Source: Google Earth SSIR* CoGAA MOSFETs DG MOSFETs 0.31 …

1
Previous Approaches Dong-Il Moon, Jin-Woo Han, and Meyya Meyyappan Center for Nanotechnology, NASA Ames Research Center E-mail: [email protected] Introduction Fabrication of Suspended SiNWs Conclusions SiNW by One-Step Etching Route (This Work) Electrical Characteristics Space Applications CMOS Technology in Space Radiation Effects on SiNW GAA FETs ` Artificial satellites Source: Google Earth Satellite industry SSIR* Thousands of the artificial satellites are on orbit. Continuous growth of the satellite industry is expected. *SSIR: Sate of the Satellite Industry Report, satellite industry association (2012) Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor Reliability Performance On Earth Reliability Performance In Space Gate Gate Gate Bulk silicon Single-gate Tri-gate Gate-all-around Buried oxide Planar Non-planar Reliability Performance Excellent channel controllability Buried oxide (BOX) Si substrate SiGe Si substrate Top silicon Silicon Hard mask SOI process SEG process SOI: silicon-on-insulator SEG: selective epitaxial growth SiNW: silicon nanowire SEG layers Hard mask Anisotropic etching Suspended SiNW Sacrificial layer Si substrate Sacrificial layer removal Suspended SiNW: basic building block for GAA FETs Previous approaches: SOI substrate or epitaxial growth on bulk - CMOS low-compatible, high cost, and low throughput PR PR SF 6 Bulk-Si Bulk-Si Polymer C 4 F 8 *PR: photo-resist Anisotropic etching Polymerization (passivation: C 4 F 8 ) Isotropic etching (SF 6 ) TCP 9400DFM Exelan HPT Reactive Ion Etching Si bulk substrate S D SiNW G I D I leak Si bulk substrate S D G I leak -1.0 -0.5 0.0 0.5 1.0 10 -13 10 -11 10 -9 10 -7 10 -5 Drain current, I D (A) Gate voltage, V G (V) 0.0 0.5 1.0 0 2 4 6 8 Drain current, I D (A) Drain voltage, V D (V) V G = 0 V ~ 1 V 0.25 V step 25 50 75 100 0.00 0.05 0.10 0.15 0.20 W NW / H NW 6 / 10 nm 10 / 13 nm 13 / 16 nm 16 / 19 nm DIBL (V/V) Gate length, L G (nm) 25 50 75 100 60 70 80 90 100 W NW / H NW 6 / 10 nm 10 / 13 nm 13 / 16 nm 16 / 19 nm SS (mV/dec) Gate length, L G (nm) Process Optimization Process Flow of SiNW GAA FETs Increment of isotropic etching time Optimization of height and width of SiNWs Bulk substrate Suspended SiNW by one-step etching route Sacrificial oxidation Oxide dep. and CMP Partial oxide etching (STI) Thermal oxidation in-situ n + poly-Si dep. Poly-Si CMP and HM dep. Gate patterning Spacer formation S/D implantation RTA and H 2 annealing SiNW Gate S D (100) p-type a-a’ b-b’ 100 nm SiNW GAA FET on a bulk substrate DIBL: 150 mV/V, SS: 87 mV/dec, I ON /I OFF > 10 6 Excellent immunity against SCEs GAA structure with SiNW channel ` 60 27 Co 60 28 Ni 0.31 MeV b - 1.48 MeV b - 1.1732 MeV g 60 Co (Cobalt-60) - Common radiation source - g-ray with around 1.3 MeV c.f.) Part of cosmic ray Specific radiation condition - Total dose : 1, 5, 10 Mrad(SiO 2 ) - Dose rate : 460 rad(SiO 2 )/s c.f.) 1 Mrad : typical tolerance of radiation hardened circuit 1 10 -180 -150 -120 -90 -60 -30 0 V TH (mV) Total dose (Mrad) L g = 25 nm L g = 30 nm L g = 35 nm L g = 50 nm L g = 100 nm 1 10 0 5 10 15 20 SS (mV/dec) Total dose (Mrad) L g = 25 nm L g = 30 nm L g = 35 nm L g = 50 nm L g = 100 nm 20 40 60 80 100 0 5 10 15 20 SS (mV/dec) Gate length, L g (nm) GAA MOSFETs 1 Mrad 5 Mrad 10 Mrad DG MOSFETs (J. Nam et al) 0.5 Mrad 20 40 60 80 100 -150 -120 -90 -60 -30 0 V TH (mV) Gate length, L g (nm) GAA MOSFETs 1 Mrad 5 Mrad 10 Mrad DG MOSFETs (J. Nam et al) 0.5 Mrad “Rebound effect” Radiation Source Dose Dependency Advantage of GAA Gate SiNW * Isolation oxide Bulk substrate N f & N it Gate Buried oxide Bulk substrate Channel HM ** N f & N it GAA MOSFETs DG MOSFETs GAA MOSFETs - All N f and N it were screened out by the gate. DG MOSFETs - Some portions of N f and N it influenced the channel. *SiNW: Silicon nanowire **HM: Hard mask ` Junction Modification Channel (p) Drain (n+) Gate -20 -10 0 10 20 30 10 14 10 16 10 18 10 20 10 Location (nm) -20 -10 0 10 20 30 10 14 10 16 10 18 10 20 10 22 Net doping concentration (cm -3 ) Location (nm) SCEs TID Drain (n+) Gate p Spacer n+ p Spacer n+ N f & N it N f & N it L ext Original GAA MOSFETs Junction-modified GAA MOSFETs ( Additional RTP : 1000 C o for 5 s) Increase SCEs, but suppress TID effects Silvaco simulation Optimization of SiNW GAA FETs -1.2 -0.9 -0.6 -0.3 0.0 0.3 10 -13 10 -11 10 -9 10 -7 10 -5 10 -3 Drain current, I d (A) Gate voltage, V g (V) Original GAA MOSFETs Initial, 10 Mrad Junction-modified GAA MOSFETs Initial, 10 Mrad V d = 1 V L g = 25 nm Original GAA FETs Junction-modified GAA FETs V TH,initial -0.332 V -0.600 V SS initial 76.9 mV/dec 108.5 mV/dec Increased short-channel effects (SCEs) Original GAA FETs Junction-modified GAA FETs V TH - 60 mV - 0.2 mV SS 10.9 mV/dec 3.3 mV/dec Suppressed total ionizing dose (TID) effects Gate L G W NW *source: F. Laermer et al., US-Patent No. 5501893 * An one-step plasma etching route was developed to form a suspended silicon nanowire on a bulk substrate. A gate-all-around field-effect transistor was fabricated and characterized for radiation hardening applications. The fabricated devices showed stronger radiation-tolerance than the double-gate MOSFETs due to the separation between the channel and the isolation oxide. The role of the gate spacer on TID effects was observed and verified through the overlapped junction profile. Optical litho. SiNW from one time loading Cleaning PR ashing Aniso. etch Polymer dep. Iso. etch HM etch

Transcript of Source: Google Earth SSIR* CoGAA MOSFETs DG MOSFETs 0.31 …

Previous Approaches

Dong-Il Moon, Jin-Woo Han, and Meyya Meyyappan

Center for Nanotechnology, NASA Ames Research Center

E-mail: [email protected]

Fabrication of Suspended SiNWs

Conclusions

SiNW by One-Step Etching Route (This Work)

Electrical Characteristics

Space Applications CMOS Technology in Space

Radiation Effects on SiNW GAA FETs

`

Artificial satellites

Source: Google Earth

Satellite industry

SSIR*

• Thousands of the

artificial satellites

are on orbit.

• Continuous

growth of the

satellite industry

is expected.

*SSIR: Sate of the Satellite

Industry Report, satellite

industry association (2012)

Fabrication of a Silicon Nanowire on a Bulk Substrateby Use of a Plasma Etching and Total Ionizing Dose Effects

on a Gate-All-Around Field-Effect Transistor

Reliability

Performance

On Earth

Reliability

Performance

In Space Gate GateGate

Bulk silicon

Single-gate Tri-gate Gate-all-around

Buried oxide

Planar Non-planar

Reliability Performance

Excellent

channel controllability

Buried oxide (BOX)

Si substrate

SiGe

Si substrate

Top silicon Silicon

Hard mask

SOI process SEG process

SOI: silicon-on-insulator

SEG: selective epitaxial growth

SiNW: silicon nanowire

SEG layers

Hard mask

Anisotropic

etching

Suspended SiNWSacrificial layer

Si substrate

Sacrificial layer

removal

• Suspended SiNW: basic building block for GAA FETs• Previous approaches: SOI substrate and epitaxial growth

- CMOS low-compatible, high cost, and low throughput

• Suspended SiNW: basic

building block for GAA

FETs

• Previous approaches:

SOI substrate or

epitaxial growth on bulk

- CMOS low-compatible,

high cost, and low

throughput

PR PRSF6

Bulk-Si Bulk-Si

PolymerC4F8

*PR: photo-resist

Anisotropic etching

Polymerization

(passivation: C4F8)

Isotropic etching (SF6)

TCP 9400DFM

Exelan HPT

Reactive Ion Etching

Si bulk substrate

S DSiNW

GID

Ileak

Si bulk substrate

S DG

Ileak

-1.0 -0.5 0.0 0.5 1.010

-13

10-11

10-9

10-7

10-5

Dra

in c

urr

en

t, I

D (

A)

Gate voltage, VG (V)

0.0 0.5 1.0

0

2

4

6

8

Dra

in c

urr

en

t, I

D (A

)

Drain voltage, VD (V)

VG = 0 V ~ 1 V

0.25 V stepSi bulk substrate

S DSiNW

GID

Ileak

Si bulk substrate

S DG

Ileak

-1.0 -0.5 0.0 0.5 1.010

-13

10-11

10-9

10-7

10-5

Dra

in c

urr

en

t, I

D (

A)

Gate voltage, VG (V)

0.0 0.5 1.0

0

2

4

6

8

Dra

in c

urr

en

t, I

D (A

)

Drain voltage, VD (V)

VG = 0 V ~ 1 V

0.25 V step

25 50 75 1000.00

0.05

0.10

0.15

0.20 W

NW / H

NW

6 / 10 nm

10 / 13 nm

13 / 16 nm

16 / 19 nm

DIB

L (

V/V

)

Gate length, LG (nm)

25 50 75 10060

70

80

90

100

WNW

/ H

NW

6 / 10 nm

10 / 13 nm

13 / 16 nm

16 / 19 nm

SS

(m

V/d

ec

)

Gate length, LG (nm)

25 50 75 1000.00

0.05

0.10

0.15

0.20 W

NW / H

NW

6 / 10 nm

10 / 13 nm

13 / 16 nm

16 / 19 nm

DIB

L (

V/V

)

Gate length, LG (nm)

25 50 75 10060

70

80

90

100

WNW

/ H

NW

6 / 10 nm

10 / 13 nm

13 / 16 nm

16 / 19 nm

SS

(m

V/d

ec

)

Gate length, LG (nm)

Process Optimization

Process Flow of SiNW GAA FETs

Increment of isotropic etching time

Optimization of height and width of SiNWs

• Bulk substrate

• Suspended SiNW

by one-step etching route

• Sacrificial oxidation

• Oxide dep. and CMP

• Partial oxide etching (STI)

• Thermal oxidation

• in-situ n+ poly-Si dep.

• Poly-Si CMP and HM dep.

• Gate patterning

• Spacer formation

• S/D implantation

• RTA and H2 annealing

SiNW

Gate

S

D

(100) p-type

a-a’

b-b’

100 nm

• SiNW GAA FET on a bulk substrate

DIBL: 150 mV/V, SS: 87 mV/dec, ION/IOFF > 106

• Excellent immunity against SCEs

GAA structure with SiNW channel

`

60

27Co

60

28Ni

0.31 MeV b-

1.48 MeV b-

1.1732 MeV g

• 60Co (Cobalt-60)

- Common radiation source

- g-ray with around 1.3 MeV

c.f.) Part of cosmic ray

• Specific radiation condition

- Total dose : 1, 5, 10 Mrad(SiO2)

- Dose rate : 460 rad(SiO2)/s

c.f.) 1 Mrad : typical tolerance of

radiation hardened circuit

1 10-180

-150

-120

-90

-60

-30

0

V

TH (

mV

)

Total dose (Mrad)

Lg = 25 nm

Lg = 30 nm

Lg = 35 nm

Lg = 50 nm

Lg = 100 nm

1 10

0

5

10

15

20

S

S (

mV

/de

c)

Total dose (Mrad)

Lg = 25 nm

Lg = 30 nm

Lg = 35 nm

Lg = 50 nm

Lg = 100 nm

20 40 60 80 100

0

5

10

15

20

S

S (

mV

/de

c)

Gate length, Lg (nm)

GAA MOSFETs

1 Mrad

5 Mrad

10 Mrad

DG MOSFETs (J. Nam et al)

0.5 Mrad

20 40 60 80 100-150

-120

-90

-60

-30

0

V

TH (

mV

)

Gate length, Lg (nm)

GAA MOSFETs

1 Mrad

5 Mrad

10 Mrad

DG MOSFETs (J. Nam et al)

0.5 Mrad

“Rebound effect”

Radiation Source Dose Dependency

Advantage of GAA

Gate

SiNW*

Isolation oxide

Bulk substrate

Nf & Nit

Gate

Buried oxide

Bulk substrate

Channel

HM**

Nf & Nit

GAA MOSFETs DG MOSFETs• GAA MOSFETs

- All Nf and Nit

were screened

out by the gate.

• DG MOSFETs- Some portions of

Nf and Nit

influenced

the channel.

*SiNW: Silicon nanowire

**HM: Hard mask

`

Junction Modification

Channel

(p)

Drain

(n+)

Gate

-20 -10 0 10 20 3010

14

1016

1018

1020

1022

Location (nm)-20 -10 0 10 20 30

1014

1016

1018

1020

1022

Net

do

pin

g

co

ncen

trati

on

(c

m-3)

Location (nm)

SCEs ↑TID ↓

Drain

(n+)

Gate

p

Spacer

n+ p

Spacer

n+

Nf & Nit Nf & Nit

Lext

Original GAA MOSFETsJunction-modified GAA MOSFETs

( Additional RTP : 1000 Co for 5 s)

Increase SCEs, but suppress TID effects

Silvaco simulation

Optimization of SiNW GAA FETs

-1.2 -0.9 -0.6 -0.3 0.0 0.310

-13

10-11

10-9

10-7

10-5

10-3

Dra

in c

urr

en

t, I

d (

A)

Gate voltage, Vg (V)

Original GAA MOSFETs

Initial, 10 Mrad

Junction-modified GAA MOSFETs

Initial, 10 Mrad

Vd = 1 V

Lg = 25 nm

Original GAA FETs Junction-modified GAA FETs

VTH,initial -0.332 V -0.600 V

SSinitial 76.9 mV/dec 108.5 mV/dec

• Increased short-channel effects (SCEs)

Original GAA FETs Junction-modified GAA FETs

VTH - 60 mV - 0.2 mV

SS 10.9 mV/dec 3.3 mV/dec

• Suppressed total ionizing dose (TID) effects

Gate

LG

WNW

*source: F. Laermer et al., US-Patent No. 5501893

*

Increment of isotropic etching time

Optimization of height and width of SiNWs

Increment of isotropic etching time

Optimization of height and width of SiNWs

Increment of isotropic etching time

Optimization of height and width of SiNWs

Increment of isotropic etching time

Optimization of height and width of SiNWs

Increment of isotropic etching time

Optimization of height and width of SiNWs

Increment of isotropic etching time

Optimization of height and width of SiNWs

• An one-step plasma etching route was developed to form a suspended silicon

nanowire on a bulk substrate.

• A gate-all-around field-effect transistor was fabricated and characterized for

radiation hardening applications.

• The fabricated devices showed stronger radiation-tolerance than the double-gate

MOSFETs due to the separation between the channel and the isolation oxide.

• The role of the gate spacer on TID effects was observed and verified through the

overlapped junction profile.

Optical

litho.

SiNW from one

time loadingCleaning

PR

ashing

Aniso.

etch

Polymer

dep.

Iso.

etch

HM

etch