(SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] =...

13
(SP 1) Given: In a closed rigid tank, State 1: 1, = 1 , 1, = 0.05 P1= 0.0381 kPa, T1= -30 o C State 2: the liquid – vapor equilibrium line, either saturated liquid or saturated vapor Find: (a) The volume of the tank (b) P1 in bar (c) a saturated liquid or a saturated vapor (d) T2 (e) P-T and P-V diagrams System sketch: State 1 State 2 DLLL Assumptions: - Water vapor and ice are in equilibrium at state 1 - Pure saturated liquid or pure saturated vapor at state 2 Solution: (a) Vtank = 1 1 = 1, 1, + 1, 1, 1 kg ice 0.05 kg water vapor P1= 0.0381 kPa T1= -30 o C 1.05 kg of Saturated liquid or Saturated vapor Q

Transcript of (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] =...

Page 1: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(SP 1)

Given:

In a closed rigid tank,

State 1: π‘š1,𝑖𝑐𝑒 = 1 π‘˜π‘”, π‘š1,𝑔 = 0.05 π‘˜π‘”

P1= 0.0381 kPa, T1= -30oC

State 2: the liquid – vapor equilibrium line, either saturated liquid or saturated vapor

Find:

(a) The volume of the tank

(b) P1 in bar

(c) a saturated liquid or a saturated vapor

(d) T2

(e) P-T and P-V diagrams

System sketch:

State 1 State 2

DLLL

Assumptions:

- Water vapor and ice are in equilibrium at state 1

- Pure saturated liquid or pure saturated vapor at state 2

Solution:

(a)

Vtank = π‘š1𝑣1 = π‘š1,𝑖𝑐𝑒𝑣1,𝑖𝑐𝑒 + π‘š1,𝑔𝑣1,𝑔

1 kg ice

0.05 kg water vapor

P1= 0.0381 kPa

T1= -30oC

1.05 kg of

Saturated liquid

or

Saturated vapor Q

Page 2: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

From Table A-6,

𝑣1,𝑖𝑐𝑒 = 1.0858 Γ— 10βˆ’3 π‘š3

π‘˜π‘”

𝑣1,𝑔 = 2943 π‘š3

π‘˜π‘”

Then, the equation we wrote can be,

Vtank = (1 π‘˜π‘”)(1.0858 Γ— 10βˆ’3 π‘š3

π‘˜π‘”) + (0.05 π‘˜π‘”) (2943

π‘š3

π‘˜π‘”) = 147.15 π‘š3

The volume of the tank is πŸπŸ’πŸ•. πŸπŸ“ π’ŽπŸ‘

(b)

P1 = (0.0381 kPa)(1 π‘π‘Žπ‘Ÿ

105π‘ƒπ‘Ž) (

1000 π‘ƒπ‘Ž

1 π‘˜π‘ƒπ‘Ž) = 0.000381 π‘π‘Žπ‘Ÿ

(c)

𝑣2 = 𝑣1 =π‘‰π‘‘π‘Žπ‘›π‘˜

π‘š1=

π‘‰π‘‘π‘Žπ‘›π‘˜

π‘š2=

147.15 π‘š3

1.05 π‘˜π‘”= 140.14

π‘š3

π‘˜π‘”

which is greater than π‘£π‘π‘Ÿπ‘–π‘‘ , 0.0031π‘š3

π‘˜π‘”. Then, the state is a saturated vapor.

(d)

From Table A-2,

𝑣𝑔 = 147.120 π‘š3

π‘˜π‘” at 5 oC

𝑣𝑔 = 137.734 π‘š3

π‘˜π‘” at 6 oC

Interpolate to know temperature at 𝑣𝑔 is 140.14 π‘š3

π‘˜π‘”.

This provides T2 = 5.744 oC.

(e)

Page 3: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure
Page 4: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(SP 2)

Given:

Two-phase R-134a

State 1: T1= 50oF

State 2: superheated vapor at P2= 4 psia

Find:

(a) min and max of T2

(b) x1,min

(c) P-h diagram of x1=0.9

(d) plot x1 vs T2

System sketch:

Assumptions:

1. Steady-state, Steady-flow

2. βˆ†πΎπΈ = βˆ†π‘ƒπΈ = 0

3. Adiabatic

4. No work

Basic equations:

Page 5: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

Solution:

Apply our assumptions into the energy balance equation,

The equation above is now,

οΏ½οΏ½1β„Ž1 = οΏ½οΏ½2β„Ž2

Because of οΏ½οΏ½1 = οΏ½οΏ½2,

β„Ž1 = β„Ž2

(a)

Using the properties we know, establish an equation with the above equation. π‘₯1 π‘Žπ‘›π‘‘ 𝑇2 are

independent value and dependent value.

β„Ž1(𝑇1, π‘₯1) = β„Ž2(𝑇2, 𝑃2)

Use EES to solve (EES code is attached).

T2,max= 29.5 oF for x1=1 and T2,min= -60 oF for x2=1

Maximum T2 when x1 occurs at 1.0 (sat. vapor at the throttle inlet). Minimum T2 when x2

occurs at 1.0 (sat. vapor at the throttle outlet).

∡ 1 ∡ 3 ∡ 4 ∡ 2 ∡ 2

Page 6: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(b)

Minimum x1 occurs for T2= T2,min. See the attached EES code.

x1,min= 0.804

(c) and (d)

EES code is attached.

Page 7: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

"Specified inlet temperature and outlet pressure" T[1] = 50 [F] P[2] = 4 [psia] "Maximum outlet temperature where device works is when X[1] = 1 (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) h_1_max = enthalpy(R134a,T=T[1],x=1.0) h_2_max = h_1_max T_2_max = temperature(R134a,P=P[2],h=h_2_max) "Minimum outlet temperature where device works is when X[2] = 1 (saturated vapor)" T_2_min = temperature(R134a,P=P[2],x=1.0) h_2_min = enthalpy(R134a,P=P[2],x=1.0) h_1_min = h_2_min X_1_min = quality(R134a,P=P[1],h=h_1_min) "Data for process line on P-h diagram with X[1] = 0.9" x[1] = 0.9 h[1] = enthalpy(R134a,T=T[1],x=x[1]) h[2] = h[1] T[2] = temperature(R134a,P=P[2],h=h[2]) "Data for plot of x_1 versus T_2" h_2 = enthalpy(R134a,T=T_2,P=P[2]) h_1 = h_2 x_1 = quality(R134a,T=T[1],h=h_1)

Page 8: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure
Page 9: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

(SP 3)

Given:

4L of water inside rigid body cooker from State 1 to State 2

State 1: 2L of saturated liquid water @ 𝑃1 = 200 π‘˜π‘ƒπ‘Ž

2L of saturated water vapor @ 𝑃1 = 200 π‘˜π‘ƒπ‘Ž

State 2: 4L of saturated water vapor @ 𝑃2 = 200 π‘˜π‘ƒπ‘Ž

π‘‡π‘ π‘‘π‘œπ‘£π‘’ = 1000 ℃, 𝑇0 = 20℃, οΏ½οΏ½π‘™π‘œπ‘ π‘  = 300 π‘Š, ��𝑖𝑛 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘, βˆ†π‘‘ = 1 β„Žπ‘œπ‘’π‘Ÿ

Find:

(a) The total mass of the steam (kg) entering the environment.

(b) The rate of heat transfer (kW) from the source.

(c) The total entropy production (kJ/K) in one hour.

(d) The total exergy destroyed (kJ) in one hour.

System: open system with saturated water inside 4L pressure cooker

Assumptions:

1. Steady flow (No steady state!)

2. No change in PE and KE

3. No work

4. Temperature and pressure are uniform throughout the cooker

State1 2L saturated liquid water + 2L saturated water vapor at P= 200 kPa

State 2

4L saturated water vapor

at P= 200 kPa

Page 10: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

5. Constant properties

6. A half of the volume is saturated liquid water and a half of the volume is saturated water

vapor inside the cooker at state 1

7. Water vapor inside the cooker at state 2

8. Water vapor leaves the cooker at state 2

Basic Equations:

π‘‘π‘šπ‘π‘£

𝑑𝑑= βˆ‘ ��𝑖𝑛 βˆ’ βˆ‘ οΏ½οΏ½π‘œπ‘’π‘‘

𝑑𝐸𝑐𝑣

𝑑𝑑= 𝑄𝑐𝑣

βˆ’ π‘Šπ‘π‘£ + βˆ‘ ��𝑖𝑛(β„Ž + 𝑃𝐸 + 𝐾𝐸)𝑖𝑛 βˆ’ βˆ‘ οΏ½οΏ½π‘œπ‘’π‘‘(β„Ž + 𝑃𝐸 + 𝐾𝐸)π‘œπ‘’π‘‘

𝑑𝑆𝑐𝑣

𝑑𝑑= βˆ‘

��𝑐𝑣

𝑇𝑏+ βˆ‘ ��𝑖𝑛𝑠𝑖𝑛 βˆ’ βˆ‘ οΏ½οΏ½π‘œπ‘’π‘‘π‘ π‘œπ‘’π‘‘ + ��𝐢𝑉

𝐸�� = 𝑇0πœŽπ‘π‘£

Solution:

(a)

Because pressure 200 kPa is given for the saturated water, we can find properties of

saturated water from table A-3.

Tsat = 120.2℃

vf = 0.0010605 m3/kg vg = 0.8857 m3/kg

uf = 504.49 kJ/kg ug = 2529.5 kJ/kg

hf = 504.7 kJ/kg hg = 2706.7 kJ/kg

sf = 1.5301 kJ/kgK sg = 7.1271 kJ/kgK

First, mass balance equation for open system is

π‘‘π‘šπ‘π‘£

𝑑𝑑= βˆ‘ ��𝑖𝑛 βˆ’ βˆ‘ οΏ½οΏ½π‘œπ‘’π‘‘

Integrate the equation w.r.t. time and then the equation can be written as

βˆ†π‘š = π‘š2 βˆ’ π‘š1 = βˆ’ π‘šπ‘œπ‘’π‘‘

The mass at state 1 is

π‘š1 = π‘šπ‘“ + π‘šπ‘” = 𝑉𝑓

𝑣𝑓⁄ +

𝑉𝑔𝑣𝑔

⁄ = 2𝐿0.0010605 π‘š3/π‘˜π‘”β„ + 2𝐿

0.8857 π‘š3/π‘˜π‘”β„

∡ no inlet

Page 11: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

= 0.002π‘š3

0.0010605π‘š3

π‘˜π‘”β„

+ 0.002π‘š3

0.8857π‘š3

π‘˜π‘”β„

= 1.886 π‘˜π‘” + 0.002 π‘˜π‘”

= 1.888 π‘˜π‘”

The mass at state 2 is

π‘š2 = 𝑉𝑣𝑔

⁄ = 4𝐿0.8857 π‘š3/π‘˜π‘”β„

= 0.004π‘š3

0.8857π‘š3

π‘˜π‘”β„

= 0.005π‘˜π‘”

Thus,

βˆ†π‘š = π‘š2 βˆ’ π‘š1 = 0.005 π‘˜π‘” βˆ’ 1.888 π‘˜π‘” = βˆ’1.883 π‘˜π‘”

βˆ’ π‘šπ‘œπ‘’π‘‘ = βˆ’1.883 π‘˜π‘”

π‘šπ‘œπ‘’π‘‘ = 1.883 π‘˜π‘”

Therefore, 1.883 kg of steam enters into the environment

(b)

Now, the energy balance equation for open system is

𝑑𝐸𝑐𝑣

𝑑𝑑= 𝑄𝑐𝑣

βˆ’ π‘Šπ‘π‘£ + βˆ‘ ��𝑖𝑛(β„Ž + 𝑃𝐸 + 𝐾𝐸)𝑖𝑛 βˆ’ βˆ‘ οΏ½οΏ½π‘œπ‘’π‘‘(β„Ž + 𝑃𝐸 + 𝐾𝐸)π‘œπ‘’π‘‘

Apply no work, no KE, no PE, and one outflow, then, the equation above can be

𝑑𝐸𝑐𝑣

𝑑𝑑= 𝑄𝑐𝑣

βˆ’ π‘Šπ‘π‘£ + βˆ‘ ��𝑖𝑛(β„Ž + 𝑃𝐸 + 𝐾𝐸)𝑖𝑛 βˆ’ βˆ‘ οΏ½οΏ½π‘œπ‘’π‘‘(β„Ž + 𝑃𝐸 + 𝐾𝐸)π‘œπ‘’π‘‘

Rewrite the equation,

Page 12: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

𝑑𝐸𝑐𝑣

𝑑𝑑= 𝑄𝑐𝑣

βˆ’ οΏ½οΏ½π‘œπ‘’π‘‘β„Žπ‘œπ‘’π‘‘

Integrate the equation w.r.t. time,

βˆ†πΈπ‘π‘£ = 𝑄𝑐𝑣 βˆ’ π‘šπ‘œπ‘’π‘‘β„Žπ‘œπ‘’π‘‘

Because no KE and no PE, the equation above can be written as

π‘š2𝑒2 βˆ’ π‘š1𝑒1 = 𝑄𝑖𝑛 βˆ’ π‘„π‘™π‘œπ‘ π‘  βˆ’ π‘šπ‘œπ‘’π‘‘β„Žπ‘œπ‘’π‘‘

0.005π‘˜π‘” βˆ— 2529.5π‘˜π½/π‘˜π‘” βˆ’ (1.886π‘˜π‘” βˆ— 504.49π‘˜π½/π‘˜π‘” + 0.002π‘˜π‘” βˆ— 2529.6π‘˜π½/π‘˜π‘”)

= 𝑄𝑖𝑛 βˆ’ 0.3π‘˜π½/𝑠 βˆ— 3600𝑠 βˆ’ 1.883π‘˜π‘” βˆ— 2706.7π‘˜π½/π‘˜π‘”

𝑄𝑖𝑛 = 5232.8 kJ

The rate of heat transfer is

��𝑖𝑛 =𝑄𝑖𝑛

βˆ†π‘‘β„ =5232.8 π‘˜π½

3600 𝑠 = 1.454 kW

Therefore, 𝟏. πŸ’πŸ“πŸ’ π’Œπ‘Ύ of the rate of heat transfer is entering into the cooker from

the stove.

(c)

The entropy balance equation for open system is

𝑑𝑆𝑐𝑣

𝑑𝑑= βˆ‘

��𝑐𝑣

𝑇𝑏+ βˆ‘ ��𝑖𝑛𝑠𝑖𝑛 βˆ’ βˆ‘ οΏ½οΏ½π‘œπ‘’π‘‘π‘ π‘œπ‘’π‘‘ + ��𝐢𝑉

Apply assumptions and integrate the equation w.r.t. time,

βˆ†π‘†π‘π‘£ = βˆ‘π‘„π‘π‘£

π‘‡π‘βˆ’ π‘šπ‘œπ‘’π‘‘π‘ π‘œπ‘’π‘‘ + πœŽπ‘π‘£

Rewrite,

π‘š2𝑠2 βˆ’ π‘š1𝑠1 =𝑄𝑖𝑛

π‘‡π‘ π‘‘π‘œπ‘£π‘’βˆ’

π‘„π‘™π‘œπ‘ π‘ 

𝑇0βˆ’ π‘šπ‘œπ‘’π‘‘π‘ π‘œπ‘’π‘‘ + πœŽπ‘π‘£

π‘€β„Žπ‘’π‘Ÿπ‘’ π‘š1𝑠1 = π‘šπ‘“π‘ π‘“ + π‘šπ‘”π‘ π‘”

Once you substitute all known values, you will get one unknown,

Page 13: (SP 1) - Purdue EngineeringΒ Β· (SP 1) Given: In a closed rigid ... (saturated vapor)" P[1] = pressure(R134a,T=T[1],x=1.0) ... System: open system with saturated water inside 4L pressure

0.005 π‘˜π‘” βˆ— 7.1271π‘˜π½

π‘˜π‘”πΎβ€“ (1.886 π‘˜π‘” βˆ— 1.5301

π‘˜π½

π‘˜π‘”πΎ+ 0.002 π‘˜π‘” βˆ— 7.1271

π‘˜π½

π‘˜π‘”πΎ)

=5232.8 π‘˜π½

1273 πΎβˆ’

0.3 π‘˜π‘Š βˆ— 3600 𝑠

293 πΎβˆ’ 1.883 π‘˜π‘” βˆ— 7.1271

π‘˜π½

π‘˜π‘”πΎ+ πœŽπ‘π‘£

πœŽπ‘π‘£ = 0.0356 βˆ’ 2.9 βˆ’ 4.111 + 3.686 + 13.420 = 10.131 kJ/K

Therefore, 𝟏𝟎. πŸπŸ‘πŸ 𝐀𝐉/𝐊 of the total entropy production is generated in one hour.

(d)

The total exergy destruction can be calculated by

𝐸�� = 𝑇0πœŽπ‘π‘£ = 293 𝐾 βˆ— 10.131π‘˜π½

𝐾= 2968.3 π‘˜π½

Therefore, πŸπŸ—πŸ”πŸ–. πŸ‘ 𝐀𝐉 of the total exergy is destroyed during one hour.