effect on Atmosphere

Min. Environ. Impact all Sites

Initial Acquisition

Veh./System Replacement

Resiliency

Design Certainty

Highly Reliable

Robustness

Benefit GNP

Maintainable

Auto. Sys. Health Verification

Auto. Sys. Corrective Action

Operate on Command

Simple

Easily Supportable

Operation and Support

Page 17: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

SpaceLiner-100 Propulsion Task Force SL-100 Propulsion Assessment/Prioritization Process & Criteria

En

vir

on

men

tal

Safe

ty

Dep

en

dab

le

Matrix for SL 100 Transportation

Propulsion Design Criteria Weighting

(Operational Phase)

(Qu

ali

ty C

haracte

ris

tic)

Ben

efi

t C

rit

eria

#pollutive o

r toxic

mate

ria

ls (

-)

# a

cres p

erm

anently a

ffecte

d (

-)

# o

f keepout zones (

-)

Am

ount of energy r

ele

ase from

unpla

nned r

eaction o

f propellant

(-)

# o

f to

xic

flu

ids (

-)

# o

f propuls

ion s

ub-syste

ms w

ith fault tole

rance (

+)

# o

f confined s

paces o

n v

ehic

les (

-)

Am

ount of response tim

e to initia

te s

afe

abort (-)

% o

f tr

aje

cto

ry tim

e a

vailable

for a

bort (+)

# o

f active c

om

ponents

required to function inclu

din

g flight

operations (

-)

# o

f com

ponents

with d

em

onstr

ate

d h

igh r

eliability (

+)

# o

f syste

ms r

equirin

g m

onitorin

g d

ue to h

azards (

-)

% o

f propuls

ion s

ubsyste

ms m

onitored to c

hange from

hazard to

safe

(+)

# o

f diffe

rent fluid

s in s

yste

m (

-)

$ / d

ay o

f dela

y (

-) D

ELE

TE

D

Margin

, m

ass fraction (

+)

Margin

, ave. specific

im

puls

e (

+)

Margin

, th

rust le

vel / engin

e c

ham

ber p

ress(+)

# o

f pote

ntial le

akage / c

onnection s

ources (

-)

# o

f critic

ality

1 failure m

odes (

-)

# o

f m

odes o

r c

ycle

s (

-)

# o

f active e

ngin

e s

yste

ms r

equired to function (

-)

# o

f engin

e r

esta

rts

required (

-)

Desig

n V

aria

bility (

-)

# n

ew

uniq

ue a

pproaches (

+)

Facility c

apitalization c

ost (-)

Hardw

are c

ost (-)

# o

f m

anufa

ctu

rin

g, te

st and o

perations facilites (

recurrin

g) (

-)

Mean tim

e b

etw

een m

ajo

r o

verhaul (+)

Hours to r

efu

rbis

h p

ropuls

ion s

yste

m (

-)

Hours for turnaround (

betw

een launches o

r c

om

mit to n

ew

mis

sio

n) (

-)

# o

f in

spection p

oin

ts (

-)

# o

f checkouts

required (

-)

# o

f purges r

equired (

flig

ht and g

round) (

-)

# o

f ele

ment to

ele

ment in

terfa

ces r

equirin

g e

ngin

eerin

g c

ontr

ol

(-)

Technolo

gy r

eadin

ess levels

(+)

# o

f uniq

ue s

tages (

flig

ht and g

round) (

-)

mean tim

e b

etw

een o

verhaul as %

of syste

m a

cq. cost (-)

DE

LE

TE

D

# o

f expendable

s (

fluid

, parts

, softw

are) (

-)

Ave. Is

p o

n r

efe

r. traje

cto

ry (

+)

Ideal delta-V

on r

ef. traje

cto

ry (

-)

lbs. of fluid

req'd

for w

aste

mgm

t. @

end o

f life

( -

)D

ELE

TE

D

lbs. of propellant req'd

for R

CS

function (

- )

DE

LE

TE

D

lbs. of propellant req'd

for D

elta V

( -

)D

ELE

TE

D

# o

f um

bs. req'd

to L

aunch V

ehic

le (

- )

lbs. In

tg.w

et &

dry m

ass o

f propuls

ion s

ys. ( -

)

# o

f in

-space s

upport sys. req'd

for p

ropuls

ion s

ys. ( -

)

Pow

er r

equired a

s %

of to

tal veh. pow

er (

-)

lbs. of airborne s

upport sys. req'd

( -

)

# o

f active o

n-board s

pace s

ys. req'd

for p

ropuls

ion (

- )

Mis

sio

n s

uccess M

argin

(+) (

Diff. to M

easure?)D

ELE

TE

D

Fuel C

ost $/lb. (-)D

ELE

TE

D

On-board P

ropellant S

torage &

Managem

ent D

ifficulty in S

pace

(-)

Resis

tance to S

pace E

nvironm

ent (+)

Impacts

to P

aylo

ad c

om

pat.(E

MI,T

herm

al,&

Exhaust)

(-)

Req'd

propuls

ion s

ys. volu

me (

-)

Inte

gral str

uctu

re w

ith p

ropuls

ion s

ys. (+)

Thrust contr

ol range (

+)

Min

imum

Im

puls

e b

it (

-)

Transporta

tion trip

tim

e (

-)

ISP

Propellant tr

ansfe

r o

peration d

ifficulty (

resupply

) (

-)

# o

f engin

es (

-)

Mass F

raction r

equired (

-)

% o

f paylo

ad m

argin

(+)

# o

f attain

able

destinations (

+)

% o

f propuls

ion s

yste

m a

uto

mate

d (

+)

# o

f syste

ms w

ith B

IT B

ITE

(+)

# o

f active s

yste

ms r

equired to m

ain

tain

a s

afe

vehic

le (

-)

# o

f physic

ally d

ifficult to a

ccess a

reas (

-)

# o

f diffe

rent propuls

ion s

yste

ms (

-)

# o

f hands o

n a

ctivitie

s r

eq'd

(-)

# o

f m

anhours (

c/o

, handle

, assem

ble

etc

) o

n s

yste

m b

etw

een

on a

nd o

ff c

ycle

s (

Low

Cycle

Fatigue) o

r u

se (

Hig

h C

ycle

Fatigue) (

-)

# o

f ground p

ow

er s

yste

ms (

-)

# o

f hours to r

efu

rbis

h launch s

ite b

etw

een e

ach launch (

-)

# o

f alternate

dedic

ate

d e

mergency a

bort sites r

equired (

-)

# o

f active g

round o

r in-space s

yste

ms r

equired for s

ervic

ing (

-)

# o

f aero-contr

ol surfa

ces (

-)

# o

f m

ajo

r s

yste

ms r

equired to ferry o

r r

etu

rn to launch s

ite (

plu

s

logis

tics s

upport)

(

-)

Syste

m m

argin

(+)

# o

f parts

(diffe

rent, b

ackup, com

ple

x) (

-)

# o

f processin

g s

teps to m

anufa

ctu

re (

-)

Am

ount of real tim

e inspection o

r r

epair (

-)

# o

f hazardous p

rocesses (

-)

# o

f to

ols

required (

-)

# o

f cle

anliness r

equirem

ents

(-)

cost of tr

ansporta

tion r

equirem

ents

(-)

Maxim

um

Q M

ach n

o. P

roduct (-) D

ELE

TE

D

# of active systems required to maintain a safe vehicle (-) 603

(Demanded Quality) List Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 39 48 60 64 87 20 21 22 23 24 25 26 27 28 29 30 38 49 51 52 54 55 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 58 59 31 32 33 34 35 36 37 40 50 53 57 61 62 63 65 66 41 42 43 44 45 46 47 56# of different propulsion systems (-) 582

ATTRIBUTES WEIGHT# of systems with BIT BITE (+) 542

Affordable / Low Life Cycle Cost # of components with demonstrated high reliability (+) 541 Min. Cost Impact of Payload on Launch Sys. 2.21 1 1 1 1 3 9 3 0 0 3 9 3 3 3 9 3 1 3 9 9 3 1 1 0 3 0 3 9 1 1 0 1 3 9 9 3 3 9 9 3 9 9 9 9 1 3 3 1 9 9 0 9 9 3 1 9 3 3 0 1 3 3 9 9 1 3 1 1 9 1 1 9 3 0 0 0 1 3 1 # of hands on activities req'd (-) 534

Low Recurring Cost # of active components required to function including flight operations (-) 527

Low Cost Sens. to Flt. Growth* 1.47 3 0 0 1 3 0 3 0 0 1 1 1 1 1 1 1 0 1 3 1 1 0 0 0 3 9 3 3 9 9 3 3 3 1 0 3 3 3 1 3 3 3 9 3 3 3 1 1 9 0 3 3 9 9 1 3 1 1 3 3 1 1 9 9 3 3 3 0 3 3 1 1 1 1 1 1 0 1 3 # of potential leakage / connection sources (-) 527

Operation and Support 6.90 9 0 3 9 9 3 9 1 1 9 9 9 9 9 3 3 3 9 3 3 3 1 3 0 1 0 9 9 9 9 9 9 9 9 9 9 9 9 0 9 1 9 1 3 9 9 1 3 1 9 1 3 9 9 3 9 0 0 9 9 9 9 9 9 9 9 9 3 9 3 3 9 3 0 1 0 1 3 1 # of systems requiring monitoring due to hazards (-) 523

Initial Acquisition 2.49 3 3 1 1 9 3 3 0 0 3 3 3 3 3 3 3 1 3 1 3 3 1 9 0 9 9 9 1 1 3 1 1 3 9 9 9 3 3 3 1 9 3 9 3 3 3 3 3 9 0 1 9 0 3 3 9 1 0 3 3 9 3 9 3 0 9 1 0 3 1 1 3 9 9 3 9 9 3 3 System margin (+) 508

Vehicle/System Replacement 2.49 0 0 0 0 3 3 1 0 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 0 1 9 3 3 1 3 1 1 1 1 0 3 3 3 1 1 9 3 3 3 3 3 1 1 3 9 1 9 0 1 3 3 1 0 1 1 3 0 9 1 0 1 0 0 3 1 1 1 9 9 3 9 3 3 3 # of toxic fluids (-) 495

Dependable % of propulsion system automated (+) 488

Highly Reliable 3.45 3 0 0 1 3 9 3 1 1 9 9 9 9 3 9 9 9 9 9 3 9 3 9 0 0 0 1 3 0 0 9 9 9 9 9 9 1 3 3 3 0 3 0 0 9 9 9 1 0 1 1 0 3 1 9 3 3 0 9 9 9 3 9 3 1 3 0 0 9 3 3 9 9 3 3 1 0 3 0 # of unique stages (flight and ground) (-) 483

Intact Vehicle Recovery 2.30 0 0 0 3 1 9 1 9 9 9 3 1 9 3 3 3 3 3 9 3 3 9 3 0 0 0 0 0 0 0 0 0 1 1 3 9 3 3 1 0 3 3 3 1 3 3 9 0 1 1 1 1 0 3 1 3 0 1 3 3 3 0 3 0 1 0 0 9 0 1 0 9 1 0 0 0 0 0 0 % of propulsion subsystems monitored to change from hazard to safe (+) 470

Mission Success 0.62 1 0 0 3 3 9 1 0 0 9 9 3 3 3 3 3 3 3 9 3 3 9 9 0 0 0 0 0 1 1 0 0 1 1 3 3 1 1 3 1 0 9 3 1 9 9 9 9 3 3 9 9 9 9 1 3 1 1 3 3 3 0 9 0 1 0 0 0 0 1 0 3 1 0 0 0 0 0 0 # of in-space support sys. req'd for propulsion sys. ( - ) 465

Operate on Command 6.90 3 0 0 1 9 3 3 0 1 9 9 9 3 9 0 0 1 9 3 1 1 0 3 0 0 0 1 3 3 9 3 3 3 1 3 3 3 0 0 0 0 3 3 0 3 9 3 1 0 1 1 9 1 9 3 3 0 0 9 9 9 3 9 9 3 3 1 3 3 1 0 3 3 0 0 0 0 0 0 Design Variability (-) 464

Robustness 3.45 0 0 0 0 1 3 1 1 1 3 3 3 3 1 9 9 9 9 9 1 0 3 9 0 0 0 0 1 0 0 0 1 0 0 1 1 1 3 1 0 0 3 3 9 3 1 3 3 1 3 9 3 1 3 1 9 3 1 1 1 3 0 1 0 3 0 3 0 0 0 0 9 1 0 0 0 0 1 0 # of active on-board space sys. req'd for propulsion ( - ) 454

Design Certainty 3.45 0 0 0 0 0 3 1 0 0 3 9 3 3 3 9 9 9 1 0 9 3 3 9 0 0 0 0 0 0 0 1 1 0 9 9 3 3 9 9 3 1 3 0 0 3 3 3 0 1 0 0 0 3 3 3 9 0 0 3 3 3 0 3 0 0 0 0 1 0 0 3 9 1 3 0 1 0 1 0 On-board Propellant Storage & Management Difficulty in Space (-) 453

Responsive # of purges required (flight and ground) (-) 428

Flexible 1.11 1 0 1 0 1 0 0 0 0 1 1 1 0 0 3 3 3 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 3 3 0 9 3 9 9 3 3 3 3 3 3 9 9 3 9 1 3 9 9 0 1 1 0 1 1 3 0 0 1 1 0 1 9 0 0 0 0 0 0 0 # of confined spaces on vehicles (-) 427

Capacity 1.11 1 0 0 0 3 0 3 0 0 3 3 3 0 3 9 9 1 1 1 0 0 0 3 0 1 1 1 3 3 9 1 1 1 1 1 3 1 9 0 1 9 3 3 9 3 9 3 3 3 3 3 9 3 9 3 3 3 1 3 3 1 1 3 9 3 1 3 0 9 1 3 9 1 0 0 0 0 0 0 Technology readiness levels (+) 425

Operable # of active ground systems required for servicing (-) 420

Process Verification 2.3 3 0 1 0 3 3 1 0 0 3 9 1 1 9 3 3 1 3 3 9 3 3 9 0 0 0 3 1 0 0 3 3 3 9 9 9 9 3 3 3 0 1 0 0 3 3 3 1 0 1 1 1 3 3 3 3 1 0 3 3 3 3 9 9 3 3 0 3 9 3 3 9 9 9 9 3 9 9 0 # of different fluids in system (-) 404

Auto. Sys. Health Verification 6.90 0 0 0 1 3 9 3 1 1 9 3 9 9 3 1 1 1 9 3 3 3 3 9 0 0 0 0 3 3 3 9 9 3 3 3 3 3 0 0 3 0 9 1 0 9 9 3 3 0 3 1 0 0 0 1 3 0 0 9 9 9 3 9 9 3 3 0 0 3 3 0 3 1 0 1 0 0 1 0 # of checkouts required (-) 403

Auto. Sys. Corrective Action 6.90 0 0 0 1 3 9 3 1 1 3 3 9 9 1 0 0 1 3 3 3 3 3 3 0 0 0 0 1 3 3 1 3 3 3 3 3 1 0 0 1 1 9 3 0 9 3 3 1 0 1 3 3 1 3 1 3 0 0 9 9 9 3 3 9 1 1 0 0 3 3 0 3 0 0 0 0 0 0 0 # of propulsion sub-systems with fault tolerance (+) 398

Ease of Vehicle/Sys. Integration 1.11 9 0 3 1 9 1 9 0 0 3 1 3 1 9 0 0 0 9 1 3 3 1 1 0 0 0 0 1 1 3 3 3 9 9 1 9 9 1 1 3 1 9 3 3 9 9 1 3 3 3 1 9 0 9 9 1 0 0 3 3 3 3 9 9 1 3 1 1 9 3 3 3 1 0 0 0 1 1 0 # of inspection points (-) 390

Maintainable 4.42 9 0 3 1 9 3 9 0 0 9 9 3 1 3 1 1 3 9 3 3 9 1 3 0 1 0 0 3 9 9 9 9 3 1 9 9 3 3 0 9 3 9 1 1 9 3 3 1 1 3 1 3 0 3 9 3 0 0 9 9 9 9 9 9 9 3 3 0 9 3 3 9 9 0 1 1 1 1 1 Mass Fraction required (-) 387

Simple 6.90 3 0 0 0 3 3 9 0 0 9 3 9 9 9 0 0 1 9 3 1 3 0 1 0 0 0 0 1 1 1 9 9 9 3 3 9 9 3 0 3 0 3 1 0 3 3 1 3 0 3 0 0 1 1 1 3 0 0 3 9 9 3 9 9 1 3 1 0 3 1 0 3 3 1 1 1 1 1 0 Hours for turnaround (between launches or commit to new mission) (-) 374

Launch on Demand 1.11 1 0 1 1 9 3 3 0 0 9 9 9 1 3 0 0 1 3 3 1 1 0 3 0 0 0 0 3 9 9 9 9 3 3 3 9 3 0 1 3 3 3 1 1 1 3 1 1 1 1 3 9 3 9 3 3 0 1 9 9 3 3 3 9 3 1 3 3 9 1 0 3 1 0 0 0 0 0 0 ISP Propellant transfer operation difficulty (resupply) (-) 371

Easily Supportable 6.90 9 0 3 1 9 3 9 0 0 9 9 3 3 9 1 1 3 9 3 3 3 1 9 0 1 0 3 3 3 9 9 9 9 3 9 9 9 3 0 9 3 9 1 3 9 9 3 3 3 3 1 9 0 3 9 3 0 0 9 9 9 3 9 9 3 3 3 3 9 3 3 9 9 1 1 1 1 1 1 #pollutive or toxic materials (-) 350

Resiliency 2.49 0 0 0 3 3 3 1 0 0 3 9 3 1 1 1 1 1 3 1 0 1 0 3 0 0 0 0 1 3 9 1 1 1 1 1 3 1 0 1 1 1 3 0 1 3 3 1 1 1 1 3 3 3 9 3 3 0 0 1 3 1 1 3 3 3 0 3 3 3 1 9 3 1 0 0 1 0 0 0 # of expendables (fluid, parts, software) (-) 348

Safety Minimum Impulse bit (-) 332

Vehicle Safety 2.30 3 0 1 9 3 9 9 9 9 3 9 9 9 3 3 1 1 3 9 1 3 9 9 0 0 0 0 0 0 0 0 0 9 1 3 3 1 3 1 1 1 1 1 1 1 3 9 3 1 3 1 1 0 3 1 3 1 0 3 3 9 1 1 0 0 0 0 3 3 1 1 9 1 0 0 0 0 0 0 # of criticality 1 failure modes (-) 329

Personnel Safety 2.30 9 0 9 9 9 3 9 9 9 3 9 9 9 3 3 1 1 3 9 1 1 9 9 0 0 0 0 0 0 0 1 0 9 1 3 3 1 1 1 1 1 1 1 1 1 3 3 1 1 1 0 1 9 9 1 3 0 0 3 3 9 3 3 1 1 0 0 3 3 1 1 3 1 0 0 9 0 1 0 # of element to element interfaces requiring engineering control (-) 320

Public Safety 2.30 3 0 1 9 9 3 9 0 1 1 9 3 9 1 1 1 1 3 3 1 1 9 3 0 0 0 0 0 0 0 0 0 9 1 3 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 3 0 0 1 3 9 3 1 0 0 0 0 3 3 1 1 3 0 0 0 1 0 0 0 Ave. Isp on refer. trajectory (+) 310

Sample P

iece o

f Actu

al Matr

ix

Page 18: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Sp

aceL

iner

-100

Pro

pu

lsio

n T

ask

For

ce S

L-1

00 P

rop

uls

ion

Ass

essm

ent/

Pri

orit

izat

ion

Pro

cess

& C

rite

ria

Par

eto

of

all D

esig

n C

rite

ria

do

wn

to

To

p 2

6 g

oo

d d

iscr

imin

ato

rs (

*) u

sed

in W

ork

sho

p P

roce

ss

# of

act

ive

syst

ems

requ

ired

to m

aint

ain

a sa

fe v

ehic

le (

-)60

3

2.72

%#

of d

iffer

ent p

ropu

lsio

n sy

stem

s (-

)58

2

*

2.62

%

5

.34%

# of

sys

tem

s w

ith B

IT B

ITE

(+

)54

2

2.45

%

7

.79%

# of

com

pone

nts

with

dem

onst

rate

d hi

gh r

elia

bilit

y (+

)54

1

2.44

%

10.

%#

of h

ands

on

activ

ities

req

'd (

-)53

4

2.41

%

12.

63%

# of

act

ive

com

pone

nts

requ

ired

to fu

nctio

n in

clud

ing

fligh

t ope

ratio

ns (

-)52

7

*

2.38

%

15

.01%

# of

pot

entia

l lea

kage

/ co

nnec

tion

sour

ces

(-)

527

2.

37%

17.3

9%#

of s

yste

ms

requ

iring

mon

itorin

g du

e to

haz

ards

(-)

523

2.

36%

19.7

4%S

yste

m m

argi

n (+

)50

8

*

2.29

%

22

.03%

# of

toxi

c flu

ids

(-)

495

*

2.

23%

24.2

7%%

of p

ropu

lsio

n sy

stem

aut

omat

ed (

+)

488

*

2.

20%

26.4

7%#

of u

niqu

e st

ages

(fli

ght a

nd g

roun

d) (

-)48

3

*

2.18

%

28

.64%

% o

f pro

puls

ion

subs

yste

ms

mon

itore

d to

cha

nge

from

haz

ard

to s

afe

(+)

470

2.

12%

30.7

6%#

of in

-spa

ce s

uppo

rt s

ys. r

eq'd

for

prop

ulsi

on s

ys. (

- )

465

2.

10%

32.8

6%D

esig

n V

aria

bilit

y (-

)46

4

*

2.09

%

34

.95%

# of

act

ive

on-b

oard

spa

ce s

ys. r

eq'd

for

prop

ulsi

on (

- )

454

*

2.

05%

37.0

0%O

n-bo

ard

Pro

pella

nt S

tora

ge &

Man

agem

ent D

iffic

ulty

in S

pace

(-)

45

3

*

2.04

%

39

.04%

# of

pur

ges

requ

ired

(flig

ht a

nd g

roun

d) (

-)42

8

1.93

%

40

.97%

# of

con

fined

spa

ces

on v

ehic

les

(-)

427

1.

92%

42.8

9%T

echn

olog

y re

adin

ess

leve

ls (

+)

425

*

1.

92%

44.8

1%#

of a

ctiv

e gr

ound

sys

tem

s re

quire

d fo

r se

rvic

ing

(-)

420

1.

89%

46.7

1%#

of d

iffer

ent f

luid

s in

sys

tem

(-)

404

*

1.

82%

48.5

3%#

of c

heck

outs

req

uire

d (-

)40

3

1.82

%

50

.34%

# of

pro

puls

ion

sub-

syst

ems

with

faul

t tol

eran

ce (

+)

398

*

1.

79%

52.1

4%#

of in

spec

tion

poin

ts (

-)39

0

1.76

%

53

.90%

Mas

s F

ract

ion

requ

ired

(-)

387

*

1.

75%

55.6

4%H

ours

for

turn

arou

nd (

betw

een

laun

ches

or

com

mit

to n

ew m

issi

on)

(-)

37

4

1.69

%

57

.33%

ISP

Pro

pella

nt tr

ansf

er o

pera

tion

diffi

culty

(re

supp

ly)

(-)

371

1.

68%

59.0

1%#

of p

ollu

tive

or to

xic

mat

eria

ls (

-)35

0

1.58

%

60

.58%

# of

exp

enda

bles

(flu

id, p

arts

, sof

twar

e) (

-)34

8

1.57

%

62

.15%

Min

imum

Impu

lse

bit (

-)

332

1.

50%

63.6

5%#

of c

ritic

ality

1 fa

ilure

mod

es (

-)32

9

1.48

%

65

.13%

# of

ele

men

t to

elem

ent i

nter

face

s re

quiri

ng e

ngin

eerin

g co

ntro

l (-)

320

1.

44%

66.5

7%A

ve. I

sp o

n re

fer.

traj

ecto

ry (

+)

310

*

1.

40%

67.9

7%#

of p

arts

(di

ffere

nt, b

acku

p, c

ompl

ex)

(-)

296

1.

33%

69.3

1%#o

f um

bs. r

eq'd

to L

aunc

h V

ehic

le (

- )

27

6

*

1.25

%

70

.55%

# of

eng

ines

(-)

274

*

1.

24%

71.7

9%R

esis

tanc

e to

Spa

ce E

nviro

nmen

t (+

)

268

*

1.

21%

73.0

0%#

of p

hysi

cally

diff

icul

t to

acce

ss a

reas

(-)

265

1.

19%

74.1

9%#

of a

ctiv

e en

gine

sys

tem

s re

quire

d to

func

tion

(-)

247

*

1.

11%

75.3

0%In

tegr

al s

truc

ture

with

pro

puls

ion

sys.

(+

)

239

*

1.

08%

76.3

8%H

ours

to r

efur

bish

pro

puls

ion

syst

em (

-)23

7

1.07

%

77

.45%

# of

man

hour

s (c

/o, h

andl

e, a

ssem

ble

etc)

on

syst

em b

etw

een

on a

nd

off c

ycle

s (L

ow C

ycle

Fat

igue

) or

use

(H

igh

Cyc

le F

atig

ue)

(-)

229

1.

03%

78.4

8%#

of m

odes

or

cycl

es (

-)22

7

*

1.02

%

79

.50%

# of

gro

und

pow

er s

yste

ms

(-)

226

*

1.

02%

80.5

2%M

ean

time

betw

een

maj

or o

verh

aul (

+)

22

1

1.00

%

81

.52%

Am

ount

of e

nerg

y re

leas

e fr

om u

npla

nned

rea

ctio

n of

pro

pella

nt (

-)21

9

*

0.99

%

82

.51%

Mar

gin,

mas

s fr

actio

n (+

)21

5

*

0.97

%

83

.48%

Mar

gin,

thru

st le

vel /

eng

ine

cham

ber

pres

s(+

)21

1

*

0.95

%

84

.43%

Tra

nspo

rtat

ion

trip

tim

e (-

)21

1

*

0.95

%

85

.38%

# of

eng

ine

rest

arts

req

uire

d (-

)20

1

*

0.91

%

86

.29%

Page 19: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Attributes versus Programmatic Criteria - Matrix / Pareto

Chart for Weighting SL-100 Advanced Space

Transportation (Pre-Operational Phases,

R&D and Aquisition) (Qu

alit

y C

har

acte

rist

ic)

Pro

gra

mm

atic

Cri

teri

a

TR

D-c

ost

to r

each

TR

L -6

(-)

TR

D-t

otal

ann

ual f

undi

ng b

y ite

m a

t pe

ak d

olla

r

Req

uire

men

ts (

-)

TR

D-#

of

new

fac

ilitie

s re

quire

d co

stin

g ov

er

$2M

(-)

TR

D-e

stim

ated

tim

e to

rea

ch T

RL

6 fr

om s

tart

o

f R

&D

(-)

TR

D-C

urre

nt T

RL

(+)

TR

D-#

ope

ratio

nal e

ffec

tiven

ess

attr

ibut

es

pr

evio

usly

dem

onst

rate

d (+

)

TR

D-#

ope

ratio

nal e

ffec

tiven

ess

attr

ibut

es

add

ress

ed f

or im

prov

emen

t (+

)

TR

D-#

tec

hnol

ogy

brea

kthr

ough

s re

quire

d to

dev

elop

and

dem

onst

rate

(-)

TR

D-#

ful

l sca

le g

roun

d or

flig

ht d

emon

stra

tions

requ

ired

(-)

TR

D-#

rela

ted

tech

nolo

gy d

atab

ases

ava

ilabl

e (+

)

TR

D-#

mul

tiuse

app

licat

ions

incl

udin

g sp

ace

tran

spor

tatio

n (+

)

PA

-tot

al s

yste

m D

DT

&E

con

cept

dev

elop

men

t

and

impl

emen

tatio

n co

st (

-)

PA

-infr

astr

uctu

re c

ost:

initi

al s

yste

m

impl

emen

tatio

n (c

apita

l inv

estm

ent)

(-)

PA

-tim

e re

quire

d to

est

ablis

h in

fras

truc

ture

(sch

edul

e of

R&

D p

hase

) (-

)

(Demanded Quality) Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Attributes WEIGHT

Technology R&D Phase

Cost 30 9 3 9 9 9 9 9 9 9 3 1 Benefit Focused 30 9 3 1 9 3 3 9 9 3 3 1

Schedule 15 3 1 3 9 9 3 3 9 9 3 1

Risk 15 1 1 3 3 9 9 9 9 9 9 1

Dual use Potential 10 1 3 1 3 1 1 3 9

Program Acquisition Phase

Cost 25 9 9 3 Schedule 15 3 3 9

Risk 25 1 1 3

Technology Options 10 3 3 3

Investor Incentive 25 9 9 9

RAW SCORE 600 210 400 750 630 550 750 820 640 390 180 550 550 540

SUM OF RAW SCORES TRD 5920

SUM OF RAW SCORES PA 4550

NORMALIZED SCORE 10 4 7 13 11 9 13 14 11 7 3 12 12 12

PA

-tec

hnol

ogy

read

ines

s at

pro

gram

acq

uisi

tion

mile

ston

e: T

RL

6 +

mar

gin

(+)

PA

-tec

hnol

ogy

capa

bilit

y m

argi

n (p

erfo

rman

ce

as

fra

ctio

n of

ulti

mat

e) (

+)

PA

-# o

f ot

her

optio

ns a

vaila

ble

(+)

PA

-# m

ajor

new

tec

hnol

ogy

deve

lopm

ent

item

s

(eng

ines

, ai

rfra

mes

, T

PS

, et

c) (

-)

PA

-# it

ems

requ

iring

maj

or g

roun

d te

st a

rtic

les

and

dem

onst

ratio

n (e

xam

ple:

new

eng

ines

) (-

)

15 16 17 18 19

9 3 3 9 39 3 3 9 3

9 9 9 9 3

9 9 3 9 3

3 3 3 9 3

750 510 450 900 300

16 11 10 20 7

SPST / SL-100 Space Propulsion

Page 20: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Attributes versus Programmatic Criteria - Matrix / Pareto

Note: TRD - Technology Research and Development Stage PA - Program Acquisition Phase

Program Acquisition Phase

PA-# major new technology development items (engines, airframes, TPS, etc) (-) 20%PA-technology readiness at program acquisition milestone: TRL 6 + margin (+) 16%PA-time required to establish infrastructure (schedule of R&D phase) (-) 12%PA-total system DDT&E concept development and implementation cost (-) 12%PA-infrastructure cost: initial system implementation (capital investment) (-) 12%PA-technology capability margin (performance as fraction of ultimate) (+) 11%

PA-# of other options available (+) 10% PA-# items requiring major ground test articles and demonstration (example: new engines) (-) 7%

Technology R & D Phase

TRD-# technology breakthroughs required to develop and demonstrate (-) 14% TRD-estimated time to reach TRL 6 from start of R&D (-) 13%

TRD-# operational effectiveness attributes addressed for improvement (+) 13% TRD-Current TRL (+) 11%

TRD-# full scale ground or flight demonstrations required (-) 11% TRD-cost to reach TRL -6 (-) 10% TRD-# operational effectiveness attributes previously demonstrated (+) 9% TRD-#related technology databases available (+) 7% TRD-# of new facilities required costing over $2M (-) 7%

TRD-total annual funding by item at peak dollar requirements (-) 4% TRD-# multiuse applications including space transportation (+) 3%

SPST / SL-100 Space Propulsion

Page 21: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

0 5 10 15 20

PA-# items requiring major ground test articles

and demonstration (example: new engines) (-)

PA-# of other options available (+)

PA-technology capability margin (performance asfraction of ultimate) (+)

PA-time required to establish infrastructure

(schedule of R&D phase) (-)

PA-total system DDT&E concept development

and implementation cost (-)

PA-infrastructure cost: initial system

implementation (capital investment) (-)

PA-technology readiness at program acquisition

milestone: TRL 6 + margin (+)

PA-# major new technology development items

(engines, airframes, TPS, etc) (-)

TRD-# multiuse applications including space

Transportation (+)

TRD-total annual funding by item at peak dollar

Requirements (-)

TRD-#related technology databases available (+)

TRD-# of new facilities required costing over $2M (-)

TRD-# operational effectiveness attributes

previously demonstrated (+)

TRD-cost to reach TRL -6 (-)

TRD-Current TRL (+)

TRD-# full scale ground or flight demonstrations

Required (-)

TRD-estimated time to reach TRL 6 from start of

R&D (-)

TRD-# operational effectiveness attributes

addressed for improvement (+)

TRD-# technology breakthroughs required to

develop and demonstrate (-)

SCORE

Attributes versus Programmatic Criteria - Matrix / ParetoSPST / SL-100 Space Propulsion

Page 22: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Sp

aceL

iner

100

Pro

pu

lsio

n T

ask

For

ce

Sp

aceL

iner

100

Pro

pu

lsio

n A

sses

smen

t/P

rior

itiz

atio

n P

roce

ss &

Cri

teri

a

Tec

hn

olog

y E

valu

atio

n B

enef

its

(Tec

hn

ical

) A

ttri

bu

tes

and

Ass

ocia

ted

Des

ign

Cri

teri

aB

enef

its

(Tec

hn

ical

Wit

h S

ense

of

Goo

dn

ess

and

Nor

mal

ized

Wei

ghti

ng)

Aff

ord

able

/ L

ow L

ife

Cyc

le C

ost

Min

. C

os

t Im

pa

ct

on

La

un

ch

Sy

s.

Lo

w R

ec

urr

ing

Co

st

Lo

w C

os

t S

en

s.

to F

lt.

Gro

wth

*

Op

era

tio

n a

nd

Su

pp

ort

In

itia

l A

cq

uis

itio

n

Ve

hic

le/S

ys

tem

Re

pla

ce

me

nt

Raw

%

Sco

re

Wei

ght

N

o. 4

9 #

of u

niqu

e st

ages

(fl

ight

and

gro

und)

(-)

483

5.3

%N

o. 7

5 #

of

acti

ve o

n-bo

ard

spac

e sy

s. r

eq'd

for

pro

puls

ion

( -

) 4

54

4

.9 %

No.

78

On-

boar

d P

rope

llan

t Sto

rage

& M

anag

emen

t Dif

ficu

lty

in S

pace

(-)

453

4.9

%N

o. 3

8 T

echn

olog

y re

adin

ess

leve

ls (

+)

425

4.6

%N

o. 5

9 M

ass

Fra

ctio

n re

quir

ed (

-)

3

87

4

.2 %

No.

54

Ave

. Isp

on

refe

r. tr

ajec

tory

(+

)

3

10

3

.4 %

No.

70

# o

f um

bs. r

eq'd

to L

aunc

h V

ehic

le (

- )

276

3.0

%N

o. 5

8 #

of e

ngin

es (

-)

2

74

3

.0 %

No.

79

Res

ista

nce

to S

pace

Env

iron

men

t (+

)

26

8

2

.9 %

No.

82

Inte

gral

str

uctu

re w

ith

prop

ulsi

on s

ys. (

+)

239

2.6

%N

o. 8

5 T

rans

port

atio

n tr

ip ti

me

(-)

211

2.3

%

Dep

end

able

Hig

hly

Re

lia

ble

Inta

ct

Ve

hic

le R

ec

ov

ery

Mis

sio

n S

uc

ce

ss

Op

era

te o

n C

om

ma

nd

Ro

bu

stn

es

s

De

sig

n C

ert

ain

ty

Raw

%

Sco

re

Wei

ght

N

o. 1

0 #

of a

ctiv

e co

mpo

nent

s re

quir

ed to

fun

ctio

n in

clud

ing

flig

ht

oper

atio

ns (

-)52

7

5

.7 %

No.

87

Des

ign

Var

iabi

lity

(-)

464

5.0

%N

o. 1

4 #

of d

iffe

rent

flu

ids

in s

yste

m (

-)40

4

4

.4 %

No.

60

# of

act

ive

engi

ne s

yste

ms

requ

ired

to f

unct

ion

(-)

247

2.7

%N

o.

48

# o

f m

od

es

or

cycl

es

(-)

22

7

2.

5 %

No

. 1

6 M

arg

in,

ma

ss f

ract

ion

(+

)2

15

2.3

%N

o.

18

Ma

rgin

, th

rust

leve

l/en

gin

e c

ha

mb

er

pre

ss (

+)

21

1

2.

3 %

No

. 6

4 #

of

en

gin

e r

est

art

s re

qu

ired

(-)

20

1

2.

2 %

Page 23: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Sp

aceL

iner

100

Pro

pu

lsio

n T

ask

For

ce

Sp

aceL

iner

100

Pro

pu

lsio

n A

sses

smen

t/P

rior

itiz

atio

n P

roce

ss &

C

rite

ria

Tec

hn

olog

y E

valu

atio

n B

enef

its

(Tec

hn

ical

) A

ttri

bu

tes

and

Ass

ocia

ted

Des

ign

C

rite

ria

Con

’t

Res

pon

sive

Fle

xib

leC

ap

ac

ity

Op

era

ble

P

roc

es

s V

eri

fic

ati

on

A

uto

. S

ys

. H

ea

lth

Ve

rifi

ca

tio

n

Au

to.

Sy

s.

Co

rre

cti

ve

Ac

tio

n

Ea

se

of

Ve

hic

le/S

ys

tem

In

teg

rati

on

M

ain

tain

ab

le

Sim

ple

L

au

nc

h o

n D

em

an

d

Ea

sil

y S

up

po

rta

ble

R

es

ilie

nc

y

Raw

%

S

core

W

eigh

t N

o.

37

# o

f di

ffer

ent p

ropu

lsio

n sy

stem

s (-

)58

2

6.

3 %

No.

66

Sys

tem

Mar

gin

(+)

508

5.5

%N

o. 3

3 %

of

prop

ulsi

on s

yste

m a

utom

ated

(+

)48

8

5.

3 %

No.

53

# of

gro

und

pow

er s

yste

ms

(-)

226

2.5

%

En

viro

nm

enta

l Com

pat

ibil

ity

Min

imu

m I

mp

ac

t o

n S

pa

ce

En

vir

on

.M

inim

um

Eff

ec

t o

n A

tmo

sp

he

re

Min

imu

m E

nv

iro

n.

Imp

ac

t a

ll S

ite

s

Saf

ety

Ve

hic

le S

afe

tyP

ers

on

ne

l S

afe

tyP

ub

lic

Sa

fety

Eq

uip

me

nt

an

d F

ac

ilit

y S

afe

ty

R

aw

%

S

core

W

eigh

tN

o. 5

# o

f to

xic

flui

ds (

-)49

5

5

.4 %

No.

6 #

of

prop

ulsi

on s

ub-s

yste

ms

wit

h fa

ult t

oler

ance

(+

)39

8

4

.3 %

No.

4 A

mou

nt o

f en

ergy

rel

ease

fro

m u

npla

nned

rea

ctio

n of

pro

pell

ant (

-)21

9

2

.4 %

Pu

bli

c S

up

por

tB

en

efi

t G

NP

So

cia

l P

erc

ep

tio

n

Page 24: SpaceLiner 100 Propulsion Task Force Candidate Technology Evaluation and Assessment & Prioritization Workshop Huntsville, Al. April 10-11, 2001 Russel.

Sp

aceL

iner

100

Pro

pu

lsio

n T

ask

For

ceIn

-Sp

ace

Pro

pu

lsio

n A

sses

smen

t/P

rior

itiz

atio

n P

roce

ss &

Cri

teri

a

Can

did

ate

Tec

hn

olog

ies

PR

OG

RA

MM

AT

IC A

ss

es

sm

en

t C

rite

ria

Pro

gram

Acq

uis

itio

n P

has

eP

A-#

ma

jor

ne

w t

ech

no

log

y d

eve

lop

me

nt

item

s (e

ng

ine

s, a

irfra

me

s, T

PS

, e

tc)

(-)

20

%

PA

-te

chn

olo

gy

rea

din

ess

at

pro

gra

m a

cqu

isiti

on

mile

sto

ne

: T

RL

6 +

ma

rgin

(+

)

16

%

PA

-tim

e r

eq

uire

d t

o e

sta

blis

h in

fra

stru

ctu

re (

sch

ed

ule

of

R&

D p

ha

se)

(-)

1

2 %

PA

-to

tal s

yste

m D

DT

&E

co

nce

pt

de

velo

pm

en

t a

nd

imp

lem

en

tatio

n c

ost

(-)

1

2 %

PA

-infr

ast

ruct

ure

co

st:

initi

al s

yste

m im

ple

me

nta

tion

(ca

pita

l in

vest

me

nt)

(-)

1

2 %

PA

-te

chn

olo

gy

cap

ab

ility

ma

rgin

(p

erf

orm

an

ce a

s fr

act

ion

of

ulti

ma

te)

(+)

1

1 %

PA

-# o

f o

the

r o

ptio

ns

ava

ilab

le (

+)

1

0 %

PA

-# it

em

s re

qu

irin

g m

ajo

r g

rou

nd

te

st a

rtic

les

& d

em

on

stra

tion

(e

x: n

ew

en

gin

es)

(-)

7 %

Tec

hn

olog

y R

& D

Ph

ase

T

RD

-# t

ech

no

log

y b

rea

kth

rou

gh

s re

qu

ired

to

de

velo

p a

nd

de

mo

nst

rate

(-)

1

4 %

TR

D-e

stim

ate

d t

ime

to

re

ach

TR

L 6

fro

m s

tart

of

R&

D (

-)

13

%

TR

D-#

op

era

tion

al e

ffe

ctiv

en

ess

att

ribu

tes

ad

dre

sse

d f

or

imp

rove

me

nt

(+)

1

3 %

TR

D-C

urr

en

t T

RL

(+

)

11

%

TR

D-#

fu

ll sc

ale

gro

un

d o

r fli

gh

t d

em

on

stra

tion

s re

qu

ired

(-)

1

1 %

TR

D-c

ost

to

re

ach

TR

L –

6 (

-)

10

%

TR

D-#

op

era

tion

al e

ffe

ctiv

en

ess

att

ribu

tes

pre

vio

usl

y d

em

on

stra

ted

(+

)

9

%

TR

D-#

re

late

d t

ech

no

log

y d

ata

ba

ses

ava

ilab

le (

+)

7 %

TR

D-#

of

ne

w f

aci

litie

s re

qu

ired

co

stin

g o

ver

$2

M (

-)

7

%

TR

D-t

ota

l an

nu

al f

un

din

g b

y ite

m a

t p

ea

k d

olla

r re

qu

irem

en

ts (

-)

4

%

TR

D-#

mu

lti-u

se a

pp

lica

tion

s in

clu

din

g s

pa

ce t

ran

spo

rta

tion

(+

)

3

%