Solid state physics for Nano - Uni Siegen · Analysator pre-mirror Monochro-mator Slits 4 f Storage...

37
Solid state physics for Nano Lecture 2: X-ray diffraction Prof. Dr. U. Pietsch

Transcript of Solid state physics for Nano - Uni Siegen · Analysator pre-mirror Monochro-mator Slits 4 f Storage...

  • Solid state physics for Nano

    Lecture 2: X-ray diffraction

    Prof. Dr. U. Pietsch

  • The mean aim of Max von Laue (1912)X-rays are electromagnetic wave with wave length much smaller

    than wave length of visible light. X-rays are diffracted a crystal lattice

    1914

    Nobelpreis fürPhysik

  • Original experiment von Laue, Friedrich und Knipping

    X-ray tube

    Photographic film

    CollimatorCrystal

    Ausgestellt im Deutschen Museum in München

    20.April 1913

  • Photographic film

    Erster Kristall

    Cu2SO4 ⋅ 5 H2O

    First Laue Experiment

  • 1912: Begin of modern Crystallography

    X-rays are electromagnetic waves of very short wavelength ( ~ 1 Å = 10-10 m).

    Crystals are periodic structures in 3D : interatomic distances are of similar order of magnitude as

    x-ray wave length

    X-ray diffraction is a method to determine the geometric structure of solids !

  • Erklärung durch Interferenz am 3D Gitter

  • Explanation of Laue pattern

  • recip. lattice vector

  • 𝑎 = 𝑏 = 𝑐

    sin2

    sin²²²

    2

    sin4²²²

    2

    d

    lkh

    a

    a

    lkh

    =

    ++=

    =++

  • Alternative description of Laue-pattern by W.H.Bragg und W.L.Bragg

    Interference at dense backed

    „lattice planes“

    N=2dsinQ

    Bragg equation

  • Reciprocal space, Ewald construction

    ,....0*,0*

    2*

    2*

    2*

    ==

    =

    =

    =

    cbba

    cc

    bb

    aa

    )(*

    )(*

    )(*

    cba

    bac

    cba

    acb

    cba

    cba

    =

    =

    =

    *)**(2 lckbhaGK ++==

    )(

    2

    2

    hkldG

    kk fi

    =

    ==

  • Setup of modern diffraction experiment

    Qi

    Slits

    Detector

    AbsorberboxSample

    Analysator

    pre-mirror

    Monochro-

    mator

    Slits

    Qf

    Storage

    ring

  • X-ray tube and tube spectrum

    E = h v = e U

    min= h c / e Uamin = 12.4/Ua Brems-

    strahlung

    Characteristicradiation

  • ESRF

  • Generation of Synchrotron radiation

    Electron circulates with relatvististic energy in orbit of storage ring with orbitfrequency w= 106 Hz → Ee = 5 GeV

    ²1

    ²

    ²

    ²1

    ² 00

    ß

    cm

    c

    v

    cmEe

    −=

    =

    Ee is much larger compared to rest mass energy mc², g = 5GeV/ 0.511 GeV≈ 104

    ²1

    1

    ² ßcm

    E

    o

    e

    −==g

    value 1/g is the vertical open angle Using g one can estimate the electron velocity

    92/1 10*61²2

    11]

    ²

    11[ −−=−−=

    ggß cv 910*61 −−

  • Generation of Synchrotron radiationSupposing the circulating electron emits a photon at point A of orbit. M Elektron proceeds to point C via B on orbit. At point C it emits a secondphoton. For the electron the length

    AC (electron) = v* dt .

    For the photon emitted in A reaches this distance is

    AC(photon = c *dt

    The spatial distance between both waves : (c-v) dt

    An observer at point C the light pulse has a length

    ´²)1(´)(

    dtc

    dtvct −=

    −=

  • Generation of Synchrotron radiation

    Considering the opening angle a = 1/g due to electron orbit

    ´²2

    )²(1´)]

    2

    ²1)(

    ²2

    11(1[´)cos1( dtdtdtt

    g

    aga

    ga

    +−−−=−=

    For a =0 ´10´

    ²2

    1 8dtdtt −=g

    Dilatation of time a consequences for spectral distribution of photon emission

    Orbit time of electron along AC differs from time of photon

    sTphotont

    sTelectront

    18

    10

    10³2

    11

    ²2

    1)(

    101

    2

    1)´(

    ==

    ==

    wggwg

    gwg

  • Generation of Synchrotron radiation

    Inverse pulse length determines the spectral with of light emission

    The emission spectrum has a critical wave length given by

    This is x-ray range. In energy :

    Hzc1810³

    2

    3= wgw

    mc

    c

    10

    18

    8

    1010

    10 −===

    )()(*655.0³2

    3 2 TBGeVEec = wgw

  • Generation of Synchrotron radiation

    Bending radius R of electron orbit is

    Emission power is

    For ESRF, E=6GeV, B=0.8T → R= 24.8m

    Bmv Re=g)(

    )(*3.3

    ² TB

    GeVE

    eB

    mc

    mc

    E

    eB

    mcR ee ===

    g

    )()()²()(*266.1)( 2 mAImRTBGeVEkWP e a=

    WmAmradmTGeVkWP e 3.7100*05.08.24)²(8.0)(6*266.1)(2 =+=

  • wc

    Bend magnet spectrum

    ESRF

    Well predictable

  • Kinematic X-ray scattering

    Dipole scattering of x-ray wave by an electron: Electron excites dipole radiation

    +==

    2

    ²cos1

    ²

    1

    ²

    ²² 2

    Rmc

    eEEI o

    Superposition of dipole radiation generated by two electrons at positions X1 and X2

    )])(2

    [exp(1

    ²

    ²210 XXti

    Xmc

    eEE −−=

    w

    For n electrons

    ])[2

    exp(][2exp(1

    ²

    ²00 SS

    Rti

    Rmc

    eEE

    n

    −−=

    Stotal scattering amplitude of one atom : → atomic form factor

    )(2

    0SSkk if −=−

  • Kinematic X-ray scattering

    Form factor f[(s-s0)/] result fromquantun mechanical calculationsf(0) = Z ; f[(s-s0)/] decays continuoslyas function of (s-s0)/

    ])[2

    exp(][2exp(1

    ²

    ²00 SS

    Rti

    Rmc

    eEE

    n

    −−=

    Scattering by all electrons of one atom : → atomic formfactor

    =−n

    dVrss

    iSSrie

    ][2exp()])(

    2[exp(* 00

  • Kinematic X-ray scattering

    Scattering by two atoms :

    Debye´sche Streugleichung Debye equation

    )])([2exp(]([2exp(]))(

    [2exp(][2exp( 02

    21

    20

    21 SSR

    iffR

    tiRSSR

    tifR

    tifE

    −++=−−

    −+−

    Scattering by many disordered atoms :

    )](2

    cos[2* 0212

    2

    2

    1

    * SSffffEEI

    −++=

    nm

    nm

    mn

    nmkr

    krffI

    )sin(

    ,

    =

    2)sin(]][

    2exp 0 =→→− k

    kr

    krrSS

    i

    nm

    nm

    nm

  • Kinematic X-ray scattering

    Scattering by „small“ crystal: rnm= Rnm+rn distances between unit cells → shapefactor, distances betwen atoms within one unit cell→ structure factor

    Summation over all unit cells→ N1a1 , N2a2 , N3a3

    332211 amamamRnm ++=

    ])[(2

    exp()2exp()exp( 3322110 amamamSSiR

    itifE n ++−−

    w

    2|| =K

    ²²*

    )sin(

    )sin(

    )sin(

    )sin(

    )sin(

    )sin(²

    321

    3321

    221

    2221

    121

    1121

    SFEEI

    Ka

    KaN

    Ka

    KaN

    Ka

    KaNFE

    =

    if kkK −=

    FWHM

  • Kinematic X-ray scattering

    I 0 only in near vicinity of the peak maxima

    lKa

    kKa

    hKa

    2

    2

    2

    3

    2

    1

    =

    =

    =h,k,l integer

    FWHM of a Bragg peak can be approximated

    Q=

    Q=

    Q=Q

    cos

    94.0

    cos

    94.0

    cos

    /)(ln2)2(

    LNaNa

    sB

    FWHM B(2Q) is inversely proportional to crystal size L

    kax =2

    1)/)²(exp(²

    )²(sin

    )²(sin)( xNN

    x

    xNxI −

    Q= cos2

    1Bk

    2

    1)²cos)²

    2(

    ²

    ²²(exp(² =Q−

    BaNN

  • Structure factor F

    ))(exp(1

    i

    n

    i

    i krifF −= =

    czbyaxr iiii ++=

    ))*)(**(2exp(1

    czbyaxlckbhaifF iii

    n

    i

    i ++++−= =

    ))(2exp(1

    iii

    n

    i

    i lzkyhxifF ++−= =

    *)**(2 lckbhak ++=

    Examples→

  • bcc- structure: xyz = 000, ½ ½ ½

    ))(exp(1( lkhifF ++−+=

    F= 2f if h+k+l = even;F= 0 if h+k+l odd

    fcc- structure: xyz = 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½

    ))(exp()(exp()(exp(1( lkilhikhifF +−++−++−+=

    F= 4f if h,k,l all are even or odd;F= 0 if h,k,l are mixed

    hcp- structure: xyz = 000, 1/3 2/3 ½

    ))2/3/)2((2exp(1( lkhifF ++−+=

    F= 2f if h+2k =3n, l even;F= √3f if h+2k= 3n+1, l oddF= 0 if h+2k= 3n+1 l even

  • Extinktion rules

    Not all combinations of h,k,l are „allowed“ , Bragg peak intensity can bevanishing due to crystal (point group ) symmetry

    In fcc system, only reflections appear with h²+k²+l² = 2,4,8,11,12….

    = 111, 200, 220, 311, 222,…..

    In NaCl 111, 311….. Are weak reflectons220, 400….. Are strong reflections

    In ZnSe 220, 400…….strong111, 311…….middle200, 222…….weka

    Structure (point group) identification considering extinktionrules and Bragg peak intensities

  • Powder diffraction pattern from CdSe Nanowires

  • Debye-Waller Factor

    )exp()exp())(exp( rikikrrrik =+

    )²2

    1exp(...²

    2

    11)exp( xxxiix −=+−+=

    )2exp()²²2

    1exp()exp( Mrkrik −=−

    ²

    ²sin²²162

    uM =

    )2exp()( MFTF −=

    Due to thermal atom oscillations

    X-ray intensity becomes damped, Bragg peaks exit

  • Data evaluation

  • Electron charge density distribution fromx-ray diffraction data

    Electronic charge densityof silicon

    Valence charge density difference charge density(bonding charges)

    U.Pietschphys.stat.sol.(b) 137, 441,(1986)

    −−= dkikrkFr )exp()()(

    − − −

    −=h

    h

    k

    k

    l

    l

    ii HrHFV

    r );2exp()(2

    )( )(1

    hkla

    H =

  • Electron density distribution of GaAs fromx-ray diffraction data

    Valence charge densitydifference charge density(bonding charges)

    Ga As

    Ga

    As