Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC...

36
Solution Based Hybrid Thermoelectric Material SolutionBased Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory C2M Team Scientist C2M Team Asher BurnsBurg, MBA 2012 Alic Chen, PhD Mech. Eng. 2011 Russell Griffith, MBA 2012 Scientist Shannon Yee, PhD Mech. Eng. 2013 Primary Investigators Prof Rachel Segalman PhD Russell Griffith, MBA 2012 Tapan Patel, MS Mech. Eng. 2011 Prof . Rachel Segalman, PhD Jeff Urban, PhD

Transcript of Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC...

Page 1: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Solution Based Hybrid Thermoelectric MaterialSolution‐Based Hybrid Thermoelectric Material

UC Berkeley  Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory   

C2M Team ScientistC2M Team

Asher Burns‐Burg, MBA 2012 Alic Chen, PhD Mech. Eng. 2011

Russell Griffith,MBA 2012

Scientist

Shannon Yee, PhD Mech. Eng. 2013 

Primary Investigators

Prof Rachel Segalman PhDRussell Griffith, MBA 2012 Tapan Patel, MS Mech. Eng. 2011

Prof. Rachel Segalman, PhDJeff Urban, PhD

Page 2: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

• Technology Overview1

• Technology Overview

2• Market Selection

• Market Analysis and Attractiveness3

Market Analysis and Attractiveness

4• Recommendations and Path to Market

2

Page 3: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Thermoelectric Technology

1. Heat Pump: Electrical power input drives heat flow. 

2. Electric Generator: Heat flow drives electron flow.

Heat InputElectric Power InputHeat Ejectedj

+  ‐

~0.01 ‐ 2 mm

Electric Power Generated 

Cooling3

Page 4: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Opportunity for Thermoelectrics

• 60%  of primary energy is wasted as unutilized heat

• Solid state

• Heating / Cooling – and – Electrical Generation

But… historically not scalable: 

eat g / Coo g a d ect ca Ge e at o

• Materials – Reliant on expensive Bismuth Telluride

• Manufacturing – Complex and expensive process

Result: Extremely High $/W  Niche Applications 

4

Luxurycar seat

Deep space probe

Page 5: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Our Technology

Solution‐Based Hybrid Thermoelectric

• Tellurium nanowires coated in a conductive polymer (PEDOT:PSS)

• Material Produced in Water  Printable!

PrintingPrinting

5

Page 6: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Our TechnologyStrengths

‐ Low production cost( i ti )

Weaknesses‐ Material degradation @

250OC(printing)‐ Material properties allow optimized performance

> 250OC

Opportunities‐ Flexible

Threats‐ Cost of PEDOT:PSSFlexible

‐ Transparent‐ Potentially No rare earth 

l t

Cost of PEDOT:PSS‐ Material not field tested degradation unknown

elements‐ Cost effective at lowtemperatures (25OC–200OC)

‐ Scalability

6

Page 7: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Thermoelectric Product CostsEstimated Cost Structure of a Thermoelectric Product

Traditional Bismuth Telluride Thermoelectric Device

Materials ˜17%

Manufacturing˜17%

Balance of System approx. 33%

Fixed Costs approx. 33%

Traditional Bismuth Telluride Thermoelectric Device

C S i ˜30% f l f d

Our Technology

Cost Savings ˜30% of Bi2Te3 device cost

Balance of System(application dependent)

Fixed Costs (organization dependent)

Although materials and processing cost advantage is understood, BOS and Fixed 

7

costs are more difficult to quantify. However, cost advantage still remains!

Page 8: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Thermoelectrics Landscapege US

ure Ra

n

0˚C

mpe

ratu 200

Tem

20˚C

Bulk Elements Thick Film Thin Film

8Ferrotec, Inc. Glatz et al (2009) Micropelt, Inc.

Page 9: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

• Technology Overview1

• Technology Overview

2•Market Selection

3•Market Analysis and Attractiveness

3y

4• Recommendations and Path to Market

9

Page 10: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Market Applications

POWER GENERATION• Remote generation

ELECTRONICS• Batteries• Remote generation

• Grid generation• Automotive• Solar PV• Concentrated solar PV

• Batteries• LEDs• Servers• Motors• Smart glass• Concentrated solar PV

INDUSTRIAL PROCESSES

• Smart glass• Displays• Car seats• Chips

INDUSTRIAL PROCESSES• Exothermic chemical reactions• Electronics fabrication• CPG manufacturing• Chemical processing

BIOLOGICAL• Implantable devices• Wearable electronics• Chemical processing

• Glass manufacturing• Metal manufacturing

• Wearable electronics

10

Page 11: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Market Opportunity

Remote generationConcentrated 

S l PVMarket Size

LEDs

Car seats

Chips

Solar PV

Wearable LEDsSmart Glass

Ser ers

Chips

Automotive

l ibl

Wearableelectronics

Sector

Industrial processes

ServersFlexibleDisplays

Solar PV

POWER GENERATION

ELECTRONICS

INDUSTRIAL PROCESSES

processes

Batteries

Grid 

Implantabledevices

O S

BIOLOGICAL

Business RiskHigh Low

generation

11

Page 12: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Target Markets

Market Value Add Function Market Characteristics

A th ti li bilit M i l dLEDs Aesthetics, reliability Mass commercial and residential adoption by 2013‐2015

No wiring or power Market is small but growing

LEDs

Smart Glass No wiring or power requirements

Market is small but growing 5x per year

Increased efficiency Growing market. 392 MW Con. Solar PV

Smart Glass

y gplant under construction

Reliable and light High willingness to pay –$/kW h b t

Wearable Elect.

$/kW‐h can be up to $500,000 (hearing aid)

Low cost/no fuel –Remote power is typically

Huge market ‐ Rural (dev. countries) and remote

Remote Gen.

Remote power is typically > $1/kW‐h. 

countries) and remote (exploration, military)

12

Page 13: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

External Market Forces

Technologye e

Energy Price

Technology 

uenc

uence

Materials Pricee Infl

 Infl u

Policy

gative

sitive

Neg

Pos

Weak StrongWeakStrong13

Page 14: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

• Technology Overview1

Technology Overview

2•Market Selection

3•Market Analysis and Attractiveness

3

4• Recommendations and Path to Market

14

Page 15: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Sensitivity Analysis: Power Generation

1

Baseline Pub lished Datas  _

s  _

0.8

W−h

r)

A: Performanc e , $$ =B: Performanc e , $$

Electron

ics

Electron

ics

Smart GlassSmart Glass

0.6

erg

y ($

/k

Wearable 

Wearable 

Wearable ElectronicsWearable Electronics

Remote Power Generation

Remote Power Generation

0.4

ost o

f Ene

ass

ass

Remote Power Generation

Remote Power Generation

Concentrated Concentrated 

GenerationGenerationPerformance & CostImprovement

0

0.2Co

Smart G

laSm

art G

la SolarSolar

Concentrated SolarConcentrated Solar

0 20 40 60 800

Available Energy or T (K)

15

Page 16: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Sensitivity Analysis: Cooling

5

Baseline Pub lished DataA P f $$

4

W)

A: Performanc e , $$ =B: Performanc e , $$

3

Cos

t ($

/

LED CoolingLED 

Cooling2

Coo

ling CoolingCooling

0

1

LED CoolingLED Cooling

0 2 4 6 8 100

Power Input (W/ m2)

16

Page 17: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Market Attractiveness 

Market SegmentWillingness to 

PayIntegration Complexity

Market /Growth

Attractiveness RankingPay Complexity Growth  Ranking

Remote Generation 1

LED Cooling 2

Concentrated Solar 3

Wearable Electronics  3

i

Smart Glass 5

Attractive Very AttractiveNot Attractive

17

Page 18: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

• Technology Overview1

• Technology Overview

2•Market Selection

3•Market Analysis and Attractiveness

3y

4• Recommendations and Path to Market

18

Page 19: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Research Recommendations

Substitute • Select material replacement with 

Tellurium target price                 < $138/kg

Optimize Material 

Performance

• Improve material performance (ZT>1)

Performance

Design &Design & Prototype Devices

• Optimize device design ( ZT>1 )

19

Page 20: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Paths to CommercializationValue Chain

M t i l ManufacturingMaterials(Ink)

Manufacturing

(Printing)Integration Installation

Short Term

Risk to develop Long TermManufacturing

Risk of IP Security

20

Risks are present regardless of Start‐up or Licensing Strategy

Page 21: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

The Vision

Multiple standardized products 

LED CoolingWearable Remote

Smart GlassConcentrated LED Cooling

ElectronicsGenerationSmart Glass

Solar PV

21

Page 22: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Thank You!• Administration, Scientists & Fellow C2M‐ers• Scientists & Researchers• Industry Segment Experts

– Matt Scullin & Adam Lorimer (Alphabet Energy)Matt Scullin & Adam Lorimer (Alphabet Energy)– Tom Hunt (Alion)– Bob McConnell (Amonix)– Marcelo Algrain (CAT)– Steve Hahn & Harry Fowler (Dow Chemical)Steve Hahn & Harry Fowler (Dow Chemical)– Christine Ho & Brooks Kincaid (Imprint Energy)– Dale Pike (LTI Smart Glass)– Nicholas Fowler (Perpetua Power)– David Bend (PG&E)David Bend (PG&E)– Anthony Atti (Phononic Devices)– Kunal Girotra (ThinSilicon)– Brian Berkeley (Samsung Mobile Devices)– John Yriberri (Xicato)John Yriberri (Xicato)

• Venture Community– Ron Hofmann (CIEE)– Maurice Gunderson (CMEA)– KT Moortgat & Marianne Wu (MDV)– KT Moortgat & Marianne Wu (MDV)– Brian Walsh (Nth Power)– Keith Gillard (Pangaea Ventures)– Jill Watz (Vulcan Capital) 22

Page 23: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

APPENDIXAPPENDIX

23

Page 24: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Path to Commercialization Take 2

Value Creation Power or Cooling 

License Technology  Develop  Understand 

Integration & Installthrough Tech Transfer

Printing Process Integration & Determine BOS

Install

Ink TE Film TE SystemSegalman Group’s

24

Ink TE Film TE SystemSegalman Group sPatented Technology

Page 25: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

The Vision

New TEStart‐UpOr Or

WearableRemote ldLED Cooling

Wearable Electronics

RemoteGeneration

Smart GlassConcentrated Solar PV

25

Page 26: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Market Evaluation Criteria

Business Risk Business Risk

$/kW‐hr)

Technical Risk

10˚C 200˚CΔT (˚C l i )ΔT (˚Celsius)

26

Page 27: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Thermoelectric Material Cost

Na2TeO3PEDOT:PSS Asc. Acid Δ H2O

Printing

21%$4 / kg prod

2%

1%76%$15 / kg prod

Cost of Materials

$4 / kg prod.

~ $100/m2

$15 / kg prod.

$ /Dry Film

Page 28: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Relative Device Cost Savings

Traditional Technology Our Technology

Estimated 30% cost reduction

Material

Material processing at BiTe melting point (>600 OC)

Material processing in water based solution   (< 100 OC)

TE MaterialModule Assembl

y

Hand placement   high labor cost

Printed placement of TE material  low labor cost

TE Material

Module Assembly

Balance of 

SystemAPPLICATION SPECIFIC

Fi d

Balance of System

Fixed Costs

Fixed Costs APPLICATION SPECIFIC

Existing Our Technology

28

Although materials and processing costs are understood, BOS and Fixed costs are more difficult to quantify. However, cost advantage still remains!

Page 29: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Device Optimization

Cold Side

N P

Heat Sink

Fil

Hot Side

N P

++––

H t S

FilmThickness

1000Power Density

m2 )

T = 20 K

Heat Source

40Cost of Energy

T = 20 K

600

800

nsity

(W

atts

/

T = 50 KT = 100 K

20

30($

/W)

T = 50 KT = 100 K

Cost Optimization

200

400

x Po

wer

Den

10

20

Cos

t (

Power Optimization

0 0.1 0.2 0.3 0.4 0.50

Film Thic kness (mm)

Ma

0 0.02 0.04 0.06 0.08 0.10

Film Thickness (mm)

29

Page 30: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Device Concept

N P

Heat Sink

N P N P

Therm. Cond. Silicone (7 mil)λ = 1.2 W/m‐K

lcontact

N P

++––ΔT

N P N P

+ – Aluminum Foil (0.002”)λ = 235 W/m‐K

l

Heat Source

Power Density 2 Thot Tcold 2

α – Material Seebeck coefficientρ – Material Resistivityλ Material Thermal ConductivityPower Density

22 contact

l

1 2 contact

lcontact

l

λ – Material Thermal Conductivityl – Element Lengthlcontact – Contact Lengthρcontact – Elec. Contact Resistance λ Therm Contact ResistanceSource: D.M. Rowe et al. λcontact – Therm. Contact ResistanceSource: D.M. Rowe et al.

Assumptions:• Electrical Contact Resistance ~ 10‐6 Ω‐cm2

• Optimized element length for power generation (dP/dl = 0, l ~ 110µm)p g p g ( / , µ )• Achievable ΔT range – System design & integration is not considered• 30% Material packing density

30

Page 31: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Device Power Density

Custom Thermoelectric1261G‐7L31‐10CX156mm x 56mm

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

$108.5

TellurexG2‐56‐037556mm x 56mm$110

MicropeltThe image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

MPG‐D7514.3mm x 3.364mm

31

Page 32: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Scenario Analysis

InorganicInorganic

PriceScenario

Inorganic Material

Material Price ($/kg)

Price ($M/m3)

ZT

Baseline Na2TeO3 $1398 $3 441 0 1Baseline Na2TeO3 $1398 $3.441 0.1A Na2TeO3 $1398 $3.441 1.0

BNa2TeO3 $139 8 $1 082 1 0Bsubstitute

$139.8 $1.082 1.0

B1 (Best Case)Na2TeO3

substitute$139.8 $1.082 1.5

B2 (Worst Case)Na2TeO3

substitute$139.8 $1.082 0.1

32

Page 33: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Scenarios

Cost Improvement

ScenarioInorganic Material

ZT

Baseline Na2TeO3 0 1Baseline Na2TeO3 0.1

A Na2TeO3 1.0

Na2TeO3

B B1B2

BNa2TeO3

substitute1.0

B1(Best Case)

Na2TeO3

substitute1.5

A( )B2 (Worst Case)

Na2TeO3

substitute0.1 Performance 

Improvement (ZT)

Baseline

A

(ZT)

33

Page 34: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Sensitivity Analysis

5

Cost of Mat.+Man.BOS+Fi d C t 5X

4

)

BOS+Fixed Cost 5XBOS+Fixed Cost 10X

3

$/kW

−hr)

2

Cos

t (

Target MarketTarget Market

5X10X

1Scenario

5X

0 20 40 60 800

Delta T (K)

34

Page 35: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Sensitivity Analysis: Power Generation

1

Baseline: ZT~0.1A ZT 1

0.8

)

A: ZT~1B: ZT~1, Te SubB1: ZT~1.5, Te SubB2: ZT~0.1, Te Subcscs

Smart GlassSmart Glass

0.6

$/kW

−hr) 0 , e Sub

e Electron

ie Electron

i

Wearable ElectronicsWearable Electronics

Remote Power Generation

Remote Power Generation

0.4

Cos

t (

Wearabl

Wearabl

ass

ass

Remote Power Generation

Remote Power Generation

Concentrated Concentrated 

GenerationGeneration

0.2

Smart G

laSm

art G

la SolarSolar

Concentrated SolarConcentrated Solar0 20 40 60 80

0

Delta T (K)

35

Concentrated SolarConcentrated Solar

Page 36: Solution Based Hybrid Thermoelectric Material · Solution‐Based Hybrid Thermoelectric Material UC Berkeley Lawrence Berkeley National Laboratory C2M Team Scientist Asher Burns‐Burg,

Sensitivity Analysis: Cooling

5

Baseline: ZT~0.1A ZT 1

4

W)

A: ZT~1B: ZT~1, Te SubB1: ZT~1.5, Te SubB2: ZT~0.1, Te Sub

3

Cos

t ($

/ ,

LED CoolingLED 

Cooling2

Coo

ling CoolingCooling

0

1

LED CoolingLED Cooling

0 2 4 6 8 100

Power Input (W/ m2)

36