Solucionario Joule

46
Heterocyclic Chemistry 5th Edition 2010 All Answers to Exercises Chapter 8 N OEt NO 2 ch8 1(i) f. HNO 3 , c. H 2 SO 4 100 °C N OEt Electrophilic substitution ortho to EtO ch8 1(ii) N Br CO 2 H N Me Br 2 , c. H 2 SO 4 oleum N Me Br KMnO 4 , heat Electrophilic !- substitution then side-chain oxidation N ch8 2 N NH(CH 2 ) 2 NMe 2 KHN(CH 2 ) 2 NMe 2 heat Chichibabin reaction (!-substitution) N Cl ch8 3(i)(a) N NHNH 2 N 2 H 4 Nucleophilic displacement of an !-chlorine ch8 3(i)(b) N Cl N OH H 2 O Nucleophilic displacement of an !-chlorine then tautomerism to 2-pyridone N H O N H O N NO 2 ch8 3(ii) H 2 O, 60 °C N OH Nucleophilic displacement of a !-nitro then tautomerism to 4-pyridone

Transcript of Solucionario Joule

Page 1: Solucionario Joule

Heterocyclic Chemistry 5th Edition 2010 All Answers to Exercises Chapter 8

N

OEt

NO2ch8 1(i)

f. HNO3, c. H2SO4100 °C

N

OEt

Electrophilic substitution ortho to EtO

ch8 1(ii) N

Br

CO2H

N

MeBr2, c. H2SO4

oleum

N

Me

BrKMnO4, heat

Electrophilic !-substitution

then side-chain oxidation

Nch8 2 N NH(CH2)2NMe2

KHN(CH2)2NMe2heat

Chichibabin reaction (!-substitution)

N Clch8 3(i)(a) N NHNH2

N2H4

Nucleophilic displacement of an !-chlorine

ch8 3(i)(b) N Cl N OH

H2O

Nucleophilic displacement of an !-chlorinethen tautomerism to 2-pyridone

NH

O

NH

O

N

NO2

ch8 3(ii)

H2O, 60 °C

N

OH

Nucleophilic displacement of a !-nitrothen tautomerism to 4-pyridone

Page 2: Solucionario Joule

ch8 4 N

Cl

N

OMe

NaOMe MeI

NMe

OMe

+

I–

185 °C

NMe

O

Nucleophilic displacement of a !-chlorinethen quaternisation at ring nitrogenthen de-O-methylation by iodide attack

ch8 5 N

Br

NaNH2, NH3(liq)

N N

NH2

N

+NH2

– HBr

3,4-pyridyne

+ NH3

N

Br

NaOMe

N

OMe

Nucleophilic displacement of a !-bromine

N

OO

Ph

Ph

ch8 6(i) N

i-Pr2N O

LDA

N

i-Pr2N O

LiPh2CO

N

i-Pr2N O

ortho-lithiation

OHPh

Ph

acid, heat

lactonisation

N

Li

Clch8 6(ii) N Cl

I2

ortho-lithiation

LDA

N

I

Cl

Page 3: Solucionario Joule

N

F

N

F

ch8 6(iii)

LDA

N

F

Li

OHMe Me

Me2CO

ortho-lithiationselective for C-4

N SnMe3ch8 6(iv) N Br

n-BuLi, –78 °C

N Li

Me3SnCl

metal/halogen exchangethen Me3SnCl as an electrophile

N

O2N

Me

N

O2N

Me

+

Br–ch8 7 N

O2N

MeBr

Me

O+

Me

O

Deprotonation ofacidified methyl

NaHCO3

N

O2N

Me

O

N

O2N

Me

OH

+ – H– H2O

+

Ring nitrogenquaternisation

N NI

ch8 8+ +

–I –IN

+

Ring nitrogenquaternisation

II

n-Bu3SnH, AIBN

Intramolecularradical substitution

HNO

Me

HHO

ch8 9 NH

O

Me

h!

NH

O

Me

O3then NaBH4 HO

Page 4: Solucionario Joule

N

Me

NH2ch8 10 N

Me

NaNH2

Chichibabinsubstitution

NaNO2, H2SO40 °C to rt

N

Me

N2Diazotisation +

H2O

Very easy nucleophilicdisplacement of nitrogen

then tautomerism

NH

Me

O

MeI, NaOMe

N

Me

OMeO-Methylation ofpyridone anion N OMe

CO2Et

O

(CO2Et)2, KOEt

Deprotonation of !-methylthen condensation with diethyl oxalate

NH

NH2

do have activating amino

substituent+ch8 11has no

activatingsubstituentNH3

+ NH+

NH2

and

Quaternisation ofring nitrogen

N

OH

N

O

N

O

ch8 12 –+ +

BrN

OH

+Br base

– H+

Intramolecular1,3-dipolar cycloaddition

N

HO O

ch8 13 – CO2 NH

N MeFinal tautomerism

to aromatic product

Page 5: Solucionario Joule

Nch8 14

CO2EtAcHN

N

CO2EtAcHN–

N

CO2EtAcHN

+ H+

Me

MeNch8 15(i)

Me

CH2LiN

Me

N

n-BuLi

Selectivedeprotonation

of 2-methyl

PhS–SPhSPh

MeNch8 15(ii)

Me

MeN

NBSCH2Br

MeN

SPhPhSH

Selectiveradical bromination

of 3-methyl

CNCN

NMe

O NMe

Och8 164:3

NMe

CN

+I–

K3Fe(CN)6, NaOH

NMe

CN

NMe

CN

HOH

HHO

+[O] +

Hydroxide !-adductstrapped by oxidant

D DNBu

ch8 17 Nn-Bu+

I–

+ D–

Nn-Bu

HD

+ HEnamine

!-protonation Nn-Bu

HD

H

H+

+ D–+

ch8 18 N

CO2Me

N

ClCO2Methen NaBH4

N

CO2Me

+

Cl–

+ H– h!

N

CO2Me

Acylation of ring nitrogenthen hydride addition to C-2then electrocyclisation

Page 6: Solucionario Joule

ON

NO2

N

NO2

ch8 19 +

c. HNO3, c. H2SO4heat

O–

+

PCl3

N

NO2

H2, Pd/C

N

NH2

Nitration at C-4assisted by electron release

by N-oxideDe-oxygenation of N-oxide

producing POCl3

ch8 20 NH

CH2Ph

OH

Me Me

MeO

O

MeO

O

Me O

OMe

O

Me

OMe

OO

NMe Me

MeO OMe

OOMe H Me

NH3 [O]Hantzschsynthesis

N

(CH2)2OH

OOch8 21 O+

OHetero Diels–Alder

cycloaddition

H2NOH, HCl

Synthon for a 1,5-dialdehyde

O O

(CH2)2OH

No final oxidationrequired using H2NOH

ch8 22(a)(i) NH

Et

HO

CN

OH2N

CN

O

+O

Et

EtO OOxidation level of esterleads to oxy-pyridine

Page 7: Solucionario Joule

H2N NMe

N

CO2Et

Me Me

ch8 23

NH

CN

OMe

NH

HO

CN

O

ch8 22(a)(ii) H2N

CN

O

+

Me O

O

ch8 22(a)(iii) H2N

CN

O

+

O

EtO

ch8 22(b)(i) H2N

CO2Et

Me

+

O

Me

ch8 22(b)(ii) N

CO2Et

Me MeH2N

CO2Et

Me

OEt

Me O

EtO2C+

EtO2C

Me O

+

ONa O

Me Me

O

Synthon for1,3-aldehydo-ester

Synthon for1,3-keto-aldehyde

Oxidation level of esterleads to oxy-pyridine

Synthon for1,3-keto-aldehyde

Chapter 9

Nch9 1(i)

NO2+

N

NO2

Substituent benzene ringmuch more reactive than the isoquinoline benzene ring

Page 8: Solucionario Joule

N

MeO

NO2

ch9 1(ii) N

MeO

NO2

NO2+

ortho to the activating groupand at C-5 rather than C-7

NMeO

NO2

ch9 1(iii) NMeO

NO2

NO2+

ortho to the activating groupand at C-8 rather than C-7

NBr

+ Br+

ch9 2Br–

N

Br2

NBr

+

H Br

enamine!-bromination

Br2

NBr

H BrBrH

– HBrNBr

+

BrBr–

– Br2 N

Br

ch9 3 N N

Cl

CH(CO2Et)2

Cl

Cl

NaCH(CO2Et)2

Of the two !-type positionsthe isoquinoline 1-position is much more reactive

N NHCOt-Buch9 4

N

SMe

NHCO-t-Bu

N

Li

N

3n-BuLi

t-Bu

OLi

MeS–SMe

ortho-Lithiation

Page 9: Solucionario Joule

NMe

H H

ch9 5 NMe+ –I

NaBH4enamine

!-protonationNMe

H H

+

H H

NaBH4NMe

NN

OH

NH N

OH

OH

O

ch9 6

ch9 7 NH2

+ Me OMe

O O

– H2ONH Me

HCO2Me

enamine!-formylation

(Vilsmeier reaction)

DMF, POCl3

NH Me

CO2Me

H

O

N

CO2Me

MeNH Me

CO2Me

H

Cl

+probable intermediate

for electrophilic ring closure

– HCl

NH

O

MeO

CO2Mech9 8(i) NH2

MeO

+

CO2Me

CO2MeNH CO2Me

HCO2Me

MeO

– MeOH

Addition of the aniline to activated alkyneis an alternative to condensation with 1,3-dicarbonyl compond

Page 10: Solucionario Joule

ch9 8(ii)Cl NH2

+OEtH

EtO2C CO2Et

NH CO2Me

EtO2CCO2Me

Cl

250 °C

CO2Me

Cl NH

O

probable intermediatefor electrocyclic ring closure

– EtOH

NCO2Me

CCO2Me

Cl

O

aq. NaOHCO2H

Cl NH

O

N

CO2H

Phch9 9(i) NH

O

O NaOH

NH2

CO2Na

O+

Me

O Ph

Pfitzinger variationof Friedländer synthesis

ch9 9(ii) NH

O

O KOH

NH2

CO2K

O+

O CO2H

N

CO2H

OH

Cl

N

CO2H

OH

CO2H– CO2

Like decarboxylationof a !-keto-acid

NH

CO2H

Och9 9(iii) NAc

O

ONaOH

NH

MeO

O

NaO2C

Page 11: Solucionario Joule

N NH

NH

O

Och9 10(i) NH2

O

H

+O N

H

NH

O

O

Friedländer synthesismany variations are possible

N

CO2Me

CO2Me

O

O

ch9 10(ii) NH2

O

H

O

O

CO2Me

CO2Me

+

Addition of the aniline to activated alkyneproduces likely intermediate

O

O NH

O

H

CO2Me

CO2Me

Friedländer synthesismany variations are possible

N

Me

ch9 10(iii) NH2

O

Me

+Me

OS S

Friedländer synthesismany variations are possible

ch9 10(iv) N

O

NH2

O

Ph

+O

O

Me

Me

Me

Me

Friedländer synthesismany variations are possible

N N Me

SO2Ph

ch9 10(v)N NH2

O

H

+

O Me

SO2PhFriedländer synthesis

many variations are possible

Page 12: Solucionario Joule

N

N Nch9 10(vi)

N

N NH2

O

H

O+

Friedländer synthesismany variations are possible

Chapter 11

O

Me

NHPhMe

Me

O HN

Me

Me MePh

ch11 1

– H2O

O MeMe

Me

PhNH2

NPh

Me

Me

HO

Me

NPh

Me

Me Me

+ H+

+

+

Nucleophilic addition at C-2then electrocyclic ring opening

and ring closure

O

Ph

CH2PPh3Ph

Ph

+ch11 2 O PhPh

Ph

+

Ph3P=CH2

O

Ph

Ph Ph

Ph3P+

Ph3P=CH2

– H+Ph

Ph

Ph

Electrocyclicring opening

Wittig reaction to close

O

OMe

HO

Me O

OMe

O

Me

O

OMe

O

Me

CN

++ch11 3 TfO–O

O

HO

Me

MeOTf

CN

Powerful alkylating agentreacts at carbonyl oxygen

1,3-Dipolarcycloaddition

Page 13: Solucionario Joule

O

NBn

O

MeO2C

NHPh

O

O HN

O

PhNPh

O

HOch11 4– H2O

O

O

PhNH2

HH

H+

NPh

O

O O

MeO2CPhCH2NH2

Amine attack at carbonyl carbonring opening and reclosure

O NH

MeO2C

OH

Bn

– H2O

O

t-Bu

Ot-Bu O

t-Bu

t-Bu t-Bu O

t-Bu

t-Bu t-Bu+ch11 5(i)

O

t-Bu

O

Me

t-Bu

H

O

CH3

t-Bu

– Ph3C+ ClO4–

Aldol Michael Oxidation required at endto achieve aromatic oxidaiton level

ch11 5(ii) Ac2O, HClO4

OMe O

Me

Me

O O MeMe+

– H2O

Alkene acylations'Aliphatic Friedel–Crafts reactions'

OMe Ph+ch11 5(iii)

Me

Me O O Ph

O

H

Aldol O OMe Ph– H2O+ H+

Ac2OHClO4

CO2H

O O

O

Me Mech11 6 – CO2

c. HCl, heat

O OHMe

O

Me

O

O MeMe

O

– H2O

Page 14: Solucionario Joule

CO2EtOH

OEtO2C

Me

Me

ch11 7O

EtO2C

Me

Me OH

CO2Et

O

Me

Me O

EtO2C

OH

EtO2C

Me

Me OH

CO2Et

– EtOH – H2O

O

Ph

Ph Och11 8(i) O

Me

Ph

Ph

CO2Et+NaOEt

Enolate addition toactivated alkynethen lactonisation

O

Et Et

n-Pr n-PrOch11 8(ii) n-PrCO2H

CO2HEt

n-PrHO2C PPA, 200 °C

CO2H

Et

– CO2

+

O

COn-Bu

n-Bu OHOch11 8(iii)

COn-Bu

CO2Hn-Bu OCDI+

First step probablyactivation of acid by CDI

then C-acylation

HO2C

O

Ph C6H4-p-ClOch11 8(iv)

Me

O

Ph O C6H4-p-ClMeO2C

NaH+

First step probablyClaisen condensaation

O

Ph Och11 8(v) Ph O

Cl

O

Me

OMe+ KOt-Bu

First step probablyacylation by acid chloride

Note enol ethersynthon for aldehyde

Page 15: Solucionario Joule

Chapter 12

O

Me

O

Me

ch12 1 +–Cl

O Me

Me

+–Cl

+HO

O

H

HO

pyridine

O

Selective condensationat !-methyl

O

O

OH

Ac

ch12 2 O

O

Me

CO2Me NaOHthen HCl

OH OMe

O

O

Me

O

– MeOH

Initial addition at C-2

O

O

Me

CO2Me

OH

PhO

OMe

ch12 3

O

OH

H

CO2Na

OMe

+Ac2O, heat

O O

OMe PhMgBrthen HCl

–Cl

+Perkin condensation

then lactonisation

Page 16: Solucionario Joule

O MeHO

Ph

+–Cl

ch12 4(i) OHHO O

O

Me

Ph

+HCl, AcOH

Probable first intermediates

HO O

Ph

Me

O

OH– H2O

HO O

Ph

Me

O

OHO

O

ch12 4(ii)

MeO2C

OOHHO+

H2SO4

HO O

MeOO

Probably via Chapter 14

NN

Cl

NN

OMe

ch14 1(i) NHN

OPOCl3 NaOMe

Nucleophilicdisplacementof !-chlorine

NHN

OPOCl2+

Nucleophilic displacementof !-dichlorophosphate by chloride

Attack at amide-typecarbonyl oxygen

ch14 1(ii)

N

N Cl

BuNH2, 120 °CN

N NHBu

Nucleophilicdisplacementof !-chlorine

NN

Me

SMe

NN

Me

Cl

Mech14 2(i) +

– –

+

I I

NN

SMeMeI

NN

Cl

Me

MeI

Regioselectivity of quaternisationof nitrogen in diazines is not easy to predict

Page 17: Solucionario Joule

N

N Cl

CHO

Clch14 2(ii)

N

N ClCl

LiTMPN

N ClCl

LiHCO2Et

ortho-Lithiation

N

N OMeMeO

Ph

ch14 2(iii)

N

N OMe

I

MeO

N

N OMeMeO

LiTMPthen I2 HC!CPh, Pd(0)

ortho-Lithiation Sonogashira coupling

N

N NH2ch14 3(i)

N

N N2

N

N NMe2

HNO2, –5 °C+

Me2NH

Easy nucleophilic displacementof nitrogen at !-position

NNPh

Ph

ch14 3(ii)N

N

Me

Ph

PhCHO, Ac2O, heatCondensation with

methyl at an !-position

14 4(i) Cl

+OO O

Cl

AlCl3 O

CO2H

N2H4

Ar NNH

O

Ar NNH

OBr2, AcOH

– HBr

Friedel–Crafts

O

Me

MeO

Me

OMe

NN

Me

Me

14 4(ii) O

Br2, MeOH aq. acid

O OMeMe

– 2H2ON2H4

1,4-Addition to furan

Page 18: Solucionario Joule

N

N

Me

NH214 5(i)

NH2

H2N NH2+

HCO3–

O

CH(OMe)2

Me

+

Synthon for1,3-keto-aldehyde

NH

N

O

NH2H2N14 5(ii)

NH2

HN NH2

+

OEt

O

N

NaOEtNitrile leads to amino-heterocycle

Ester leads to oxy-heterocycle

NH

NH

O

OH2N14 5(iii)

OEt

O

N

NH2

H2N O

+ NaOEtNitrile leads to amino-heterocycle

Ester leads to oxy-heterocycle

14 5(iv)

N

NH

O

NH2

H2N O+

NaOEtCH(OEt)2

CH(OEt)2

1,1,3,3-Tetraethoxypropanesynthon for malondialdehyde

N

NH

SMe

MeO

N

NMe

MeO

14 6(i)O

OMe

MeO NH2

H2N S

+

OMe

MeOHCO2Et, Na

H2, Ni

Claisencondensation

Hydrogenolysis of sulfurwith Raney nickel

Page 19: Solucionario Joule

N

NH

Ph

EtO14 6(ii)

NH2

HN Et

O

CO2Me

Ph

+

HN

N

O

Me

Ph

14 6(iii)

NH2

NH2

O

Me

O

O

Ph+

Chapter 16

NH

O2N Me NH

Me

NO2

ch16 1 6:1NH

MeHNO3, Ac2O + !-Position preferred

for electrophilic substitutionEven mild electrophiles react well.

ch16 2(i) NH

CCl3COClNH O

CCl3 Br2

NH O

CCl3Br

NaOMeNH

BrOMe

O

tendency for !-positionsubstitution dominant

!-Position preferredfor electrophilic substitution

NH

Ac

CHOch16 2(ii) NH

NH

CHOAcCl, AlCl3

Deactivated pyrrole requiresLewis acid catalyst for reaction.

meta-Directing groupcontrols regiochemistry

DMF, POCl3

!-Position preferredfor Vilsmeier substitution

Page 20: Solucionario Joule

ch16 2(iii) NH

ClDMF, POCl3

NH

ClOHCLiAlH4

NH

ClMe

viaN ClH–

!-Position preferredfor Vilsmeier substitution

NH

ClHO

– H2O

ch16 3(i) NH

PhCONMe2, POCl3

NH O

PhVilsmeier !-substitution

NH

NH O

ch16 3(ii) NH

POCl3NHO

Me2N+ Vilsmeier !-substitution

ch16 3(iii) NH

POCl3NH

O+

NH N

Cyclic nature of this Vilsmeier intermediateensures that it does not hydrolyse to ketone

ch16 4 NH

HCl

ketone-like iminium ion notsufficiently reactive

to attack a third pyrrole

Me NH HN

NH HN

HH

H+

+Me

Me

Me

Me

– H+ N

H N

Me

Me

ch16 5 NH

Me MeZn, HCl

NH

Me Me NH

Me Me

Reduction involvesprotonated pyrroleNHMe

Me

H+

+

Page 21: Solucionario Joule

CO2Me

N

CO2Me

CO2Mech16 6(i) N

CO2Me

MeO2C CO2Me+ 160 °C– H H N

CO2Me

CO2MeMeO2C

Diels–Alder addition and then reverse Diels–Alder loss of ethyne

N NMeCO2Me

ch16 6(ii) NCO2Me

1O2

NCO2Me

O

O

NCO2Me

O

O SnCl2via

NMe

Diels–Alder addition of singlet oxygen

ch16 7NH

CH2O, Me2NHAcOH

NH

NMe2 MeINH

NMe3+

C5H11N

NH

N

viaN HN

H+

Mannich substitutionat pyrrole !"position

electrophile = NMe

Me

+

O

H

MeO

H

OMech16 8(i)n-PrNH2, H

Nn-PrSynthon for

succindialdehyde

+

O

H

MeO

H

OMech16 8(ii)S NH2

N

SSynthon for

succindialdehyde

O

H

MeO

H

OMech16 8(iii)

PhSO2NH2

N

S

Ph

OOSynthon forsuccindialdehyde

Page 22: Solucionario Joule

NOHEtO2C

Me O

MeO

16 9

hydrolyse,then – CO2,

then N2H4, EtONa

EtO2C

Me OHNO2 Zn, AcOH

NH2EtO2C

Me OMe

O

+

NH

EtO2C

Me Ac

Me NH

Me Et

MeH

NH

Me CO2Et

CO2EtNH2

Me O

CO2EtO

CO2Et

– ++16 10(i)

Cl

NOH

Me O

MeO

CO2Et

Me+16 10(ii)

Na2S2O4

NH

Me CO2Et

MeMeReduction of oxime to

amino in situ

CN

NH2 MeO

CO2Et

+16 10(iii)

NH

H2N CO2Et

Me

Nitrile instead of carbonylleads to amino-substituted

heterocycle

O

OMe

Me Me

H2N CO2Et+16 10(iv)

NH

O

Me

Me

Me

CO2Et

NaOEt

NH

Me Me

CO2EtMeAldolEnamineformation

Page 23: Solucionario Joule

Chapter 17

Sch17 1 S SO3HClSO3H f. HNO3

S SO3H

O2N

H2O, heat

S

O2N

SO2NS

AcONO2

H!-Position preferred

for electrophilic substitutionmeta-Directing group

dominates

S OMe S OMeO2N

NO2

>

ch17 2 S OMe

HNO3, AcOH–20 °C

!-Selectivity dominates

Sch17 3(i) S

(EtCO)2O, H3PO4 Et

O

Strong benzene-typeconditions can be used

with thiophenes

S

t-Bu

OHCch17 3(ii) S

t-Bu

PhN(Me)CHO, POCl3 Selectivity for the less-hinderedof two !-positions

S Ich17 3(iii) S

Tl(O2CCF3)2

S TlO2CCF3

aq. KI

S Li

OMe

ch17 4 S OMeLiS OMen-BuLi

S

OMe

n-BuLi

Selectivity for !-positionin lithiation dominates over ortho-directivity

Selectivity for that !-positionwhich is also ortho to methoxyl

S H

Br Br

ch17 5 S Br

Br Br

BrMg then H2O

Br S H

Br Br

Mg then H2OH

Grignard formationpreferred at an !-position

Page 24: Solucionario Joule

S SO

ch17 6 S

n-BuLi

S LiCO2

S CO2HS P4O10

Lithiation selectivefor an !-position

Friedel–Crafts typeconditions usable with thiophenes

ch17 7(i)

CN

CNNC

NCH2S

S NH2

CNNC

H2NNitrile cyclisations

lead to amino-substituted heterocycles

S CO2H

MeO OMe

HO2Cch17 7(ii)EtO2C S CO2Et

OEt

OO

EtO

NaOEt

S CO2Et

OHHO

EtO2C

aq. NaOH, MeI

Double Claisen condensation

ch17 7(iii)

O

Me

O

P4S10

S Me Chapter 18

O OMeH

H O

OMe

O

O OMe O OCO2Me

HOMeH

O

H

H+

+ch18 1 O OMe+ H+ + HO–

! protonation H O O– MeOH

O OMe+ H+

" protonation

+ HO–

H

H+

ch18 2(i) OHC O PhO Ph

DMF, POCl3then aq. NaOH

Furan ring far more reactivethan substituent phenyl ring

Page 25: Solucionario Joule

Ac O CO2EtO CO2Etch18 2(ii)Ac2O, SnCl4

!-Position preferredfor electrophilic substitution

Mild Lewis acids must be used

CN

OO2NOch18 2(iii)

HNO3, Ac2O

CN

Nitrile substitutent stabilises the systemand allows use of more vigorous reagents

CO2MeOMeO2C

CCl3O

O CO2EtO CO2Mech18 2(iv)

Cl3CCHOH2SO4

Cl3C

HO

O CO2Me

– H2OO CO2Et

Cl3C

via +

!-Position preferredfor electrophilic substitution

of furans

Me O CH2OH

MeO OMe

Me

OH

O

ch18 3 Me O CH2OH[O] MeOH H2, catalyst

Me O CH2OH

MeO OMe

H3O+

Me O CH2OH

O– H2O

1,4-Diketone synthon

Aldol

O Me

Me

O Me

CO2MeLiAlH4

then SOCl2O Me

CH2Cl

LiAlH4 Br2, MeOH

O Me

Me

OMeMeO

H

H2O, 60 °C NaBH4OHC Me

Me

OHOH2C Me

Me

HO H1,4-Keto-aldehyde synthon

ch18 4

Page 26: Solucionario Joule

ch18 5(i) O Lic-C6H10O

O HOLithiation selectivefor an !"position

O Li Och18 5(ii)Br(CH2)7Cl Cl

Lithiation selectivefor an !"position

O

Me

OHCch18 6(i) O

MeDMF, POCl3then aq. NaOH Vilsmeier substitution

at the less-hindered !-position

ch18 6(ii)O

Br

Br

n-BuLithen H2O

O

Br

Li O

Br

HMetallationselective for !-position

O

Br

CH2OHch18 6(iii) O

BrLDA

then CH2O

O

Br

LiLithiation at that !-position

which is also ortho to Br

O CHO EtOH, H+

O CH(OEt)2

n-BuLithen B(OBu)3

O CH(OEt)2

O CHO(HO)2B

Li

H3O+

O CHO(BuO)2B

Lithiation selectivefor an !-position

ch18 6(iv)

Page 27: Solucionario Joule

ch18 6(v) O

Sn-n-Bu3

OO

Brn-BuLi, –78 °Cthen n-Bu3SnCl MeCOCl, PdCl2

MeO

ipso substitution of tinallows formation of 3-acyl-furan

O

CN

CH2

CH2OH

18 7(i) O CH2OHC

CN

Furans behave like 1,3-dienes and undergoDiels–Alder cycloadditions

O

AcMe

Me18 7(ii) O MeMe

OMe Furans behave like 1,3-dienes and undergo

Diels–Alder cycloadditions

O

O18 7(iii) O O

Cl

+ Et3N, LiClO4Furans behave like 1,3-dienes and undergo

cycloadditionsm with 1,3-dipoles

O O

TMSClEt3N, ZnCl2

18 8(i) O OTMS O-Silylation of butenolidesgives 2-trimethylsilyloxy-furans

18 8(ii) O OTMSICH2CN, AgO2CCF3

O ONCCH2

Electrophilic substitutionof 2-trimethylsilyloxy-furans

produces 5-substituted butenolides

18 9 O Ot-Bun-BuLi

O Ot-BuLiPhCHO

O Ot-Bu

HO

Ph

TsOH– C4H8 O O

HO

Ph

Lithiation of furansselective for an !"position

Page 28: Solucionario Joule

O Et

18 10(i) O Et

H MgBr

HO Et m-CPBAHO Et

OCrO3pyridine

O Et

O

BF3via HO Et

O

O

Me

– H2O18 10(ii)

MeClMgHC(OEt)3

Me

OHCm-CPBA

Me

OHCO H3O+

via

MeO

OH

Me

O CO2Me18 10(iii)

Me

(MeO)2HC OClCH2CO2Me, NaOMe

Me

(MeO)2HCO

CO2Me

heatDarzens reaction

MeO2C

MeHN

CO2Me HOH2C

MeHN

CO2Me

MeHN

OOch18 11

CO2Me

CO2Me

MeNH2 LiAlH4 H+

H3O+HO

OO

Selective reduction – otherester is a vinylogous amide

Chapter 20

ch20 1 NH

+

NMe

O

POCl3

NH

ONHMe

Electrophilic substitution of indolespreferred at a !-positionVilsmeier reaction

Page 29: Solucionario Joule

NH

O

Me

Me

Me

ch20 2 NH

+

Me

Me

Cl

HO NH

Me Me

HO

Me

Me+

Electrophilic attach on an indolepreferred at a !-position

ch20 3 indole,

NH

NH H+

NH

NH2

NH

via

NH

NH2+

ch20 4 NH

CH2O, Me2NHAcOH

NH

NMe2

MeI

NH

NMe3 I+ –

KCN

NH

CN

LiAlH4 H3O+

NH

NH

CO2H

viaN

NC–

Mannich reactionpreferred at indole !"position

NH2

selectivequaternisation

of amine

N

PhBr

PhSO2

ch20 5(i) N

IBr

PhSO2

PhB(OH)2, Pd(PPh3)4aq. Na2CO3

Suzuki coupling

N

Br

CO2Et

PhSO2

ch20 5(ii) N

IBr

PhSO2

CO2Et

Pd(OAc)2, Ph3P, Et3N

Heck reaction

Page 30: Solucionario Joule

NN

H

O

Ph3P+–

ch20 6 NH

H

O

Ph3PCH=CH2+

Br–

NaH Wittig

Deprotonation of indole N–hydrogengives indolyl anion nucleophilic at nitrogen

NH

Et

Me

and

NH

Me

Et

ch20 7 N

EtMe

+ H

NH

Et Me

+

1,2-Migrationthen loss of proton+

NH

ch20 8

N

N

N

PhSO2

NaHPhSO2Cl

t-BuLi, –100 °C

N

N

PhSO2

Li

Deprotonation of indole N–hydrogengives indolyl anion nucleophilic at nitrogen

Lithiation withortho-assistance from pyridine N

+

O

N

N

PhSO2

OH

aq. NaOH

NH

N

OH

HBr

NH

N

Br–

NH

I

ch20 9 NH

n-BuLithen I2

LDAthen PhSO2Cl

PhSO2N

ILDA

then I2

PhSO2N

I

I

Indolyl anion can reacton N or C

Indolyl anion can reacton N or C

Lithiation atpreferred !-position

Page 31: Solucionario Joule

NH N

H

CH2HO

NH

+

– CH2O

ch20 10 NH

CH2OH

heat, H+

– H2O +

startingindole

NH

NH

NH

ch20 11 NHNH2

+O

H+

NH

N

H

OHOH

Fischersynthesis

Synthon for 4-hydroxybutanal

NH

N

CO2Etch20 12

N Me

NO2

(CO2Et)2, NaOEtN

NO2

CO2Et

O

H2, Pd/C

NH

NCO2Et

N

Me

NO2

(CO2Et)2, NaOEtN

NO2

CO2Et

O

H2, Pd/C

Easy deprotonationof pyridine 2-methyl

also ortho to nitro gorup

Easy deprotonationof pyridine 4-methyl

also ortho to nitro gorup

Reduction of nitro to aminothen condensation with loss of water

Reduction of nitro to aminothen condensation with loss of water

NH

NH2

ch20 13(i)

NO2

NO2

NMe2TiCl3

NO2

Me

NO2

DMFDMA, heat

DMFDMA MeO NMe

Me

+–

H

MeO+

Deprotonation of methylortho to nitro

then reaction with MeO(H)C=NMe2then loss of MeOH

Reduction of nitro!-protonation of enamine, cyclisation

and loss of Me2NH

Page 32: Solucionario Joule

NH

BnO

ch20 13(ii)

H2, PtDMFDMA, heat

BnO

NO2

NMe2

BnO

Me

NO2

DMFDMA MeO NMe

Me

+–

H

MeO+

Deprotonation of methylortho to nitro

then reaction with MeO(H)C=NMe2then loss of MeOH

Reduction of nitro!-protonation of enamine, cyclisation

and loss of Me2NH

NHMeOch20 13(iii) NO2

NMe2

MeO

H2, PdMe

NO2MeO

DMFDMA, heat

DMFDMA MeO NMe

Me

+–

H

MeO+

Deprotonation of methylortho to nitro

then reaction with MeO(H)C=NMe2then loss of MeOH

Reduction of nitro!-protonation of enamine, cyclisation

and loss of Me2NH

NH

NH

ch20 13(iv)

H2, Pd

NO2

NO2

NMe2

Me2N

Me

NO2

NO2

Me

DMFDMA, heat

DMFDMA MeO NMe

Me

+–

H

MeO+

Deprotonation of methylortho to nitro

then reaction with MeO(H)C=NMe2then loss of MeOH

Reduction of nitro!-protonation of enamine, cyclisation

and loss of Me2NH

Page 33: Solucionario Joule

Chapter 21

S

S

N

ch21 1 SH S

OCO2Et PPA, heat

CO2Et

– H2O

NH3

S

CONH2

LIAlH4

S

NH2

HCO2H, heat

SO

NH

H

POCl3, heat

EtO2CCH2COCH2Cl

Intramolecular Vilsmeier

O

Me

Me

Me

Me

Mech21 2(i)

Me

Me

Me

OH

MeMe

Cl

O

Me

Me

Me

O Me

O Mec. H2SO4

O

MeO

OO

ch21 2(ii)

MeO

OO OH

BrK2CO3

MeO

OO O

heat

MeO

OO OH

O3

MeO

OO OH

H

OH+

– H2O

Claisen rearrangement

S

F3C

CO2Mech21 2(iii)

F3C

F

LDAthen DMF

F3C

F

CHOHSCH2CO2Me

ortho lithiation

O

O2N

Mech21 2(iv)

O2N

F

Me2C=NO Na+–O2N

ON

Me Mec. HCl– NH3

Page 34: Solucionario Joule

S

ClO

S

Cl

HN

ch21 3

Cl

S CO2H

PCl3then AlCl3

Cl

S

O Cl

PhNHNH2AcOH, heat

S

ClN

HN

Fischer indole synthesis

Friedel–Crafts

Chapter 22

NH

N

t-Bu

O

t-Bu

O

H Hch22 1

NPh

O

O

t-Bu

OCH2Br

CH2Br

H2NCH2C!CH

NHt-Bu

O

500 °C

NPh

O

O

Typical Diels–Alder reactivity of isoindoles

NMe

H CN

H CN

NMe

CN

ch22 2(i)

CHO

CHO

NaHSO3then MeNH2 NMe

H OSO3H

H OSO3H

2KCN

– HCN

Page 35: Solucionario Joule

O

O

HPh

O

Ph

Ph

O

Ph

Ph

O

O

ch22 2(ii)

O

NEt2n-BuLi

then PhCHO O

NEt2

OH

Ph

+H

PhMgBrthen H+ 1O2

ortho Lithiation

Cycloaddition of singlet oxygen

CHO

O

CO2Me

CO2Me

O

O

ch22 3

CHO

CHO

(CH2OH)2, CuSO4 NaBH4O

O

OH

TsOHMeO2CC!CCO2Me

O

Typical Diels–Alder reactivityof isobenzofurans

S

CO2H

CO2H

O

O

Och22 4

S O

O

O

+

NaOH, heatthen H+

Typical Diels–Alder reactivityof benzo[c]thiophenes

Chapter 24

NH

N

Cl

Cl

ch24 1(i) NH

NNaOCl Electrophilic substitution

preferred at C-4(5)

Page 36: Solucionario Joule

NMe

N

Br

Br

NMe

N

Br

Li

BrNMe

NBr2, AcOH

EtMgBrthen H2O

NMe

N

Br

Br

MgBr

NMe

N

Br

Br

H

n-BuLithen (MeO)2CO

NMe

N

Br

MeO2C

Sective metal/halogenexchange at C-4

Sective Grignardformation at C-2

ch24 1(ii)

N

O

Ph

Ac

Ac

O– PhCNch24 2(i) O

NPh

+ HMe

Oheat

Oxazoles (like furans)take part in Diels–Alder cycloadditions

Retro Diels–Alderloss of benzonitrile

N

O

CO2Me

CO2Me

O

CO2MeEtO

MeO2C

OEt– HCN

ch24 2(ii) O

N

EtO+ MeO2CH2 CO2Me heat

Oxazoles (like furans)take part in Diels–Alder cycloadditions

Retro Diels–Alderloss of HCN

ch24 3i/ii NMe

N

O2N Me

(t-BuO)2NMe2heat

NMe

N

O2N NMe2Ac2O, heat

NMe

N

O2N NMe2

Me O

enamine !-acetylation

NMe

N

O2N

N

N

MeNH2

NH2

NH2HN

NMe

N

O2N

NNMe

Me

MeNHNH2

1,3-aldehydo-ketonesynthon

Page 37: Solucionario Joule

ch24 4 NMe

N n-BuLithen TMSCl

NMe

N

Li

n-BuLithen TMSCl

NMe

N

SiMe3

NMe

N

SiMe3 NMe

N

SiMe3Li Me3SiMeOH

Selectiveipso protonolysis

NMe

N

HMe3Si

Selective lithiationat C-2

Selective lithiationat C-5 if C-2 blocked

ch24 5 NMe

NBr

n-BuLi, –78 °Cthen DMF

NMe

NLi

NMe

NOHC

NMe

NBr

n-BuLi, –78 °C ! 0 °Cthen DMF

NMe

NLi

NMe

N

Li NMe

N

CHO

equilibration tomore stable lithium compond

S

NH

S S

NH

S(CH2)3BrS

N

S(CH2)3Br

S

N

S

–+

–+

– H

Br

Br

+ch24 6

Br(CH2)3Br

S-Alkylation

S

N

NH2

Et

ch24 7(i) S

NH2

NH2+

Cl

OEt

S

N

Phch24 7(ii) Cl

OH

S

NH2

Ph+

Page 38: Solucionario Joule

S

NHO

ch24 7(iii) Br

OEtO2C

S

NH2

H+ ester oxidation level

leads to oxy-heterocycle

O

NPh

N

O

CH2OAc

CH2OAcPh O

AcOCH2 CH2OAc

ch24 8

– PhCN

Br

OPhNH4 HCO2+ – AcOH2C CH2OAc

heat

Diels–Alderthen retro-Diels–Alder

NH

N

Phch24 9(i) N CMen-BuLi

N CLiH2CPhCN

NH

N

Ph

Ph

NH2

ch24 9(ii)NH2

Ph

Ph

O+

N

NH2

Use of nitrile in cyclisationleads to amino-heterocycle

Chapter 25

O2N

NPh

Nch25 1(i) N

Ph

Nc. HNO3, c. H2SO4 via attack on salt

(but positively charged heterocyclestill more reactive than the phenyl group) N

Ph

NH+

ch25 1(ii) NPh

NHNO3, Ac2O

NPh

NO2N via attack on the neutral pyrazole

ON

Me

Mech25 2(i)

NaNH2

ON

Me

NaH2C ON

Me

n-Prn-PrBr

Selective deprotonationof 5-methyl

Page 39: Solucionario Joule

ch25 2(ii) ON

Me

MeNaNH2

ON

Me

NaH2C ON

Me

HO2CCO2

Selective deprotonationof 5-methyl

ch25 2(iii) ON

Me

MeNaNH2

ON

Me

NaH2C ON

Me

PhCO2MePh

O

Selective deprotonationof 5-methyl

ONMe O

CN

Me

ClCl

ch25 3 ONMe

SO2Cl2 aq. NaOH

via

ONMe

Cl HHO–

Selective electrophilicsubstitution at C-4

Me NBn

N

CO2Me

NBn

N

Me

MeO2Cch25 4OMe

O

CO2Me

BnNHNH2 +

NSO2NMe2

NMe3Si NSO2NMe2

N

ch25 5 NH

NMe2NSO2Cl, Et3N

NSO2NMe2

N

n-BuLithen TMSCl

NSO2NMe2

NLi

PhCHO, CsFPh

HO

Removal of acidic N-hydrogenonly requires weak base

Selective lithiation at C-5

Page 40: Solucionario Joule

ON

ON

Ph

Phch25 6 OH

O

Ph

H2NOH +

ON

ch25 7(i) HON

2n-BuLithen DMF

ONLi

LiO

NOHC

Li

– H2O

ch25 7(ii) SNOH

Br Me3Si Li MeOH, K2CO3

SN O

SiMe3

SNOH

SiMe3via

NNPh

MeMe

ch25 7(iii)N

Me Me

ONHPh

(EtO)2P(O)CH2SEt, n-BuLi via N

Me Me

NHPhSEt – HSEt

ONMe3SiCH2ch25 8 Me3Si SiMe3

H2NOH

Page 41: Solucionario Joule

Chapter 27

ch27 1(i)

HN

N N

N

O

OAcO

AcO OAc

H2N

N

N N

N

NH2

OHO

HO OH

I

N

N N

N

NH2

OHO

HO OH

Ph

POCl3N

N N

N

Cl

OAcO

AcO OAc

H2N

t-BuONO, CH2I2

via the diazonium salt

N

N N

N

Cl

OAcO

AcO OAc

I

NH3, MeOH

PhB(OH)2Pd(PPh3)4, Na2CO3

Selective nucleophilicdisplacement of 6-chlorine

Suzuki coupling

viaHN

OP(O)Cl2+

PhCO2EtNaOEt Ac2O

POCl3 NH3

N

NH2N

H2N

OHO

HO OH

N

NH2N

NH

O

OHO

HO OH

O

Ph

N

NH2N

NH

O

OAcO

AcO OAc

O

Ph

N

N N

N

Cl

OAcO

AcO OAc

Ph

N

N N

N

NH2

OHO

HO OH

Ph

ch27 1(ii)

HN

N N

N

O

OAcO

AcO OAc

Phvia

PhB(OH)2Pd(0)

Br2AcOH

ch27 2

N

N N

N

NH2

OHO

HO OH

N

N N

N

NH2

OHO

HO OH

BrN

N N

N

NH2

OHO

HO OH

Ph

Selectivebromination

at C-8

Suzuki coupling

Page 42: Solucionario Joule

NH

NMeN

N

NH

NH

NN

N

NHMe

MeN

N N

N

NH

ch27 3

N

N N

N

NH2

OHO

HO OH

Me2SO4

OHO

HO OH

aq. HCl

aq. NH3 via Dimrothprocess

NH

NMeN

NH

NH

O NH

NH2N

NH

NMe

OH

H+

– H2O

N-1-quaternisationthen N-deprotonation

Hydrolytic removalof sugar

NH

NN

N

NH2

N

N

NH2

ch27 4(i)

NH2

NH2

HCONH2, heat

NH

NHN

N

O

Me

SH

ch27 4(ii)

HN

N

O

NH2

NH2Me

HCS2 Na+– quinolineheat

Chapter 28

N N N n-Bu

ch28 1

N+

Br–

LiAlH4 H2, Pd

Electrocyclicring opening

Page 43: Solucionario Joule

N

+

I

ch28 2 N Me

LDAthen EtO(CH2)2CH=O

N CH2Li N

EtO

H

OH

HI, heat

NH

OH

+

–I

Pd/C, heat

N+

–I

Ac2O, heat

Side-chainlithiation

– H2O Dehydrogenationto aromatic molecule

N

Me

ch28 3(i)(a)

N Me

+ BrMe

ONaHCO3

via

N Me

Me

O+–Br N

Me

O

Quaternisation ofnitrogen

NMe

ch28 3(i)(b)

N Me+ Br

H

ONaHCO3

Me

via

N Me

H

O+–Br N

H

OMe Me

Quaternisation ofnitrogen

Page 44: Solucionario Joule

ch28 3(ii) N

NMe

N

N

Me

N NH2

+ BrMe

ONaHCO3

N NH2+ Br

H

ONaHCO3

Me

via

N NH2

Me

O+–Br N NH

Me

O

via

N NH2

H

O+–Br N NH

H

OMe Me

Quaternisation ofring nitrogen

Quaternisation ofring nitrogen

N

N

OMe

ch28 4

N

Me

OMe

KNH2, i-AmONO N

OMe

HON H

Zn, AcOH N

OMe

H2N

HCO2Me, PPE

Side-chain lihtiation

N

N

HNN

Nch28 5

HNO2

N

N

NOHN

N

N

H

OH

OH+HOO

H

– H2ON

NO

N

Electrophilic nitrosationof five-membered ring

Page 45: Solucionario Joule

NONNHNO2

Electrophilic nitrosationof five-membered ring

S

N

N

NN

ch28 6(i) S

N

NHNH2

HNO2 viaS

N

NH

NN+

S

N

N

Ph

ch28 6(ii) S

N

NH2+ Br

Ph

O

viaS

N

NH2

Ph

O+ –Br

Chapter 29

N

N

ch29 1(i)(a)

N

N

NN

+ via – HCN

N N

N

N

– pyrrolidine

N

N

NN

N

+ via – N2

N NN

N

– pyrrolidinech29 1(i)(b)

NN

Ph

EtO

ch29 1(ii)

N

NN

N Ph

+

EtO OEt via – N2

N NN N

EtO OEt

– EtOHPh

N

SN

N

Cl

N

SN

N

MeHN

HN

SN

N

MeNch29 2

Cl

SCl

NaN3 MeNH2

Page 46: Solucionario Joule

N

NH

NPhch29 3(a)

NH2

OPh

DMFDMAN

OPh

NMe2 N2H4

DMFDMA MeO NMe

Me

+–

H

MeO+

attacks the NH2

N

ONPhch29 3(b)

NH2

OPh

DMFDMAN

OPh

NMe2 H2NOH

DMFDMA MeO NMe

Me

+–

H

MeO+

attacks the NH2

N

NH

NH

NH

N

NH2NH2

N

NH

N

NH

N

NH2NH2

ch29 4(i)

N

N

N+ H2N

N NH2

NH2

NH

NH

N

HN N

HNH

NH2 NN

NH

NH2

N

NH

NH

CO2EtCO2Etch29 4(ii)

N

N

N+ CH2(CO2Et)2

N

NH2

N

CO2EtCO2Et

N

N OOEt

CO2Et

NH2

N

N

CO2Et

O

NH2

+

N

NH

CO2Et

O