Solution structure of the Z-DNA binding domain of PKR-like...

9
1 Solution structure of the Z-DNA binding domain of PKR-like protein kinase (PKZ) from Carassius auratus and quantitative analyses of the intermediate complex during B–Z transition Ae-Ree Lee 1,† , Chin-Ju Park 2,† , Hae-Kap Cheong 3 , Kyoung-Seok Ryu 3 , Jin-Wan Park 1,3 , Mun-Young Kwon 1 , Janghyun Lee 4 , Kyeong Kyu Kim 5 , Byong-Seok Choi 4 , and Joon-Hwa Lee 1, * 1 Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, 2 Division of Liberal Arts and Sciences and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, 3 Division of Magnetic Resonance, KBSI, Chungbuk 28119, 4 Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, 5 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, Republic of Korea Supplementary Information Details of Derivation of Equations 2 Supplementary Figure S1 4 Supplementary Figure S2 5 Supplementary Figure S3 6 Supplementary Figure S4 7 Supplementary Figure S5 8 Supplementary Figure S6 9

Transcript of Solution structure of the Z-DNA binding domain of PKR-like...

Page 1: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

1

Solution structure of the Z-DNA binding domain of PKR-like protein kinase (PKZ) from Carassius auratus and

quantitative analyses of the intermediate complex during B–Z transition

Ae-Ree Lee1,†, Chin-Ju Park2,†, Hae-Kap Cheong3, Kyoung-Seok Ryu3, Jin-Wan Park1,3, Mun-Young Kwon1, Janghyun Lee4, Kyeong Kyu Kim5, Byong-Seok Choi4, and Joon-Hwa Lee1,*

1Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, 2Division of Liberal Arts and Sciences and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, 3Division of Magnetic Resonance, KBSI, Chungbuk 28119, 4Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, 5Department of Molecular Cell Biology, Sungkyunkwan University

School of Medicine, Gyeonggi 16419, Republic of Korea

Supplementary Information

Details of Derivation of Equations 2 Supplementary Figure S1 4 Supplementary Figure S2 5 Supplementary Figure S3 6 Supplementary Figure S4 7 Supplementary Figure S5 8 Supplementary Figure S6 9

Page 2: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

2

Details of Derivation of Equations. The possible pathways of B–Z transition of the 6-bp DNA duplex induced by Z-DNA binding proteins are given by:

2

2

ZPZPZ

BPBPB

PP

PP

(Scheme S1)

where P indicates the Z-DNA binding proteins and B and Z indicate the B-form and Z-form of 6-bp DNA duplexes, respectively. Based on the active B–Z transition mechanism reported previously,8 the B–Z transition pathway could be simply given by:

2ZPZPBPB PP (Scheme S2)

The total amount of added proteins ([P]tot) is the summation of the concentrations of the free protein (P) and protein complexes (BP, ZP, and ZP2):

][2][][][][ 2ZPZPBPPP tot (S1)

The dissociation constants for the BP and ZP2 complexes are given by:

][

]][[, BP

PBK BPd (S2)

][

]][[

22, ZP

PZPK ZPd (S3)

The equilibrium constant between the BP and ZP complexes is given by:

][

][1, BP

ZPKBZ (S4)

The total concentration of DNA duplexes is given by:

][][][][][ 2ZPZPBPBN tot (S5)

Eq. S2 – S4 and S5 give rise to:

2,,

21,

,

1,

,

]][[]][[]][[][][

ZPdBPd

BZ

BPd

BZ

BPdtot KK

PBK

K

PBK

K

PBBN (S6)

The relative populations of each complex state compared to [N]tot are given by:

21,2,1,2,2,,

2,,

][][][][

][

PKPKKPKKK

KK

N

B

BZZPdBZZPdZPdBPd

ZPdBPd

tot (S7)

21,2,1,2,2,,

2,

][][][

][

][

][

PKPKKPKKK

PK

N

BP

BZZPdBZZPdZPdBPd

ZPd

tot (S8)

21,2,1,2,2,,

2,1,

][][][

][

][

][

PKPKKPKKK

PKK

N

ZP

BZZPdBZZPdZPdBPd

ZPdBZ

tot (S9)

Page 3: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

3

21,2,1,2,2,,

21,2

][][][

][

][

][

PKPKKPKKK

PK

N

ZP

BZZPdBZZPdZPdBPd

BZ

tot (S10)

Eq. S7 – S10 and S1 give rise to:

21,2,1,2,2,,

21,2,1,2,

][][][

][2][][][][][

PKPKKPKKK

PKPKKPKNPP

BZZPdBZZPdZPdBPd

BZZPdBZZPdtottot

(S11)

Eq. S11 becomes Eq. S12:

0][})][]([)1]{([

})1()][][2({][][

2,,2,,2,1,

2,1,1,23

1,

totZPdBPdZPdBPdtottotZPdBZ

ZPdBZtottotBZBZ

PKKKKPNKKP

KKPNKPPK (S12)

Eq. S12 is simply expressed by:

0][][][ 23 cPbPaP (S13)

where 2,1,

11][][2 ZPd

BZtottot K

KPNa

,

1,

2,,2,

1,

)][]([1

1BZ

ZPdBPdtottotZPd

BZ K

KKPNK

Kb

,

totBZ

ZPdBPd PK

KKc ][

1,

2,,

Thus the closed-form solution of Eq. S13 has been reported as:31

3cos3

3

2

3][ 2

baa

P (S14)

where 32

3

32

2792arccos

ba

caba

Page 4: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

10 9 8 7135

130

125

120

115

110

15N

(pp

m)

PKZfree caZα

PKZcaZα - dT(CG)3

10 mM NaClA

W60-Hε1

A23Q45

W60

F51

L62

R16

L44

L41D13

K34

V50

I30

G31

Q49 S47

G19G68

N43-Hδ2 T66

Q17T25

I26

N18-Hδ2

N52-Hδ2

Q49-Hε2

K10

N18

K74A3

K70

V73

T75Q71

S21

N54 L24

S35

K56

H40

R39

V59

E55

R9

T5S53

E29K28

Y42N38A27

E4

I22

N38-Hδ2

N52D61 N48

D33K20

M7E8

I69

R46K65

N67E64

L15

Q6I12

F14

I11

M63

T36 V37N43

L32

B

4

10 mM NaCl

∆δav

g (p

pm)

0.0

0.2

0.4

0.6

0.0

0.2

0.4100 mM NaCl

Residue0 10 20 30 40 50 60

0.0

0.2250 mM NaCl

α1 α2 β2α3β1 β3

1H (ppm)

Supplementary Fig. S1. (A) Superimposition of 1H/15N-HSQC spectra of free caZαPKZ (blue) and caZαPKZ–dT(CG)3 complex ([N[tot/[P]tot = 0.6, red) in NMR buffer (pH = 6.0) containing 10 mM NaCl at 35 oC. (B) The weighted average of 1H and 15N chemical shift changes (Δδavg) of caZαPKZ upon binding to dT(CG)3 at 10 (upper), 100 (middle), or 250 mM NaCl (lower). Residues whose cross-peaks disappear during titration are represented with green square symbols. The color used to illustrate the Δδavg is: red or blue, > 0.18 ppm; orange or cyan, 0.12 – 0.18 ppm; and yellow or pale green, 0.08 – 0.12 ppm.

Page 5: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

5

■■■■

■■

■■

■■■■■■■

[N]tot / [P] tot

0

1.0

2.0

10 mM NaClA

135

130

125

120

115

110

15N

(pp

m)

10 9 8 7 6

Q49

H40

I30

A23

L24

K56

V59

D33

T25

A27

N18

G19

K20

E29S35

Q45

S53

E55

W60

D13

I22

N54

B 100 mM NaCl

10 9 8 7 6

135

130

125

120

115

110

15N

(pp

m)

1H (ppm)

Q49

H40

I30

A23

L24

K56

V59

D33

T25

A27

N18

G19

K20

E29

S35

Q45

S53

E55

W60

D13

I22

N54

Supplementary Fig. S2 . The change in 1H/15N-HSQC spectra of caZαPKZ by addition of dT(CG)3 in NMR

buffer (pH = 6.0) containing (A) 10 or (B) 100 mM NaCl at 35 oC. The cross-peak color changes gradually from blue (free) to red (bound) according to the [N]tot/[P]tot ratio.

Page 6: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

6

10 mM NaCl

Residue0 10 20 30 40 50 60

N (p

pm)

-2

0

2

B-DNA boundZ-DNA bound

∆δ

0 10 20 30 40 50 60-2

0

2

Residue

N (p

pm)

∆δ

100 mM NaCl

B-DNA boundZ-DNA bound

0 10 20 30 40 50 60-0.4

0.0

0.4

Residue

H (p

pm)

∆δ

0 10 20 30 40 50 60-0.4

0.0

0.4

Residue

H (p

pm)

∆δ

A

B

α1 α2β2

α3β1 β3

α1 α2β2

α3β1 β3

α1 α2β2

α3β1 β3

α1 α2β2

α3β1 β3

0 10 20 30 40 50 60

-1

0

1

freeB-DNA boundZ-DNA bound

Cα1 α2

β2α3

β1 β3α1 α2

β2α3

β1 β3

B-DNA boundZ-DNA bound

B-DNA boundZ-DNA bound

0 10 20 30 40 50 60

-0.2

0.0

0.2

freeB-DNA boundZ-DNA bound

Residue

N (p

pm)

∆δ

Residue

H (p

pm)

∆δ

Supplementary Fig. S3 . (A,B) The 15N (left) and 1H (right) chemical shift differences between the free and

bound form for B-DNA (red) and Z-DNA binding (blue) of caZαPKZ to dT(CG)3 at (A) 10 and (B) 100 mM NaCl at 35 oC. (C) The 15N (left) and 1H (right) chemical shift differences between [NaCl] of 10 and 100 mM for free caZαPKZ (yellow circle) and caZαPKZ bound to B-DNA (magenta circle) and Z-DNA (cyan circle) at 35 oC.

Page 7: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

7

10 9 8 7 6135

130

125

120

115

110250 mM NaCl100 mM NaCl10 mM NaCl

L24

W60-Hε1

A23

K28N38

A27

L41

R9

N43-Hδ2

R39

pH = 6.0

15N

(pp

m)

V50G68 G19

G31S47

Q49

T66

T25Q17

I26

W60

K74

K70

A3

Q45

L44

R16

K34

L62

F51

N54

S35

S21

D13S2 E4

I22

N18

N52

S53 T5

T72N48

D61

Y42H40

E29

V59

K10E8K20

D33K56 M7

Q6

V73

R46T75

T36 I11

E64

Q71

F14

I12 I69 L32

V37 N43M63K65

E55

1H (ppm)

Supplementary Fig. S4. Superimposition of 1H/15N-HSQC spectra of free caZαPKZ in NMR buffer (pH 6.0) containing 10 (red), 100 (blue), or 250 mM NaCl (green) at 25 oC.

Page 8: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

8

A

0.0 0.5 1.0 1.5 2.0 2.5

Con

c. (m

M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

[P]tot

[N]tot

[P][B][BP][ZP][ZP2]

[N]tot / [P] tot

0.0 0.5 1.0 1.5 2.0 2.5

Con

c. (m

M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B

10 mM NaCl

100 mM NaCl

[N]tot / [P] tot

Supplementary Fig. S5. (A,B) The concentrations of the total caZαPKZ ([P]tot), total dT(CG)3 ([N]tot), free

caZαPKZ ([P]), free B-DNA dT(CG)3 ([B]), and each states of the caZαPKZ–dT(CG)3 complex ([BP], [ZP], and [ZP2]) as a function of the [N]tot/[P]tot ratio at (A) 10 or (B) 100 mM NaCl.

Page 9: Solution structure of the Z-DNA binding domain of PKR-like …nmrlab.gnu.ac.kr/pdf/070_NAR_44(2016)_2936_SM.pdf · 2016-01-21 · 1 Solution structure of the Z-DNA binding domain

9

∆δH

(ppm

)

∆δN

(ppm

)

D13N18G19K20I22A23L24T25A27E29I30D33S35H40Q45Q49S53N54E55K56V59 W60

dT(CG)3 pH = 8.0

10 mM NaCl

A

100 mM NaCl

d(CG)3 pH = 8.0B

[N]tot / [P]tot

0.0 0.5 1.0 1.5 2.0-0.2

-0.1

0.0

0.1

0.2

∆δH

(ppm

)

10 mM NaCl

0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

∆δN

(ppm

)

-0.2

-0.1

0.0

0.1

0.2

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3-0.2

-0.1

0.0

0.1

0.2

0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

[N]tot / [P]tot

∆δH

(ppm

)

∆δN

(ppm

)

[N]tot / [P]tot [N]tot / [P]tot

Supplementary Fig. S6. (A) Global fitting of the 1H/15N-HSQC titration curves for caZαPKZ with dT(CG)3 as a

function of [N]tot/[P]tot ratio at pH 8.0. Data for the global fitting derived from 1H (left) and 15N (right) chemical shift changes of HSQC cross peaks of caZαPKZ at 10 (upper) or 100 mM NaCl (lower). (B) Global fitting of the 1H/15N-HSQC titration curves for caZαPKZ with d(CG)3 as a function of [N]tot/[P]tot ratio at pH 8.0. Data for the global fitting derived from 1H (left) and 15N (right) chemical shift changes of HSQC cross peaks of caZαPKZ at 10 mM NaCl.