Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water...

32
1 SOLAR WATER PUMPS: TECHNICAL, SYSTEMS, AND BUSINESS MODEL APPROACHES TO EVALUATION Massachusetts Institute of Technology, Cambridge, Massachusetts

Transcript of Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water...

Page 1: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

1

SOLAR WATER PUMPS: TECHNICAL, SYSTEMS, AND BUSINESS MODEL APPROACHES TO EVALUATION MassachusettsInstituteofTechnology,Cambridge,Massachusetts

Page 2: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

2

Introduction.................................................................................................................................................4

WhySolarPumps?...................................................................................................................................4

DesignofSolarPumpSystems.................................................................................................................5

SolarPumpUseCases..............................................................................................................................7

OverviewofCITEEvaluationCriteria........................................................................................................8

MethodologyataGlance.......................................................................................................................10

FindingsataGlance...............................................................................................................................11

Case1:SolarWaterPumpsforIrrigation...................................................................................................12

Approach&MethodologyforSolarPumpsforIrrigation......................................................................12

FindingsfortheIrrigationCase:UserSurveys........................................................................................13

EaseofUse.........................................................................................................................................13

Affordability.......................................................................................................................................13

Availability..........................................................................................................................................14

Demand..............................................................................................................................................14

Safety..................................................................................................................................................14

EnvironmentalImpact........................................................................................................................15

FindingsfortheIrrigationCase:WaterEnergyFoodNexus...................................................................15

ModelStructure.................................................................................................................................16

Approach............................................................................................................................................17

SelectedFindings................................................................................................................................17

Summary............................................................................................................................................18

FindingsfortheIrrigationCase:PumpSizingTool.................................................................................19

Case2:SolarWaterPumpsforSaltProduction.........................................................................................22

Approach&MethodologyforSaltProductionCase..............................................................................22

Page 3: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

3

UserSurveysandFarmerInterviews..................................................................................................22

TechnicalPerformanceintheField....................................................................................................23

TechnicalPerformanceintheLab......................................................................................................24

FindingsfortheSaltProductionCase....................................................................................................25

UserSurveysandInterviews..............................................................................................................25

TechnicalPerformanceintheField–MeasuredData.......................................................................26

TechnicalPerformanceintheField-Sensors....................................................................................27

TechnicalPerformanceintheLab......................................................................................................28

ConclusionsforBothCases........................................................................................................................29

Authors&Acknowledgements...................................................................................................................31

SelectedReferences...................................................................................................................................32

Page 4: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

4

INTRODUCTIONTheComprehensiveInitiativeonTechnologyEvaluation(CITE)atMassachusettsInstituteofTechnology(MIT)isdedicatedtodevelopingmethodsforproductevaluationinglobaldevelopment.CITEisledbyaninterdisciplinaryteamatMIT,anddrawsupondiverseexpertisetoevaluateproductsanddevelopadeepunderstandingofwhatmakesdifferentproductssuccessfulinemergingmarkets.Ourevaluationsprovideevidencefordata-drivendecision-makingbydevelopmentworkers,donors,manufacturers,suppliers,andconsumersthemselves.

FromSeptember2015toMarch2017,CITEresearchersevaluatedsolar-poweredwaterpumpsystems.ThesearethemosttechnicallycomplexproductsyettobeconsideredunderCITE’s“3-S”evaluationframeworkofSuitability(doesaproductperformitsintendedpurpose?),Scalability(canthesupplychaineffectivelyreachconsumers?),andSustainability(isaproductusedcorrectly,consistently&continuouslyovertime?).

WhileotherproductsevaluatedbyCITEhavebeenrelativelysimple,asinwaterfiltersandfoodstoragetechnologies,solarpumpsincludecomponentsofpowergeneration,powerelectronics,andpumpcomponents.InadditiontopartnersintheUnitedStates,theteamworkedcloselywithpartnersinthreelocationsinIndiaandtwolocationsinMyanmar.Thesepartnershavebeeninstrumentalinchoosingthesolarpumptechnologyusedbyfarmersintheircommunities.

WHYSOLARPUMPS?Acrosstheagriculturalsectorindevelopingcountries,accesstoirrigationisanimportantstepinimprovingfarmerlivelihoodsandproductivityasitincreasesproductiveyields.Thevalueofirrigationisdependentonrainfallpatterns.Forexample,inaclimatelikeIndia’swhereafour-monthlongmonsoonseasonisfollowedbyeightmonthsoflittleornorain,irrigationmakesthefarmer’slandavailableforcultivationforthreeseasonsinsteadoftwo,significantlyimprovingtheirproductivityandincome.Manyothercountriesmayexperienceaseasonthatisdrierthanothersandwhiletheirrainfallpatternsallowthemtocultivateyear-round,irrigationcansignificantlyimproveyields,andprovideawidervarietyofcropoptions.

Pumpingwaterfromeithersurfacesourcessuchasponds,lakes,andcanals,orfromundergroundthroughopenwellsordeeperborewells,istheprimarydriverforirrigation.Thesepumpscomeinavarietyofpowersources,includinghandpumps,dieselpumps,grid-tiedelectricpumps,andsolarpumps.

InIndia,accesstoirrigationisseenasapolicypriorityformeetingimportantdevelopmentobjectives.Yet,significantroadblocksexist—forexample,weakwatermarketsandfragmentedinstitutionalcoordinationandimplementation(Varma2016).Further,theenvironmentalimpactsofexpandingirrigationhaveraisedconcernsaboutover-extractionofgroundwater,whichhasbecomethedominantirrigationsource,especiallyinthepresenceofalackofpoliticalandsocialincentivestoinstituteefficient

Page 5: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

5

irrigationpractices—namely,pricingwatertoreflectitstruevalue(AgriculturalCensus2011;ShahandKishor2012).

Inthiscontext,solarpumpinghasbeenidentifiedasadesirabletechnologicalsolution.Forinstance,oneresearchgroupfoundthat,outoffourrenewableenergytechnologiesforirrigation,solar-poweredpumpsseemedtohavethehighestutilizationpotentialacrossIndiaasawhole(KumarandKandpal2007).Fromapolicyperspective,theMinistryofNewandRenewableEnergy(MNRE)haspromotedsolarpumpsforirrigationunderanationalsolarmission,theJNNSM,whichprovideslargecapitalsubsidies(generally80percentto90percent)tomakesuchsystemsaffordabletofarmers.State-levelgovernmentshavefollowedsuitandprovidedsimilarandcomplementarypolicies.Also,whilesolarpumpshaveahighup-frontcost,theiroperatingcostsareverylowcomparedtowidelyuseddieselpumps,reducingriskofpricefluctuationstofarmers.

Withthiscontextinmind,thesolarwaterpumpprojecthasthefollowingobjectives:

● Tocreateatechnicalcomparativeevaluationofthepumpsusedinconjunctionwithsolarpanels

● Tounderstandthesocio-economicdriversandgrassrootslevelinsightsassociatedwithsolarpumpuse

● Toanalyzethecomplexinteractionbetweenwater,energy,andfoodthroughsystemdynamicsmodeling

● Toanalyzethebusinessmodelsusedbyfarmerstoaccessandusesolarpumps

● Tocreateatooltoenablefarmersandinstitutionssupportingfarmerstocorrectlysizethepumpneededfortheirparticularapplication

DESIGNOFSOLARPUMPSYSTEMSSolarpumpsystemscomeinmanyformsformanydifferentapplications,butarebroadlydividedintothreecomponents:thesolarpanels,theelectronics,andthepumpitself.Figure1showsthebasicdesignofthesolarpumpsystemsincludedinthisevaluation.

Figure1:SketchofSolarPumpDesign

Page 6: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

6

PANELS

Solarpanelsarebyfarthemostexpensivecomponentofthesolarpumpsystem.Thesizeofthearrayisdependentonthepowerneededforthepump,soevenasmallchangeinthepumphorsepowercanhaveanoutsizedimpactontheoverallcostofthesystem.Panelscanbeeitherfixedorhavemanualsingle-axistrackingtoensurethehighestlevelsofsunlightarehittingthepanelsduringbothmorningandafternoonhours.

Figure2:SolarPanelintheLittleRannofKutch

ELECTRONICS

Mostpumpsusedforagriculturearealternatingcurrent(AC)pumps,butsolarpanelsproducedirectcurrent(DC)power.Theelectronics,usuallyhousedinaweatherproofboxunderthepanels,convertthatDCpowerintoACthatcanbeusedwiththepumps.Theon/offswitchisusuallyapartoftheelectronicsboxaswell.Theamountofaccessfarmershavetotheelectronicsvariesfromprojecttoproject.InGujarat,India,saltfarmersusingsolarpumpshadfullaccesstotheelectronicsandoftenmadesmalladjustmentstomaximizetheiruseofthesystemincludingattachingadditionalpumps,andevendivertingelectricityforhome-lightingandtelevision.

Figure3:SolarPumpSystemElectronics

Page 7: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

7

PUMPS

Thepumpsarethesystemcomponentmostunderstoodbythefarmers,becauseinalmostallcases,theyhavealreadybeenusingpumpsofsomekind.Inseveralcases,wesawfarmersusetheirexistingelectricpumpswiththenewpanelsandthemajorityofsaltfarmersinterviewedpumpusingthesolarpanelsduringthedayandusingdieselgeneratorsatnight.

Figure4:SolarPump

SOLARPUMPUSECASESInordertofocusourresearch,theCITEteamconductedascopingstudyduringthefirstseveralmonthsoftheproject.ThisincludedfieldworkinJanuaryandApril2016inordertogatherprimarydatafromuserswhohaveadoptedasolar-poweredpumpsystem.Thiswascomplementedbyinformationgatheredfrominterviewsandmeetingswithprojectimplementerstaffandotherrelevantstakeholderssuchassuppliersandmanufacturers.

Specifically,wedevelopedourresearchunderstandingofseveraldifferentusecases,includingthreecasesinIndia(shallowopenwellirrigationinUttarPradesh,deepborewellpumpsforirrigationinKarnataka,andsurfacepumpsforpumpingbrineforsaltfarminginGujarat),asitevisittoMercyCorpsinMyanmarwherethemarketisverynascent,anddiscussionswithUSAIDandOxfamregardingtheirworkusingsolarpumpsfordrinkingwatersupplytoInternallyDisplacedPerson(IDP)campsinDarfur,Sudan.

TheprocesstheteamusedtodownselecttotwoUseCasesforfurtheranalysisisillustratedinFigure5.

Page 8: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

8

Figure5:DownselectProcess

OVERVIEWOFCITEEVALUATIONCRITERIAIn past evaluations, the CITE team has defined six primary criteria to be used in our comparativeevaluations,asshowninFigure5.ForboththeIrrigationCaseandtheSaltProductionCase,weattemptedto stay as consistent as possiblewith this six criteria comparative system; however,wemodified theapproachinseveralways:

IrrigationCase

First,fortheIrrigationCase,thepumpsbeingpilotedinintheareaswherefieldworkwasconductedwerelarge(e.g.,5ormoreHp)anditwasinfeasibletopurchaseandtestthepumpsintheMITlabduetotheircost, size and power requirements. Therefore, in this Case, the “Technical Performance” criteriawascombinedwithEaseofUseand isbased solelyon theperceivedperformanceof the largerpumpsasreportedbytheusersurveys.Also,sincethepumpsusedintheSaltProductionCasewereconsiderablysmaller(~1Hp)thanthoseobservedinthefieldintheIrrigationCase,wethoughtthatanyattempttocomparethetwosetsofpumpsagainsteachotherwouldproveimbalanced.GiventhattherewereonlyafewfarmersusingthelargersystemsinUtterPradeshandalimitednumberinKarnataka,fewerthan30 surveys were administered in the irrigation case and therefore the sample size was too small toproducerobustresults.Forthisreason,wedonotpresenta“Scorecard”summaryofresultsinthisCase.

SaltProductionCase

FortheevaluationofthepumpssizedfortheSaltProductionUseCase(~1Hp),weconductedinterviewsinApril2016usingthefullsurveywithonly21saltfarmers.Fromthoseresultsanddiscussionswithourpartner the Self-EmployedWomen’s Association (SEWA), we decided to focus this evaluation on thetechnicalperformanceofthepumpsinthefieldandtheMITlab,theperformanceofthesolarpanelsin

Page 9: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

9

thefield,thereportedandobservedusabilityofthesolarpumpsystem,andadetailedanalysisofthecostadvantage of replacing or combining solar pumpswith diesel pumps. For the Technical Performancecriteria,wedopresenta“Scorecard”stylecomparativetableofpumpperformanceintheMITLab.InthisUseCaseevaluation,wedidnot address the supply chain (Availability) aspects, thedemand for solarpumpswithusersotherthanSEWAmembers,ortheEnvironmentalimpactsofthesaltproduction.

Figure6:CITEEvaluationCriteria

Page 10: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

10

METHODOLOGYATAGLANCE

Page 11: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

11

FINDINGSATAGLANCE

Page 12: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

12

CASE1:SOLARWATERPUMPSFORIRRIGATION NumerousprogramsexistinIndiatoencouragesmallholderfarmerstoirrigatetheirfieldstoincreaseself-relianceandfoodproduction.Theseincludefreeorlow-costelectricityinsomeregionsand,morerecently,capitalsubsidiesforpurchasingsolarwaterpumps.InSeptember2014,theGovernmentofIndia’sMinistryofNewandRenewableEnergy(MNRE)setatargettodeploy1Millionsolarpumpsforirrigationanddrinkingwateruseinthecountry1.However,pumpingwaterforagricultureuseinIndiahasasignificantimpactonthewatertableandlong-termwaterresources.

TheirrigationportionoftheCITEevaluationfocusedontwomainsites:JhansiinUttarPradeshandBangaloreinKarnataka.Bothsiteshaveanumberofsolarwaterpumpsthatarebeingusedbylocalfarmersforirrigationpurposes,buttheimplementationanddemographicsofthefarmersdiffergreatly.

InJhansi,thepumpswestudiedwerepartofaprojectimplementedbyDevelopmentAlternatives,andwereinstalledbyPunchlineinabatchofsix.Punchlineisasystemaggregatoranddoesnotmanufacturethecomponentsthemselves.Fromstakeholderinterviews,itwasdeterminedthatlittle-to-nositesurveyingwasdonepriortoinstallation.Additionally,allsixsystemswereidenticalandnottailoredtoindividuallocations.

InKarnataka,thepumpswerebothinstalledandtheprogramimplementedbySunEdison,thesystemmanufacturer.Consequently,SunEdisonhadateamembeddedinthecommunitytoensurecorrectandefficientinstallationofthesystems.

Threeresearchtopicswereaddressedinthesolarpumpingforirrigationportionofthisstudy:a)aqualitativeevaluationoftheCITEcriteriashowninFigure6;b)theappropriatechoiceofpumpsizeandc)theimpactofsolarpumpingonthewater,energy,foodnexus.

APPROACH&METHODOLOGYFORSOLARPUMPSFORIRRIGATIONTheirrigationusecaseevaluationwasdividedintothreemainactivities:

• Administrationofusersurveystogathersocialandeconomicdata• Developmentofapumpsizingtool(detailedinthe“CorrectSizingforPumps”sectionofthis

report)• DevelopmentofaSystemDynamicsmodeloftheeffectofsolarwaterpumpimplementation

policies(detailedintheWater,Energy,FoodNexussectionofthisreport)Surveys were developed to gather data to calculate indicator and criterion scores for ease of use,availability,affordabilityanddemand.Separatesurveysweregiventotheend-userfarmers,landowners,facilitatingNGOs,systeminstallers,andindustryexperts.

1MNREDirectiveNo.42/25/2014-15/PVSE,Dated22ndSeptember,2014http://mnre.gov.in/file-manager/UserFiles/Scheme-for-Solar-Pumping-Programme-for-Irrigation-and-Drinking-Water-under-Offgrid-and-Decentralised-Solar-applications.pdf[downloadedAugust2,2017]

Page 13: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

13

Fortheend-userfarmersurveys,asmallconveniencesampleapproachwasusedandatotalof25farmerswere interviewed, with the majority being in Karnataka State. An average demographic profile wasdeveloped,asshowninTable1.

Table1:DemographicDataofSurveyGroup

AverageAgeofRespondents 39.6GenderofRespondents

Male 12Female 13

AverageHouseholdSize 6.6EducationLevel

Noschoolorilliterate 15Primary,MiddleorSecondary 9

HigherSecondary 1Averageincomefromfarming(Rps) 81,240Averageincomefromfarming(USD) $1,200

FINDINGSFORTHEIRRIGATIONCASE:USERSURVEYSBasedontheusersurveysadministeredtothesamplegroup,welearnedthefollowing:

EASEOFUSEDespitethetechnicalcomplexityofthesolarpumpsystems,usersoverallfoundthemoverwhelminglyeasytouseandmaintainonaday-to-daybasis,whichconsistsprimarilyofcleaningthepanelswhentheybecomedusty.Somerespondentsnotedadesiretolearnhowtotroubleshootmorecomplexproblems,expressingconcernthattheywereexclusivelyreliantonhavingtocalltechnicalstafftocomeinspectandfixtheproblems.Basedontheseresults,theimportanceofsystem-levelsupportability2becomesevident:aslongasthesystemdoesn’tbreak,itiseasytouse,butifitbreaks,itmaybealongtimebeforeit’sfixedandcouldbeanexpensiverepairdependingonthewarrantyand/orservicecontract.AfullsupportabilityanalysisofsolarpumpsystemsinIndiawouldbeaninterestingareaforfutureresearch.

AFFORDABILITYThoughthecostofsolarsystemshavecomedownsignificantlyoverthepastdecadethankstoadropintheperunitcostofphotovoltaic(PV)cells,theycontinuetorepresentasignificantcapitalinvestmentforsmallholderfarmers.Asacostof190,000Rps.(~$2,800),thecheapestsystemwesawwasnearlydoubletheaverageannualincomefromfarming—approximately105,000Rps.(~$1,500)—ofour

2“Supportability” isasystemsengineeringdisciplinethatreferstothecombinationofReliability(i.e.,howoftendoesitfail),Availability(percentageoftimeit’sreadytouse),Maintainability(howquicklyandeasilycanitbefixedifitdoesbreak)andIntegratedLogisticsSupport(i.e.,ifitneedsasparepart,canIgetit).

Page 14: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

14

respondentsample.Asaresult,96percentofrespondentssaidthattheywouldnothaveboughttheirsolarsystemhadafinancingorinstallmentoptionnotbeenoffered.

Withsuchanexpensiveproduct,itisperhapsnotsurprisingthathowlongitwouldtaketoowntheentiresystemwasnotaconsiderationthatdrovepurchasingdecisions—eitherbetweenbuyingornotbuying,orbetweenonesystemandanother.Thisisinkeepingwithdevelopmentliteraturethatsuggests,giventhehighrisksanduncertaintiesassociatedwithpoverty,thetimevalueofmoney(netpresentvalue,orNPV)ishighlyskewedtowardthepresentwithlessregardforlong-termfinancialconsiderations.

AVAILABILITYAkeydimensionofavailabilitythatemergedduringinterviewswithimplementingpartnerswastheimportanceofskilledtechniciansatthelocallevel.Thiswouldbecriticalassolarpumpsystemsscaleinaregion,andwouldbecomemoreimportantasthesystemsageandrequiregreatermaintenanceandincreaseintheirlikelihoodofneedingrepairs.Intheabsenceofaskilled,localworkforce,solarpumpsystemsmayscaleandyetmayunderperformorfallintodisrepair,misuse,ordisuse.Unfortunately,thisisacommonthemewiththeintroductionoftechnicallycomplexproductsinremote,impoverishedareas.Therequiredskillsandcredentialstorepairthesolarpumpsystemswithoutjeopardizingmanufacturerwarrantiescanonlybeobtainedinlargerurbanareas,andoncefullytrained,techniciansmaybeunwillingorunabletorelocatetoruralareaswherethemarketismuchsmaller.

DEMANDWhilethereexistsstronginterestinsolarsystemsforuseinagricultureandbeyond(householdlighting,forexample)amongfarmerhouseholds,demandisrelativelyweakandrequiresa“push”strategy.”Thisispartlyduetothesystems’costbutisalsoafunctionofhowtheyarepromotedmoregenerally.Solarsystemsarerarelyfoundasanoff-the-shelfproductthatresidentscanpurchaseontheirown.Rather,most systems are made available only through participation in specific programs, often governmentinitiativesundertheaegisoftheMinistryofNewandRenewableEnergy(MNRE).

Moreover,demandforpumpsystemsisskewedtowardthosethat includehigherhorsepowerpumps.This is because many farmers use horsepower as a proxy for system performance: the higher thehorsepower,thebetterthesystem.Severalorganizationsweinterviewednotedthechallengingnatureofconvincingfarmerstousealowerhorsepowerpumpwiththeirsystems.Thispointstotheimportanceofaddressing“soft”issuessuchassocialnormsandingrainedperceptionsinthepromotionoftechnologies.

SAFETYIntermsofsafety,beyondthethreatofpossibleshockfromwires,norealperceiveddangerwascommunicatedtoresearchersbyrespondents.Thereseemedtobeageneralconsensusthatsolarpumpsystemsaresaferthanbothdiesel-andelectric-poweredpumps.

Page 15: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

15

ENVIRONMENTALIMPACTWhilesolarwater-pumpingsystemshavebeenheraldedastheenvironmentally-friendlyalternativetogridorfossilfuelpoweredpumps,cautionneedstobetakenwhenimplementingthistechnologyifitistobetrulyenvironmentallysustainable.

Theeconomicadvantageofasolarpoweredsystemresultsinapotentialincreaseingroundwaterextraction.Whenconvertingfromfossilfuelpoweredsystems,thefarmersdonotpayforincrementalpumping(i.e.noongoingfuelcosts)andthereforeincurnoadditionalfinancialburdenforincreasingthehoursspentpumpingwater.Thisincrease,whileadvantageousinnumerouscases,resultsinadangerousprecedentandcanresultinover-pumpinganddamagingthelocalwatertable.

Incombinationwithsolarwaterpumping,theuseofdripirrigationasaprimaryirrigationmethodshouldbeconsidered.Itreducestherequiredamountofwaterand,whenpumpingtoastoragetank,providesthefreedomtoirrigateatanytime,evenoncloudydays.

MoreinformationontheusersurveysandfindingscanbefoundintheFullReportatcite.mit.edu.

FINDINGSFORTHEIRRIGATIONCASE:WATERENERGYFOODNEXUSInordertoexpandtheunderstandingoffuturetrendsintheadoptionofsolarpumpsystemsinIndia,theteamdevelopedaSystemDynamicsmodel.SystemDynamics(SD)isaquantitativemodelingtoolthatemploysmacro-levelthinkingtoanalyzetheimpactofcomplexfeedbacksindynamicsystems,suchasagriculturalprocessesandgroundwatermanagement.Itisbuiltonthebeliefthatthestructureofasystemdeterminessubsequentbehaviors,andcapturestwoessentialfeaturesofmanysystems:thattheyareself-regulatingandexhibitnon-linearityovertime.Suchsystemsarecommoninbothenvironmentalandsocialsystems.

Agriculturecanbeconsideredacoupledsocial-environmentalsystem,wherefarmersrelyonenvironmentalinputs—namelywater,butalsoseeds,fertilizerandsunshine—publicpoliciesthatdeterminetheiraccesstotheseinputs(e.g.,capitalintheformofpumps)andmarketconditionsthatgovernhowmuchincomecanbemade.Feedbackswithinthissystemareabundant:poorrainsinoneyearmayservetoincreasegovernmentsupporttofarmersinthenextyear;subsidiesfornewirrigationpumpsmayleadtoincreasesincultivatedland;cashincentivesforfarmerstouseefficientamountsofwaterfortheircropscanhelpstymiegroundwaterover-extraction.Assuch,SDmodelingprovessuitableasameanstoinvestigatethedynamicissuesinherentinagriculture.

ToensuretheSDmodelisasaccurateaspossible,datawasincorporatedfromseveralsources,including:primarydataforCITE’sfieldworkinKarnatakaandGujaratinIndia;rainfalldatafromtheIndiaMeteorologicalDepartment;agriculturaldatafromvariouscentralandstateministries;andwateravailabilityandusedatafromMinistryofWaterResources,CentralGroundwaterBoard,andstateagriculturalpolicydocuments.

Page 16: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

16

MODELSTRUCTUREThemodel’sstructuredrawsfromSDmodelsdevelopedbyotherscholarsinvestigatingtherelationshipbetween agricultural production, natural (especially water) systems and policy environments (Sohofi,Melkonyan,KarlandKrumme2015;Zhuang2014;Wang2011;AhmadandPrashar2010)andispremisedontheexistenceofaWEFnexus.Figure7showsthekeyrelationshipscapturedbythismodel.

Onekeyaspectofthemodelisthefeedbackloopbetweenirrigatedagriculturalland,solarpumpadoptionandwater-and-energyuse. In theabsenceofdemand-side incentivesandpolicies,greatersolarpumptechnologytranslatestogreaterpotentialwatersupply,whichleadstogreaterwaterdemandedandused,whichthenleadsfarmerstofurtherexpandtheareaoflandtheyareabletocultivate,and/ortoirrigateforalongerperiodoftime(day-to-day,orduringthedryseason).

Themodelissimulatedovera10-yearperiod,beginninginJanuary2017,withamonthlytimestep(120timestepstotal).

Figure7:SchematicofSDmodelstructure(blue:policyinterventions)

Page 17: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

17

APPROACHTheCITEteamdevelopedaseriesofScenariostounderstandtheimpactofdifferentpolicyinitiativesandtechnologydecisionsovertime.Theseinclude:aBaselineScenario,whichreflectsthecurrentsituationinKarnatakaandGujaratandprojectsgroundwaterdepletionovertime;aPolicyInterventionScenario,includingexaminationofpossiblecapitalsubsidies,mechanismstofeedintotheelectricalgrid,andvaryinglevelsofirrigationefficiency;aBanDieselPumpsScenario,whicheliminatesdieselpumpswhileaddingsubsidiesforelectricalpumppurchase;andaCombinedScenariosstudywhichlooksatinteractionsoftheotherscenariosatdifferentlevelsofimplementation.

SELECTEDFINDINGSWhileinitiallythegroundwaterlevelsinGujaratbenefitfrompoliciessuchasadieselpumpban(Figure8),overthecourseof10yearstheeffectisnegatedbytheadoptionofalternativepumpingtechnologies.Additionally,thereductioningroundwaterusageinyears1-6hasadetrimentaleffectontheagriculturalindustryastheystruggletosupplyenoughwatertomaintainthecurrentfoodproductionlevels.

Figure8:EffectonWaterSupplyversusDemandofBanningDieselPumpsinGujarat.

Whenconsideringonlythereducedimpactongroundwaterlevels,apolicyofmoreefficientirrigationyieldsthebestresultsforbothKarnatakaandGujarat,inthelong-term.Theintroductionoftheothertwopolicies,thecapitalsubsidiesandthegridfeed-intariffs,whileassumedtoreducethepumpinghoursofsolarpumpsystemsbyhalfbecausefarmersareincentedtomaximizetheamountofenergytheycanfeedbackintothegrid,onlyhasaminoreffectongroundwaterstorage,asshownFigure9.However,theseinterventionsdohaveanimpactonothercriteria,suchasfarmerincome.

Page 18: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

18

Figure9:IntroductionofCapitalSubsidiesandGridFeed-in,Karnataka

Anextensivediscussionofthescenariosandmodelresultscanbefoundinthefullreportatcite.mit.edu.

SUMMARYThroughourmodel,wehavesoughttodemonstratetheinterconnectednessbetweenagriculturaltechnologiesintheformofsolar-poweredpumpsandtheirimpactonthenaturalsystem—namely,onwateruseandmorespecificallyongroundwaterextraction.Theroleofpolicyinshapingfarmers’actionsandbehaviorsprovespowerful.Importantly,thedisseminationofpumpingtechnologiesaloneseemstoexacerbateunsustainablewaterusage:itaugmentsfarmers’accesstosupplywithoutincentivizingdemand-siderestrictions.Inthissense,capitalsubsidiesalonetogetsolarpumpsintothehandsoffarmersmaynotbethemostenlightenedpolicy.Couplingsuchapolicywithtechnologicalandeconomicincentives,suchasbanningdieselpumpsandprovidingmechanismstofeedelectricitybackintothegrid,however,reducestheuseofgroundwater.

Takingcurrentwaterconsumptionfornon-agriculturalusesandlevelsoffoodproductionintoconsideration,eventhecouplingoftheseinterventionsonlytakesthestatesofGujaratandKarnatakahalfwaytowardscompletesustainablegroundwaterextraction.Severalpossibleextensionstothismodelexist.Chiefamongthemarethecostofthetechnologyandtheimpactonadoption,whichwouldrequirewillingnesstopay(WTP)data.Further,coordinationissuesbetweenimplementationagencieswarrantsfurtherscrutiny,thoughsuchaninvestigationmaylenditselftocasestudiesasopposedtoSDscenariomodeling.Regardless,institutionalfragmentationandoverlap3remainsachallengein

3 For instance, theMinistryofNewandRenewableEnergy (MNRE) is responsible for thenational solarmissionschemethatprovidescapitalsubsidiesforthesolarpumpsystems,buttheCentralGroundwaterBoard(CGWB)andtheMinistryofWaterResources(MOWR)areresponsibleforwaterresourcemanagement.Moreover,theMinistry

Page 19: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

19

developingameaningfulmodeloftheWEFnexus.Asourmodelseekstodemonstrate,thebenefitsofsuchaholisticapproachareconsiderable,especiallyforthesustainableuseofwaterresources.

MoreinformationontheSDmodelandfindings(andadownloadableVensimfile)canbefoundintheFullReportatcite.mit.edu.

FINDINGSFORTHEIRRIGATIONCASE:PUMPSIZINGTOOLInordertoallowuserstoselectanappropriatepumpsize,theCITEteamdevelopedasoftwaretooltoautomatetheprocess.Aspreviouslymentioned,theproperpumpselectionisessentialtoboththefinancialandenvironmentalsustainabilityofaproject.Thesetypesofsizingtoolsareroutinelyusedbypumpsystemmanufacturersandintegratorstorecommendpumpstopotentialcustomers;however,eachcompanyhasaproprietarytoolthatisnotavailabletothegeneralpublicandthereforetheusermustrelysolelyonthemanufacturerorintegrator’sadvice.Webelievehavinganindependenttooltocrosschecktherecommendationsishelpfulbothintermsofensuringapropermatchbetweenpumpsizeandtheuser’sspecificconditions,aswellasenablingtheusertobeamoreinformedbuyer.

TheExcel-basedtoolisavailablefordownloadontheCITEwebsiteatcite.mit.eduandaMatlabversionisalsoavailableuponrequest.ItshouldbenotedthatthesetoolsarestillindevelopmentandtheresultscannotbeguaranteedbyUSAIDorMIT.Wewelcomediscussionandimprovementstothetools.

Asanexampleofhowthepumpsizingtoolcanbeusedtomakepurchasedecisions,werevisitedthecaseinUttarPradeshwhereDevelopmentAlternativeshasreplacedafewdiesel-poweredpumpsystemswithsolarpumpsystems.Basedonthefieldresearchandinterviews,weknowthefollowing:

� Asinglesolarpumpwasinstalledateachsite,alongwithothernecessaryequipmenttooperateit(solarpanels,inverter,etc.),replacingthedieselpumppreviouslyatthesite.

� Themethodusedtodeterminewhichsizepumpstopurchaseandinstallwastosizethepumpsaccordingtotheaveragedepthofthewatertablefortheregion.

� Toourknowledge,therewasnoon-sitepumptestingcompletedpriortotheinstallationandsubsequentuseofthesolarpumpsattheseirrigationsites.

� Priortoinstallation,theselectedpumpwaspurchasedandtestedinafacilityalongwithothersystemcomponents.

� Groundwaterhydrologyandwelllimitationsfromthefieldwerenotconsideredwhenselectingthesizeofthepumpstobeinstalled.

Inordertotestthepumpsizingtool,wehypothesizedthatbecausethepumpselectionmethodwasinsufficient,thepumpsinstalledonthesesiteswereimproperlysizedfortheirrigationsystems.Thus,weexploredthepumpselectionprocessspecificallyforshallowwellirrigationsystemssuchastheonesinUttarPradesh,andextrapolatedourmethodforbroaderapplication.ThisprocessisshowninFigure10.

ofAgricultureandFarmerCooperation(MAFC)isresponsibleforagriculturalpolicy.Beyondnationalministrypoliciesandprograms,stateandprivatesectorschemescomplicatetheinstitutionallandscapeevenfurther.

Page 20: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

20

Figure10:OverviewofthePumpSelectionProcess

ThecalculationsforthisparticularcaseareshowninFigure11.Therecommendedpumpsizerangeshownin(#4)ontheuserinterfacevariesbetween0.7and1.5hP,whichissignificantlylessthanthecurrent3horsepower(HP)ACsubmersiblewaterpumpthatisbeingusedattheDevelopmentAlternativessite.

Page 21: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

21

Figure11:PumpSizingToolUserInterface

Page 22: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

22

CASE2:SOLARWATERPUMPSFORSALTPRODUCTIONInadditiontotheagriculturalirrigationcasespresentedintheprevioussection,theCITEteamalsoworkedwiththeSelfEmployedWomen’sAssociation(SEWA)inGujarat,Indiatoevaluatethe1-1.5horsepowersolarwaterpumpsthatarecurrentlybeingusedbyseasonalsaltfarmers.

Wechosetoevaluatethesesmallerscalesolarwaterpumpsystemsforthefollowingreasons:

• SEWAhasanextensivesolarpumpprogram;• TheharshenvironmentalconditionsintheLittleRann,Gujarat,Indiaaresomethingofa

“challengecase”scenarioforthetechnicalperformanceofthepumps;• Thesmallscalepumpsaremuchmoreaffordableandtheresultsoftheevaluationcouldbe

usedasaguideforindividualfarmersorotherorganizationsinterestedinusingsolarwaterpumpsforirrigationofsmallfarms

TheSelf-EmployedWomen’sAssociation(SEWA),anorganizationwhosemembershipconsistsofinformalworkersandwhosemissionistoensuretheirrights,isthedrivingforcebehindthesolarpumpprojectforthesaltfarmersintheLittleRannofKutch.Theyhavesecuredloansforthesaltfarmersandnegotiatedthepurchasingofthesolarwaterpumpingsystems.Additionally,SEWAhastakenanactiveroletodateinrelationtomaintenanceandaftersalessupport.Thisismotivatedbyadesiretocontinuetheprojectandencouragemorefarmerstoadoptthetechnology.

SEWAfirststartedinstallingthesolarpumpsfouryearsago.Asofourfirstvisitin2016,250ofthe286solarpumpsinstalledontheRannwereinstalledbySEWA.

APPROACH&METHODOLOGYFORSALTPRODUCTIONCASEThemethodologyforevaluationofsolarpumpsforsaltproductionusecasewasdividedintoseveralactivities:

● Usersurveysforsocialandeconomicfactors,includingperceivedtechnicalperformance● Farmerinterviewsforseasonalcashflowsofbothsolaranddieselpumpsystems● Technicalperformancemeasurementinthefield,bothin-personandthroughsensors● Labtestingofthepumpsusedinthesolarpumpsystems

USERSURVEYSANDFARMERINTERVIEWSForthepurposesoftheresearch,weinterviewedatotalof98solarpumpowners,ofwhich10usedonlythesolarpumpsystemsand88usedacombinationofsolarpumpsanddieselpumps.Wealsointerviewed10farmerswhousedonlydieselpumps.Theselectionoffarmerswasbasedonaconveniencesampleandalsoconsideredthegeographicdistributionofthefarmers.

Ourfirststepwastoconductfairlydetailedinterviewswiththefarmerswhohadagreedtohavesensorsinstalledontheirsolarpumpsystems, inordertoevaluatetheirtechnicalperformance.Thesefarmers

Page 23: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

23

alreadyhada relationshipwithour researchersandwereable togiveusaboutanhourof their time.Theselongerinterviewsallowedustounderstandthevocabulary,timing,andunitstheyusedtotalkabouttheircashflows,whilealsoprovidingmoredetailedinformationabouthowandwhentheyarepaidbythemerchants,andhowfuelistransportedtothesaltpans.Weconducted16oftheseinterviewsoverthecourseofthreedays.

Fromtheselongerinterviews,wewereabletoconstructamuchmoreconciseinterviewthatcouldobtainalmost all of the same information in amuch shorter period.Over the course of threemore days ofinterviews,wewereabletoconduct92moreinterviewsincluding72withfarmersthatusedbothdieselandsolarpumpsystems,tenwhousedonlydieselsystems,andtenwhousedonlysolarpumpsystems.

Theinterviewscollectedavarietyofinformationonthefarmers’cashflows,suchthatasimplefinancialstatementcouldbeconstructedforeachfarmer.

TECHNICALPERFORMANCEINTHEFIELDInApril2016,theCITEteamtraveledtoIndiaandvisitednumeroussitesandpartners,includingSEWAinGujarat.Duringthevisit,SolarWaterPumpusersweresurveyedontheirreactionsandopinionsofthesystems.Inparalleltogatheringsurveyresponses,theteamcollectedinstantaneoustechnicaldatafor28ofthesystems,inordertoinformthesubsequentdesignofsensors.

Forthe28systemsmeasured(ownedby25farmers),wewereabletogatherflowdatafor7pumps,dueprimarilytothefactthatwehadtwoteamsconductingsurveysinparallel,butonlyoneflowmeter.Alsosomeofthefarmersdidnotwantustochecktherateasitwouldinterferewiththeirpumping.Thesolarpanelvoltageandcurrentdatawasgatheredforsomealmostallofthesystems,butwewereunabletogatherallofthepumpvoltageandcurrentnumbersduetovariousreasons(e.g.,noopenwirestotakemeasurements,etc.).

Followingthefieldwork,wedevelopedspecializedremote-sensingprototypestocharacterizetheoutputandusageofthesystems.Theprototypedata-loggerswerebuiltusingtheParticleElectronplatformandinterfacedwithacustomcircuitboardthatallowedforlocalizeddatastoragetomicroSDcards.Thedata-loggersconnectedtothesystematthesolarpanelinputtothecontrollerandtheoutputtothemotors.Thedatawasuploadedtoacloud-basedserverusingcellularnetworksevery12hours.Figure12showstheinstallationofthesensorsinoneofthe17locationsintheLittleRannofKutchinJanuaryanddesignedtomeasureoutputofthesystemsuntilMay-June.

Page 24: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

24

Figure 12: Researchers Éadaoin Ilten (left), Amit Gandhi (middle) and Przemyslaw Pasich (right) testingperformanceandinstallingsensors

TECHNICALPERFORMANCEINTHELAB

Tomeasurethetechnicalperformanceofpumps,severaltestpumpswereusedthatcorrespondedtobothpumpsthatwerebeingusedatthefield-testingsiteandothersimilarlysizedcommerciallyavailablepumpsthatwereavailableinIndia.Thepumpsweremountedtothetestrig,showninFigure13andattachedtotheplumbingwithflowandpressuresensors.Afterprimingthepumps,weturnedthemonandslowlyrampeduppowertofullpower,asdefinedinthepowerpumpssection.Ifthepumpwasnotprimedproperlyandwenoticedthewaterhammereffect,powerwasimmediatelydisconnectedandthepumpwasdisconnectedfromtheplumbingandprimed.Thiswasprocesswasrepeateduntilthepumpwasabletoachievesteady-stateflowandperformance.

Thepumpcurveforeachpumpwasgeneratedbycollecting3-5characterizationrunsoneachpump.Foreachrun,thepumpwasallowedtooperateunrestrictedforatleast5minutestoensurethatithadreachedsteadystate.Steadystateflowwasverifiedbycheckingthepressureandflow-ratesensorstomakesuretherewasnovariationinreadings.Aftertheinitialphaseofoperation,thepressurevalvewasincrementallyclosedtosimulateheadbyincreasingtheresistancetoflow.Aftertheflowstabilized,valuesforflowrateandpressurewererecorded.Thevalvewasprogressivelycloseduntilthepumpcouldnolongerpumpwater,atwhichpointthepumpswereswitchedoff.Powerinputtothesystemwasrecordedatvariouspoints.

Page 25: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

25

Figure13:PumpTestingExperimentalSetupatMIT

FINDINGSFORTHESALTPRODUCTIONCASE

USERSURVEYSANDINTERVIEWSThefocusonsolarpumpsforsaltproductionintheLittleRannofKutchin2017buildsonCITE’spreviousworkin2015-16byconsideringthefinancialimplicationstothefarmerofincorporatingasolarpumpintotheirsaltproduction.Unlikeagriculturalfarmerswhoonlyusepumpsforseveralhoursadayforirrigation,saltfarmersoftenpumparoundtheclock,leadingtomuchhigherdieselexpenses.Itfollowsthatthescopeforsavingsfromeitherswitchingsomeoftheirpumpingfromdieseltosolar,orincreasingproductionbyaddingasolarpumpingsystemisrelativelygreaterforsaltfarmersthanforagriculturalfarmers.

SEWAhas10,000membersactiveinsaltproductionintheLittleRannofKutch,ofwhichabout600haveinstalledsolarpumps.Forthepurposesoftheresearch,weinterviewedatotalof98solarpumpowners,ofwhich10usedonlythesolarpumpsystemsand88usedacombinationofsolarpumpsanddieselpumps.Wealsointerviewed10farmerswhousedonlydieselpumps.

Toanalyzethecashflowsofthefarmerswiththecombinedsystems,thecosts,revenues,andprofitfiguresareanalyzedpermetricton.TheaveragepricepertonthatthefarmersreceivedwasRps.159(USD2.37).ThemarginanalysisillustratedinTable2showshowthisRps.159issplitbetweenthedifferenttypesofexpenses,andthefarmer’sprofitmargin.Again,aswiththesolar-onlyfarmers,the

Page 26: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

26

mostimportanttake-awayisthatwhilethesolaranddieselelementsofthefarmer’sincomebothgaveverysimilarprofitmargins(of33percentand34percentrespectively)duringthepay-backperiod,oncetheloanwasrepaid,theprofitmarginforthesolarproductionincreaseddramatically.

Table2:VisualizingtheMarginAnalysis

AverageDiesel-PoweredProduction AverageSolar-PoweredProductionPre-Payback

AverageSolar-PoweredProductionPost-Payback

TECHNICALPERFORMANCEINTHEFIELD–MEASUREDDATA

TheCITEteamattemptedtogatherdataonasmanypumpsaspossibleinthefield,resultinginasamplesizeof28pumps,ownedby25farmers.ThemeasureddataincludedFlowrate(L/min),Pumprating(Hp),Welldepthfromsurface(ft),Waterlevelfrompump(ft),Distancetooutlet(ft),SuctionPipediameter(“),DischargePipediameter(“),Panelvoltage(V),Panelcurrent(A),Pumpvoltage(V),andPumpcurrent(A).Unfortunately,itwasnotpossibletorecordalloftheparametersforall28pumpsduetoanumberofreasons.

Figure14showstherecordedinstantaneousflowrateforeachFalcon1HPsystemwefoundintheLittleRannofKutch.Weselectedthissystembecauseitwasalsotestedinthelab.Aswiththelaboratorydata,thetotalheadandflowratedonotexceed24.3mand300L/min,respectively.Asexpected,theperformanceofthepumpsinthefieldissignificantlyreducedwhencomparedtothelabdata,thisisassumedtobeduetogeneralusageandexposuretothehighlevelsofsalinity(totaldissolvedsolids

Page 27: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

27

(TDS)=13,000-17,000mg/L).Theaverageefficiencywas35percent(s=16percent),againthislowefficiencyisattributedtotheharshnatureoftheenvironment.Onaverage,thesaltfarmersreportedtheexpectedpumplifetimetobe3.2yearsbeforeneedingreplacementduetorust.Notethatthelifetimeofstructuralcomponentsinaharshenvironmentisextremelydifficulttomeasureinalabandspeakstotheimportanceoffieldresearch.Thatsaid,withanextremelylimitedsamplesizeandnoavailableperformancedataonthesamepumpsusedindifferentenvironments,theseresultsmustbetakenwithagrainofsalt.

Figure14:HistogramofflowratesofFalcon1Hpseeninthefield.Mean120L/min(s=48L/min)

Fromtheelectricalmeasurementsofthe28pumps,currentandvoltageofboththepumpsandpanels,themeanACpowerintothepumpswascalculatedas0.91HP(+/-0.59)forthe1.5HPpumps,and0.53HP(+/-0.28)forthe1HPpumps,showingthattheywerenotbeingpoweredatoptimallevels.Thepanelsgeneratedameanof1.54HPand1.34HPforthe1.5HPand1HPpumpssystems,respectively,showingalossof40percentand60percentrespectivelywhenconvertingfromDCtoAC.4Thisisconsideredafairlylowefficiencybyindustrystandards,butgiventhecostofthesystemsandtheharshoperatingenvironmentitwasnotflaggedasamajorissue,especiallyconsideringthelimitedsamplesize.Alsonotethatthelabtestingresultscontainedinthenextsectionwerefairlyconsistentwiththesevalues.

Toreiterate,thesevalueswereinstantaneousandnottestedinalaboratorysetting,eachsolarpumpingsystemwaslocatedatadifferentlocationwithdifferingwaterlevelsandexposureratestotheenvironmentandthepanelsandpumpswereofvaryingsize,ageandmaintenancelevel.

TECHNICALPERFORMANCEINTHEFIELD-SENSORS

ThedatafromseveralpumpswasaggregatedfrominstallationinlateJanuary2017throughMarch31,2017tounderstandregularityofsystemusageandproduction.AsampleoftheoutputfromSP020isshowninFigure15.Thedatashowsconsistentusageofthepumpingsystems(indicatedbytheSolarPanelVoltage)withvaryinglevelsofpumpusage(indicatedbytheMotorCurrent).Themotorcurrent

4Electricalpowerisreportedhereinhorsepowertobetterconceptualizethevaluesforpumping.

Page 28: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

28

variationcouldbeattributedtosaltfarmersusingoneortwopumpsintheirsystemorbecauseofsolararraypowerlimits.ItwasdifficulttofindlocationswithgoodcellularavailabilityintheLittleRannofKutchandgapsindataarelikelyaresultofpoorcellcoverage.Wewillcontinuetoanalyzethedatatodetermineseasonvariabilityandtracklongertermadoptionratesforthedifferentsensorsystems.

Figure15:PlotofMotorCurrentand

TECHNICALPERFORMANCEINTHELABThecomparativetestresultsforthe5pumpstestedintheMITlaboratoryareshowninTable3andFigure16. TheHarbor Freight pumpwas purchased locally andwas used primarily to test the experimentalprocedureandtestrig;however,theresultsareincludedforreference.

Table3:ResultsfromLabTesting

Pump

MaxHead(m)

MaxFlowRate(LPM)

ElectricPower

Input(W)

HydraulicPower

Output(W)

PeakEfficiency(%)

Flowrateat10m(LPM)

Dailymaxoutput(L)

Falcon 24.3 300 1200 561 46.75% 215 103,200HarborFreight 32.2 81 750 267 35.60% 21 10,080Kirloskar 22.9 291 1200 534 44.50% 207 99,360Rotomag 20.2 295 750 434 57.87% 178 85,440Shakti 32.0 162 1400 445 31.79% 134 64,320

Page 29: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

29

Figure16:PumpComparisonChart

Basedonourresults,wecanseethattheFalcon,Kirloskar,andRotomagpumpsprovidesufficientflowwhenthewellisfull(theintersectionofthepumpcurvesandthepurplesystemcurvearewithinourshadedregion).However,attimeswhenthewelllevelisatitslowest,theRotomagpumpisinsufficienttomeetourneedsandonlytheKirloskarandRotomagpumpsprovidesufficientflow(theintersectionofonlytwopumpcurvesandtheorangesystemcurvearewithinourshadedregion).Asaresult,ourfarmerislefttochoosebetweentheFalconandKirloskarpumps.

Todeterminewhichofthepumpstouse,wewouldfurtherconsiderthepumpefficiencieswithintheoperatingregionaswellasthecostofthepumps.Fromourresults,weseethattheFalconFCM115isslightlymoreefficientthantheKirloskarSKDS116++pump,butthedifferenceinminimal.Wecanalsofurtherconsidertheeaseofuseofthepumps–theFalconpumpreceivedahigherscoreintheprimingcategorysoinstallationandmaintenanceofthepumpisbetterthantheKirloskar.Costirrespective,wewouldrecommendtheFalconFCM115forthisusecase.

CONCLUSIONSFORBOTHCASES Asasustainableandscalabletechnology,solarwaterpumpsresideatthewater-energy-foodnexus.Theirimplementationinregionsheavilyreliantonfossilfuelsorgridelectricity(poweredprimarilybycoal)isoftenhailedasavitalstepinbattlingclimatechangeandincreasingfoodsecurity.

Thecasesstudiedwereapproachedfromaprogrammaticstandpointandrevolvedaroundcommunityintegration.Througharesearchapproachthatincludedcasestudydevelopment,directend-usersurveys,andstakeholderinterviews,fivekeyfactorstoconsiderbeforeimplementationwereidentified:

● End-usersatisfactionwiththetechnology● Systemsizing● Wateravailability● Technicalcapacityandlocalservicing● Financingavailability

Page 30: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

30

Theyarelistedasaformativefirststagechecklistwhenchoosingtoimplementanagricultural-based,community-widesolarwaterpumpingprogram.Thoughthefactorslistedarisespecificallyfromtheintroductionofsolarpumpingsystems,theymayofferlessonsgermanetoalternativetechnologiesmorebroadly.Beyondthechecklist,topicssuchassupplychainmappinginruralareasandalternativeassetproductivityusesforthesolarpanels,arehighlightedasofinteresttothoseprocuringsolarpumpingsystemsatscalebutbeyondthescopeofthisinitialinvestigation.

Oneofourfindingsfromthisresearchwasthatmanypartnersjumpedstraightintosolarpumpingdeploymentwithoutfullyinvestigatingtheotherelementsofanintegratedirrigationsystem,orunderstandingwhethersuchasystemisfinanciallyorenvironmentallysustainable.Whenconsideringtechnologyapplicationsforirrigation,itwouldbehooveprojectimplementersandfunderstofirstconsiderthesuitabilityofefficientirrigationsystems,thenconsidersolarenergytopowerthepump.Dripirrigationsystemsarelowercostthansolar,soasaninitialinvestmentforafarmer,thefinancialburdenwillbelessofabarrier.Ifthefarmerlaterchoosestopurchaseasolararraytopowerthepump,thepumpwillalsobeoftherightsizeandthesolarsystemoverallwillcostless.

Becausethesolarpumpsystemsarequitetechnologicallycomplex,weweresurprisedtofindthatallusersconsideredthesolarsystemsveryeasytouse.Respondentsreportedthatcomparedtodieselpumps,whichcanbedifficulttostartandrequiretheprocurementoffuelfromsometimesremotelocations,andelectricpumps,whichoftenrequirenighttimeoperationandsometimesdangeroustraveltoagriculturalfieldsawayfromthefarmer’shome,thesolarpumpsareturnedonandoffwithasimpleflickofaswitch.Somefarmershadtheirchildrenoperatethepumps.Thisdemonstrates,thatinadditiontothefinancialbenefitsofsolarpumps,thesolarsystemsprovideadditionalbenefitsintermsofincreasedsafety,easeofuse,andcomfort.

Wealsofoundthatfarmershaveahighcapacitytoacceptincreasesinmonthlypaymentsuptoandmaybejustslightlymorethantheircurrentpaymentsfordiesel.Itfollowsthatthefarmersarenotatallsensitivetothetotalcostofthesystem,aslongastheirmonthlypaymentsaremanageable.However,inasmuchastheyhaveachoiceintechnology,thefarmersarehighlysensitivetothetechnologytypeanddeploymentinaparticularproject.Thelessonlearnedisthatinvolvingfarmersinthetechnologychoiceisanimportantelementintheongoingsuccessofsolarpumpprojects.

Page 31: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

31

AUTHORS&ACKNOWLEDGEMENTSThisresearchwouldnothavebeenpossiblewithouttheguidanceandsupportoffaculty,staff,andstudentsattheMassachusettsInstituteofTechnologyaswellaspartnersattheSelf-EmployedWomen’sAssociation(SEWA),DevelopmentAlternatives(DA)andSunEdison.

ReportAuthors

JenniferGreen(TeamLead)AmitGandhiÉadaoinIlten(TechnologyExchangeLab)

BrennanLake(TechnologyExchangeLab)VandanaPandyaSaraLynnPesek

JonarsB.SpielbergChristinaSung

Partners

SEWAAnuragBhatnagarReemaNanavatiHeenabenMilindPauChandubhaiPankajbhaiMercyCorpsShantiKleiman

DevelopmentAlternativesDr.S.N.PandeySakshamPushpenderSunEdisonParameshwarHegdeSwarup

SELCOSandeshAnilkumarOtherNavyaN.ChuriPoojthiaN.PankajSmitaShah

Page 32: Solar Water Pumps- Technical, Systems, And …cite.mit.edu/system/files/reports/Solar Water Pumps...through open wells or deeper borewells, is the primary driver for irrigation. These

32

SELECTEDREFERENCESNielsenU.2001."Povertyandattitudestowardstimeandrisk–experimentalevidencefrom

Madagascar."Workingpaper,RoyalVeterinaryandAgriculturalUniversityofDenmark

PenderJL.1996"Discountratesandcreditmarkets:theoryandevidencefromruralIndia."JournalofDevelopmentEconomics50:257-296.

CarpenterJ,CardenasJC.2008."Behavioraldevelopmenteconomics:lessonsfromfieldlabsinthedevelopingworld."JournalofDevelopmentStudies44(3):337-364.

TanakaT,CamererCF,NguyenQ.2010."RiskandTimePreferences:LinkingExperimentalandHouseholdSurveyDatafromVietnam."AmericanEconomicReview100(1):557-71.

TheWorldBank.2010.“Deepwellsandprudence:towardspragmaticactionforaddressinggroundwateroverexploitationinIndia.”WashingtonDC:WorldBank.

Shah,T.,C.Scott,A.Kishore,andA.Sharma.2007.“Energy-irrigationnexusinSouthAsia:improvinggroundwaterconservationandpowersectorviability.”InTheAgricultureGroundwaterRevoution:OpportunitiesandThreatstoDevelopment,ed.M.GiordanoandK.G.Villholth.ComprehensiveAssessmentofWaterManagementinAgricultureSeries.Wallingford,UnitedKingdom:CABIPublishing.

USAID.2014.“Casestudysummary:proximitydesigns,Myanmar.”www.ashden.org/winners/Proximity14.

AhPoe,C.2011.“FoodSecurityAssessmentinNorthernRakhineState,Myanmar.”February2011.FoodSecurityAnalysisServices.

KPMGandShaktiSustainableEnergyFoundation.2014.“FeasibilityanalysisforsolaragriculturalwaterpumpsinIndia.

Garud,S.2004.“Enhancingsustainableproduction:financingmodelforsolarwaterpumpingsystemsinagriculture.”Asia-PacificEnvironmentalInnovationStrategies(APEIS)andResearchonInnovationandStrategicPolicyOptions(RISPO)GoodPracticesInventory.

Hamidat,A.,B.Benyoucef,andM.T.Boukadoum.2007.“Newapproachtodeterminetheperformancesofthephotovoltaicpumpingsystem.”RevuedesEnergiesRenouvelablesICRESD-07Tlemcen(2007)101-107.

Chandrasekaran,N.,B.GaneshprabuandK.Thyagarajah.2012.“MATLABbasedcomparativestudyofphotovoltaicfedDCmotorandPMDCmotorpumpingsystem.”ARPNJournalofEngineeringandAppliedSciencesVol7-5543-547.

AURORE.2002.“Bestpracticesinsolarwaterpumping.”AurovilleRenewableEnergy,AurovilleTamilNadu.