Some distributions on pseudo-Brownian motion and pseudo...

53
Some distributions on pseudo-Brownian motion and pseudo-random walk Aim ´ e LACHAL Institut Camille Jordan Universit ´ e de Lyon, INSA de Lyon — France ——— Recent developments in probability theory and stochastic processes A conference in honour of Enzo Orsingher On the occasion of his 70th birthday Rome — September 23, 2016 1/21

Transcript of Some distributions on pseudo-Brownian motion and pseudo...

Page 1: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Some distributionson pseudo-Brownian motion

and pseudo-random walk

Aime LACHALInstitut Camille Jordan

Universite de Lyon, INSA de Lyon — France

———

Recent developments in probability theory and stochastic processesA conference in honour of Enzo Orsingher

On the occasion of his 70th birthdayRome — September 23, 2016

1/21

Page 2: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Acknowledgments

It is a great honorand a huge pleasure for me

to open this conferencededicated to Professor Enzo Orsingher.

I warmly thank the organizersfor having invited me

at this exceptional event.

2/21

Page 3: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Acknowledgments

I met Enzo the first time in 2004,it was the beginning

of several collaborationsand many correspondences.

2/21

Page 4: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Acknowledgments

IHP 2006 SPL 2008

EJP 2010 SPA 2012 MPRF 2015

Nice collaborations...(with Enzo Orsingher, Samantha Leorato and Valentina Cammarota)

2/21

Page 5: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Acknowledgments

A common point:

“High-order” (i.e., order > 2)partial differential equations...

2/21

Page 6: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Acknowledgments

Not simply a probabilist colleague,not simply a collaborator of mine,

Enzo is a genuine friend.

I would like to thank himespecially for his immense generosity:

Each time I came in Roma,I have always been very well received.

2/21

Page 7: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Acknowledgments

Assisi 2004 Ravello 2006 Gubbio 2008

Nice memories...

2/21

Page 8: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Prologue

Some fascinating formulae...

A new topicin my life of “stochastician”...

3/21

Page 9: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Some fascinating formulae...

P

{Tt

+∈ds

}/ds =

√3

2π1

3√

s(t − s)2

P

{Tt−∈ds

}/ds =

√3

2π1

3√

s2(t − s)

s ∈ (0, t)

E. Orsingher — 1991Processes governed by signed measures connected

with third-order “heat-type” equationsLitovskii Matematicheskii Sbornik (Lithuanian Mathematical Journal)

A kind of Arcsine Law?!(i.e. Paul Levy’s arcsine law for Brownian motion)

4/21

Page 10: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Recalling a well-known connection

Heat equation (of order 2)(and parabolic/elliptic equations of order 2)

⇑⇓

Brownian motion / Random walk(and diffusion processes)

What about the higher-order?5/21

Page 11: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation—

Continuous space/time

6/21

Page 12: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

where

∂t =∂

∂tandDx =

(−1)N−1

∂2N

∂x2N=(−1)N−1∆N

x (N integer ≥ 2, even order)

±∂2N+1

∂x2N+1(N integer ≥ 1, odd order)

7/21

Page 13: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

where

∂t =∂

∂tandDx =

(−1)N−1

∂2N

∂x2N=(−1)N−1∆N

x (N integer ≥ 2, even order)

±∂2N+1

∂x2N+1(N integer ≥ 1, odd order)

−→ Elementary solution:

p(t , x) =

1

∫ +∞

−∞

e ixu−tu2Ndu (even order)

12π

∫ +∞

−∞

e ixu±iu2N+1du (odd order)

7/21

Page 14: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

where

∂t =∂

∂tandDx =

(−1)N−1

∂2N

∂x2N=(−1)N−1∆N

x (N integer ≥ 2, even order)

±∂2N+1

∂x2N+1(N integer ≥ 1, odd order)

−→ Pseudo-Markov process (pseudo-Brownian motion)(Bt)t≥0 with pseudo-transition densities

p(t; x, y) = Px{Bt ∈dy}/dy = p(t , x − y)

7/21

Page 15: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Equation:

∂tu(t , x) = Dxu(t , x) t>0, x∈R

Warning:

p has a varying sign,so Px is a signed measure

with total mass 1 and infinite total variation!

−→ Problems in defining properly the pseudo-process...

The results to be announcedare valid at least formally...

7/21

Page 16: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

01[0,+∞)(Bs) ds

0

x

t

8/21

Page 17: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

01[0,+∞)(Bs) ds

−→ Pseudo-distribution of Tt :Even order (Krylov 1960), arcsine law

P0{Tt ∈ds}/ds =1

π√

s(t − s)s∈(0,t)

P0{Tt ≤ s} =2π

arcsin

√st

s∈[0,t]

8/21

Page 18: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

01[0,+∞)(Bs) ds

−→ Pseudo-distribution of Tt :Order 3 (Orsingher 1991), Beta law

P0{Tt ∈ds}/ds =

√3

2π1

3√

s(t − s)2for +

∂3

∂x3

√3

2π1

3√

s2(t − s)for − ∂3

∂x3

s∈(0,t)

8/21

Page 19: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

01[0,+∞)(Bs) ds

−→ Pseudo-distribution of Tt :Odd order (AL 2003), Beta law – e.g. for + ∂2N+1/∂x2N+1

P0{Tt ∈ds}/ds = 1π sin

(N

2N+1π)×

s−N

2N+1 (t − s)−N+1

2N+1 for even N

s−N+12N+1 (t − s)−

N2N+1 for odd N

Examples: orders 5 and 7 (Hochberg & Orsingher 1991–1994)

8/21

Page 20: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

01[0,+∞)(Bs) ds

−→ Joint pseudo-distribution of (Tt ,Bt):Intermediate solution (AL 2003), Pseudo-Brownian bridge P0{Tt ∈ds |Bt = 0}/ds =

1t

s∈(0,t) Uniform law

P0{Tt ∈ds |Bt > (or <) 0}/ds = . . . Beta laws

Examples: orders 3 and 4 (Nikitin & Orsingher 2000)

8/21

Page 21: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Sojourn time:

Tt = measure{s ∈ [0, t] : Bs ≥ 0} =

∫ t

01[0,+∞)(Bs) ds

−→ Joint pseudo-distribution of (Tt ,Bt):Intermediate solution (AL 2003), Pseudo-Brownian bridge P0{Tt ∈ds |Bt = 0}/ds =

1t

s∈(0,t) Uniform law

P0{Tt ∈ds |Bt > (or <) 0}/ds = . . . Beta laws

Examples: orders 3 and 4 (Nikitin & Orsingher 2000)

General Solution (V. Cammarota & AL 2010–2012)

Px{Tt ∈ds,Bt ∈dy}/(ds dy) = . . .

8/21

Page 22: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max0≤s≤t

Bs

0

x•

Mt

t

9/21

Page 23: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max0≤s≤t

Bs

−→ Pseudo-distribution of Mt :Order 3 (Orsingher 1991)

P0{Mt ∈dy}/dy =

3 p(t , y) for +

∂3

∂x3

p(t , y)+ 1Γ( 1

3 )

∫ t

0

∂p∂y (s, y)

(t − s)2/3ds for − ∂3

∂x3

y>0

with

p(t , y) =1

∫ +∞

−∞

e iyu∓itu3du =

13√3t

Ai

± x3√3t

where Ai is the Airy function

9/21

Page 24: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max0≤s≤t

Bs

−→ Pseudo-distribution of Mt :Arbitrary order (AL 2003) – e.g. for (−1)N−1∂2N/∂x2N

Px{Mt ∈dy}/dy =N∑

k=1

αk

∫ t

0

∂k p

∂xk(s; x, y)

ds

(t − s)1−k/Nx<a

for some constants αk

9/21

Page 25: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Running maximum:

Mt = max0≤s≤t

Bs

−→ Joint pseudo-distribution of (Mt ,Bt):Arbitrary order (AL 2007)

Px{Mt ∈dy,Bt ∈dz}/dy dz = . . .

Examples: orders 3 and 4 (Beghin, Hochberg, Orsingher &Ragozina 2000–2001)

9/21

Page 26: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf{t ≥ 0 : Bt > a

}x<a

0

x•

a

Bt

tτa

Bτa •

10/21

Page 27: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf{t ≥ 0 : Bt > a

}x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):Order 2 – Brownian motion!

Bτa = a ==> Px{Bτa ∈dz}/dz = δa(z)

10/21

Page 28: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf{t ≥ 0 : Bt > a

}x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):Order 2 – Brownian motion!

Bτa = a ==> Px{Bτa ∈dz}/dz = δa(z)

Order 4 – “Biharmonic” Brownian motion (Nishioka 1996)−→ “Monopoles and dipoles”

Px{Bτa ∈dz}/dz = δa(z) − (x − a)δa′(z)

in the sense

Ex[ϕ(Bτa )] = ϕ(a) + (x − a)ϕ′(a) for any test function ϕ

10/21

Page 29: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf{t ≥ 0 : Bt > a

}x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):Order 2 – Brownian motion!

Bτa = a ==> Px{Bτa ∈dz}/dz = δa(z)

Order 4 – “Biharmonic” Brownian motion (Nishioka 1996)−→ “Monopoles and dipoles”

Px{Bτa ∈dz}/dz = δa(z) − (x − a)δa′(z)

in the sense

Ex[ϕ(Bτa )] = ϕ(a) + (x − a)ϕ′(a) for any test function ϕ

==> Bτa seems to be concentrated at a...10/21

Page 30: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First overshooting time:

τa = inf{t ≥ 0 : Bt > a

}x<a

−→ Joint pseudo-distribution of (τa ,Bτa ):Arbitrary order (AL 2007) – e.g. for (−1)N−1∂2N/∂x2N

−→ “Multipoles”

Px{Bτa ∈dz}/dz =N−1∑q=0

(−1)q (x − a)q

q!δ(q)

a (z)

Px{τa ∈dt ,Bτa ∈dz}/dt dz = . . .

10/21

Page 31: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First exit time:

τab = inf{t ≥ 0 : Bt <(a, b)

}x∈(a,b)

0

x•

a

b

Bt

tτab

Bτab •

11/21

Page 32: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First exit time:

τab = inf{t ≥ 0 : Bt <(a, b)

}x∈(a,b)

0

x•

a

b

Bt

tτab

Bτab •

11/21

Page 33: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First exit time:

τab = inf{t ≥ 0 : Bt <(a, b)

}x∈(a,b)

−→ Joint pseudo-distribution of (τab ,Bτab ):Order 2 – Brownian motion and gambler’s ruin!

Px{Bτab ∈dz}/dz =b − xb − a

δa(z) +x − ab − a

δb(z)

In particular, the “ruin probabilities” are given by

Px{τ−a < τb

+}

=b − xb − a

and Px{τb

+ < τ−a}

=x − ab − a

where

τb+ = inf{t ≥ 0 : Bt > b}τ−a = inf{t ≥ 0 : Bt < a}

11/21

Page 34: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First exit time:

τab = inf{t ≥ 0 : Bt <(a, b)

}x∈(a,b)

−→ Joint pseudo-distribution of (τab ,Bτab ):Even order (AL 2014) – for (−1)N−1∂2N/∂x2N

Px{Bτab ∈dz}/dz =N−1∑q=0

(H−q (x) δ(q)

a (z)+H+q (x) δ(q)

b (z))

where H−q , H+q are the interpolation Hermite polynomials such that

dpH−qdxp (a) = δpq

dpH−qdxp (b) = 0

dpH+q

dxp (a) = 0dpH+

q

dxp (b) = δpq

for 0 ≤ p ≤ N − 1

Px{τab ∈dt ,Bτab ∈dz}/dt dz = . . .11/21

Page 35: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

First exit time:

τab = inf{t ≥ 0 : Bt <(a, b)

}x∈(a,b)

−→ Joint pseudo-distribution of (τab ,Bτab ):Example: order 4 – Biharmonic Brownian motion

Px{Bτab ∈dz}/dz =(x−b)2(2x−3a+b)

(b−a)3 δa(z) −(x−a)(x−b)2

(b−a)2 δa′(z)

−(x−a)2(2x+a−3b)

(b−a)3 δb(z) −(x−a)2(x−b)

(b−a)2 δb′(z)

In particular, the “ruin pseudo-probabilities” are given by

Px{τ−a<τb

+}

=(x−b)2(2x−3a+b)

(b−a)3 Px{τb

+<τ−a

}=−

(x−a)2(2x+a−3b)

(b−a)3

11/21

Page 36: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Continuous space/time

Tools:

Generalized Feynman-Kac formulaBoundary value problemsPolyharmonic functionsSpitzer identities (even orders)Algebra: Vandermonde systems, special functions...

12/21

Page 37: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4—

Discrete space/time

13/21

Page 38: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

Equation:

∂nu(n, x) = −c∆2xu(n, x) n∈N, x∈Z

where c > 0 and∂nu(n, x) = u(n + 1, x) − u(n, x)

∆2xu(n, x) = u(n, x + 2) − 4u(n, x + 1) + 6u(n, x)

−4u(n, x − 1) + u(n, x − 2)

14/21

Page 39: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

Equation:

∂nu(n, x) = −c∆2xu(n, x) n∈N, x∈Z

where c > 0 and∂nu(n, x) = u(n + 1, x) − u(n, x)

∆2xu(n, x) = u(n, x + 2) − 4u(n, x + 1) + 6u(n, x)

−4u(n, x − 1) + u(n, x − 2)

−→ Pseudo-random walk (Wm)m≥0: Wm = W0 +∑m

i=1Ui

where (Ui)i≥1 is a sequence of i.i.d. pseudo-r.v. withpseudo-distribution

P{U1 = 2} = P{U1 = −2} = −cP{U1 = 1} = P{U1 = −1} = 4cP{U1 = 0} = 1 − 6c

14/21

Page 40: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First overshooting time:

σa = inf{n ≥ 0 : Wn ≥ a

}x≤a

0

x•

a

Wn

nσa

Wσa•

15/21

Page 41: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First overshooting time:

σa = inf{n ≥ 0 : Wn ≥ a

}x≤a

0

x•

a

Wn

nσa

a+1Wσa•

15/21

Page 42: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First overshooting time:

σa = inf{n ≥ 0 : Wn ≥ a

}x≤a

−→ Joint pseudo-distribution of (σa ,Wσa ) (Sato 2002):In particular: marginal pseudo-distribution of Wσa

Px{Wσa =a}=a + 1 − x Px{Wσa =a + 1}=x − a

“Monopoles and dipoles”Pseudo-Brownian motion vs. pseudo-random walk

Ex[ϕ(Wσa )] = ϕ(a) + (x − a)[ϕ(a + 1) − ϕ(a)]

Ex[ϕ(Bτa )] = ϕ(a) + (x − a)ϕ′(a)

15/21

Page 43: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First exit time:

σab = inf{n ≥ 0 : Wn < (a, b)

}x∈[a,b]

0

x•

a

b

Wn

nσab

Wσab•

16/21

Page 44: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First exit time:

σab = inf{n ≥ 0 : Wn < (a, b)

}x∈[a,b]

0

x•

a

bb +1

Wn

nσab

Wσab•

16/21

Page 45: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First exit time:

σab = inf{n ≥ 0 : Wn < (a, b)

}x∈[a,b]

0

x•

a

b

Wn

nσab

Wσab•

16/21

Page 46: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First exit time:

σab = inf{n ≥ 0 : Wn < (a, b)

}x∈[a,b]

0

x•

a

b

a−1

Wn

nσab

Wσab•

16/21

Page 47: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Heat-type equation of order 4 – Discrete space/time

First exit time:

σab = inf{n ≥ 0 : Wn < (a, b)

}x∈[a,b]

−→ Joint pseudo-distribution of (σab ,Wσab ) (Sato 2002):In particular: marginal pseudo-distribution of Wσab

Px{Wσab =a − 1} =(x−a)(x−b)(b−x+1)

(b−a+1)(b−a+2)

Px{Wσab =a} = −(x−a+1)(x−b)(b−x+1)

(b−a)(b−a+1)

Px{Wσab =b} =(x−a)(x−a+1)(b−x+1)

(b−a)(b−a+1)

Px{Wσab =b + 1} = −(x−a)(x−a+1)(b−x)

(b−a+1)(b−a+2)

16/21

Page 48: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation—

Discrete space/time

17/21

Page 49: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Discrete space/time

Equation:

∂nu(n, x) = (−1)N−1c∆Nxu(n, x) n∈N, x∈Z

where c > 0 and∂nu(n, x) = u(n + 1, x) − u(n, x)

∆Nx u(n, x) =

N∑k=−N

(−1)k(

2Nk + N

)u(n, x + k)

18/21

Page 50: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Discrete space/time

Equation:

∂nu(n, x) = (−1)N−1c∆Nxu(n, x) n∈N, x∈Z

where c > 0 and∂nu(n, x) = u(n + 1, x) − u(n, x)

∆Nx u(n, x) =

N∑k=−N

(−1)k(

2Nk + N

)u(n, x + k)

−→ Symmetric pseudo-random walk (Wm)m≥0:Wm = W0 +

∑mi=1

Ui where (Ui)i≥1 is a sequence of i.i.d.pseudo-r.v. with pseudo-distribution

P{U1 = i} = (−1)i−1c(

2Ni + N

)if

{−N ≤ i ≤ N

i , 0

P{U1 = 0} = 1 − c(2NN

)18/21

Page 51: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Discrete space/time

First overshooting time:

σa = inf{n ≥ 0 : Wn ≥ a

}x<a

−→ Joint pseudo-distribution of (σa ,Wσa ) (AL 2014):

Px{Wσa=k }= (−1)k+a ak

(N − 1k − a

)(a + N − 1

a

)k∈{a,a+1,...,a+N−1}

Ex

(zσa1{Wσa =k }

)= . . .

19/21

Page 52: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

High-order heat-type equation – Discrete space/time

First exit time:

σab = inf{n ≥ 0 : Wn < (a, b)

}x∈[a,b]

−→ Joint pseudo-distribution of (σab ,Wσab ) (AL 2014):Px{Wσab=k }=(−1)k+a−1

Nk

(N−a−1N )(N+b−1

N )(N−1a−k)

(b−k+N−1N )

k∈{a,a−1,...,a−N+1}

Px{Wσab=k }=(−1)k+bNk

(N−a−1N )(N+b−1

N )(N−1k−b)

(k−a+N−1N )

k∈{b ,b+1,...,b+N−1}

Ex

(zσab1{Wσab =k }

)= . . .

20/21

Page 53: Some distributions on pseudo-Brownian motion and pseudo ...math.univ-lyon1.fr/~alachal/exposes/slides_rome_2016.pdf · and pseudo-random walk Aime LACHAL´ Institut Camille Jordan

Thank youfor your attention!

http://math.univ-lyon1.fr/˜alachal/exposes/slides_rome_2016.pdf

21/21