Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG)...

31
Overview of FAA turbulence Overview of FAA turbulence avoidance goals and approach avoidance goals and approach John Williams John Williams CIT Mini-Workshop CIT Mini-Workshop July 6, 2006 July 6, 2006

Transcript of Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG)...

Page 1: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Overview of FAA turbulence avoidance goals and Overview of FAA turbulence avoidance goals and approachapproach

John WilliamsJohn Williams

CIT Mini-WorkshopCIT Mini-Workshop

July 6, 2006July 6, 2006

Page 2: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Sources of Turbulence

Page 3: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

FAA Turbulence PDT

Turbulence Forecasting• Graphical Turbulence

Guidance (GTG)– NWP-model-based

turbulence forecasts with dynamically-tuned “ensemble of experts”

• GTG Nowcast (GTGN)

En-route Turbulence• Automated EDR reports

from commercial aircraft– United g-load method– New Southwest/Delta

method

Turbulence Remote Sensing• NEXRAD turbulence detection

algorithm (NTDA)– Nationwide radar-based

real-time detection• Other remote sensors

– Satellite data– Profilers– TDWR radar

• CIT avoidance guidelines– Evaluate current guidelines– Recommend alternatives– Develop “Diagnose-CIT”

algorithms

Page 4: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Graphical Turbulence Guidance Product

The current GTG clear-air turbulence forecast product with overlaid in situ turbulence reports from United Airlines aircraft• Operational GTG: http://adds.aviationweather.gov• Experimental GTG: http://weather.aero

Page 5: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Radar detection of in-cloud turbulence• NTDA performs data quality

control and produces in-cloud EDR on a polar grid

• To be installed on NEXRADs, ingested and mosaicked at NCEP using NSSL mosaic algorithm

Page 6: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Possible approach to CIT in GTG

“Nowcast” (0-30 min?)

NTDA

Diagnose-CIT (realtime and NWP data)

NWP and satellite-based diagnostics with in situ, MDCRS nudging and dynamic tuning

Forecast (30 min – 6 hours?)

Diagnose-CIT (NCWD conv. wx. forecast and NWP data)

NWP and satellite-based diagnostics with dynamic tuning

Page 7: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Current avoidance guidelines• Don’t attempt to fly under a thunderstorm even if you

can see through to the other side. Turbulence and wind shear under the storm could be disastrous.

• Do avoid by at least 20 miles any thunderstorm identified as severe or giving an intense radar echo. This is especially true under the anvil of a large cumulonimbus.

• Do clear the top of a known or suspected severe thunderstorm by at least 1,000 feet altitude for each 10 knots of wind speed at the cloud top.

• Do circumnavigate the entire area if the area has 6/10 thunderstorm coverage.

• Do regard as extremely hazardous any thunderstorm with tops 35,000 feet or higher whether the top is visually sighted or determined by radar.

Page 8: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

“CIT Avoidance Guidelines” task goals

• Evaluate the FAA’s current thunderstorm avoidance guidelines for their effectiveness in mitigating CIT encounters

• Propose alternative guidelines if appropriate

• Develop CIT diagnostics module (“Diagnose-CIT”) for GTGN

Page 9: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Data sources• Turbulence “truth” data

– In situ EDR reports from commercial aircraft– TAMDAR?– PIREPs (but may be too imprecise)– Field program data (NASA, IHOP, BAMEX, etc.)– NTSB accident cases, FDR data– NTDA EDR data?

• Thunderstorm feature data– Radar data (VIL, echo tops, NSSL 3-D reflectivity, NTDA)– Lightning data (NLDN)– GOES satellite data, IR-derived cloud tops– Conv. Wx. nowcast data (NCWD, NCWF)– Aircraft data (winds, temperature, EDR)

• Environment data– NWP model data and derived diagnostics

Page 10: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Available RUC and derived fieldsConvective Parameters

• CAPE

• CIN

• Showalter Index

• Totals Indices

• Lifted Index

• Precipitable Water

• SWEAT (Severe Wx Threat Index)

• K-Index

• Bulk Richardson Number

• Richardson Number

• Lapse Rate

• DTF3 (Diagnostic TKE Formulations)

• Vertical Shear

• Horizontal Shear

• 1/Stability

• EDR (Structure Function derived Eddy Dissipation Rates)

• SIGW (Structure Function derived Sigma Vertical Velocity)

• Divergence

• Vorticity

• Dutton

• NCSUI (NC State U. Index)

•Colson-Panofsky

• Ellrod1

• NCSUI (N.C. State U. Index)

• Saturated Richardson Number

• Frontogenesis Function

• LAZ (Laikhman-Alter-Zalik)

• NGM1 and NGM2

• ABSIA

• UBF (Unbalanced Flow)

• NVA (Negative Voriticity Advection)

• Tropopause Height

• Wind Speed

Turbulence Indices

Page 11: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Approaches to Diagnose-CIT

• Detailed case studies

• Data mining based on comparisons of thunderstorm features and environment data with “truth” data (data mining = discovery of patterns or relationships through the automated analysis of data)– Improve understanding of processes involved – Build/tune automated diagnosis algorithm

• Fine-scale numerical modeling of interesting cases

• Feedback between these approaches

Page 12: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Early statistical results comparing convection to out-of-cloud turbulence

Page 13: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Initial results: evaluating FAA thunderstorm avoidance auidelines

• For all aircraft turbulence reports over 11 months in summers of 2004 and 2005, computed– horizontal proximity to thunderstorms, indicated by

NCWD VIL values (e.g., >= 3.5 kg m-2)– vertical proximity to thunderstorm tops, indicated

by radar echo tops• Stratified data by proximity values• Determined frequency of different levels of turbulence

in each proximity range and compared to average frequency to get “risk”

Page 14: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Results: Horizontal proximity

Turbulence categories:

Page 15: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Results: Vertical proximity

Turbulence categories:

Page 16: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

“Dartboard” comparisons

• Motivations– Investigate turbulence severity dependence on

whether convection is upwind or downwind– Investigate turbulence dependence on intensity

and size of convective activity• Approach

– For each aircraft measurement, orient “dart board” based on aircraft wind direction (5-10, 10-20, 20-40, 40-80, 80-160 nmi rings, 60 wedges)

– For each in situ measurement, compute • distance to convection within each wedge

(convection given by NCWD VIL)• coverage by convection within wedge “rings”

Page 17: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Wedge orientation

Wedge 0

Wedge 1

Wedge 2

Wedge 5

Wedge 4

Wedge 3

Wind vector

Page 18: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

“Dartboard”

51020 40 80 160

Page 19: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Wedge distance to convection (alt > 20kft)

Peak EDR = 0.05 (null)

Peak EDR >= 0.35 (MoG)

Red: VIL = 0.9 kg m-2

Orange: VIL = 5

Green: VIL = 10

Lt. Blue: VIL = 15

Blue: VIL = 30

Page 20: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Wedge distance to convection (alt > 20kft)

Avg. EDR = 0.05 (null)

Avg. EDR >= 0.35 (MoG)

Red: VIL = 0.9 kg m-2

Orange: VIL = 5

Green: VIL = 10

Lt. Blue: VIL = 15

Blue: VIL = 30

Page 21: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Coverage: 5-10 nmi (alt > 20kft)

Peak EDR = 0.05 (null)

Peak EDR >= 0.35 (MoG)

Red: VIL = 0.9 kg m-2

Orange: VIL = 5

Green: VIL = 10

Lt. Blue: VIL = 15

Blue: VIL = 30

Page 22: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Coverage: 10-20 nmi (alt > 20kft)

Peak EDR = 0.05 (null)

Peak EDR >= 0.35 (MoG)

Red: VIL = 0.9 kg m-2

Orange: VIL = 5

Green: VIL = 10

Lt. Blue: VIL = 15

Blue: VIL = 30

Page 23: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Coverage: 20-40 nmi (alt > 20kft)

Peak EDR = 0.05 (null)

Peak EDR >= 0.35 (MoG)

Red: VIL = 0.9 kg m-2

Orange: VIL = 5

Green: VIL = 10

Lt. Blue: VIL = 15

Blue: VIL = 30

Page 24: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Coverage: 40-80 nmi (alt > 20kft)

Peak EDR = 0.05 (null)

Peak EDR >= 0.35 (MoG)

Red: VIL = 0.9 kg m-2

Orange: VIL = 5

Green: VIL = 10

Lt. Blue: VIL = 15

Blue: VIL = 30

Page 25: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Coverage: 80-160 nmi (alt > 20kft)

Peak EDR = 0.05 (null)

Peak EDR >= 0.35 (MoG)

Red: VIL = 0.9 kg m-2

Orange: VIL = 5

Green: VIL = 10

Lt. Blue: VIL = 15

Blue: VIL = 30

Page 26: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Learning predictive algorithm: random forests

• Basic idea– “grow” multiple decision trees to predict turbulence

based on “dartboard” values, each using a random subset of data (“bagging”) and random splitting variables

– trees function as “ensembles of experts”– trees “vote” to determine consensus categorization;

they also create a “probability distribution” over classes

Vote: 4 Vote: 2 Vote: 4 Vote: 4 Vote: 1

=> consensus vote: 4 (“confidence” 3/5)

Page 27: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Initial results (ROC curves)

• Discriminate light or greater (in situ 1/3 > 0.1 m2/3 s-1) vs. null turbulence (random and biased summertime data training samples, with and without wind magnitude)

Page 28: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Initial results (ROC curves)

• Discriminate moderate or greater (in situ 1/3 > 0.3 m2/3 s-1) vs. less than moderate turbulence

Page 29: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Next steps

• Interpret data mining results to understand importance of different variables

• Develop an “augmented in situ database” with quality-controlled EDR values, RUC model, and variables derived from RUC model data

• Perform “dart board” comparisons that incorporate cloud top information for each region, use RUC model winds for orientation, and incorporate augmented in situ data

• Add temporally-lagged data to the analysis• Incorporate thunderstorm “objects” and features• Use results from case studies and simulations to

modify/refine approach

Page 30: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.
Page 31: Sources of Turbulence FAA Turbulence PDT Turbulence Forecasting Graphical Turbulence Guidance (GTG) –NWP-model-based turbulence forecasts with dynamically-tuned.

Challenges• Large number of data sources • Analysis/tracking/extrapolation/feature identification from multiple

4-D data fields required– “Curse of dimensionality”

• In situ EDR data not ideal “truth” • Many different sources and conditions, and their interactions,

cause observed turbulence• Aircraft data are not representative samples of the atmosphere• Need additional data sources

– “echo tops” data are only to nearest 5,000 ft– object information (size or severity) of nearby storm– history and track of the storm?– environmental conditions that may affect propagation of

turbulence, breaking of “gravity waves”• Need physical basis for narrowing down fields/features to

include in analysis