(Soil Dynamics)S * Tn dm,

36
E f ? f _ 5 0 , S * T n _ d m , (Soil Dynamics) 5 0 - _ k 1 X 8 G l \ G (Ali Asgari) a 0 - c 2 _ g X < c , l 7 - d j _ e l d M g - V < c , a 1 G g e 1 W T n c V _ : m 1 W l e S * * f _ 1 V M 0 a # h V c ] c h ~ n K 3 & o w 8 k C r u i Z > M 1 7 S * T n _ d m , ^ j _ F # 1 _ Soil Dynamics 2 Braja M. Das and G.V. Ramana, Principles of Soil Dynamics, Second Edition, , Cengage Learning, 2011. Braja M. Das and Zhe Luo, Principles of Soil Dynamics, third Edition, Cengage Learning, 2016. Kramer, Steven L. Geotechnical earthquake engineering. Pearson Education India, 1996. Verruijt, Arnold. An introduction to soil dynamics. Vol. 24. Springer Science & Business Media, 2009.

Transcript of (Soil Dynamics)S * Tn dm,

Page 1: (Soil Dynamics)S * Tn dm,

:

(Soil Dynamics)

: (Ali Asgari)

- -

4-5

)Soil Dynamics(

2

Braja M. Das and G.V. Ramana, Principles of SoilDynamics, Second Edition, , Cengage Learning, 2011.

Braja M. Das and Zhe Luo, Principles of Soil Dynamics,third Edition, Cengage Learning, 2016.

Kramer, Steven L. Geotechnical earthquake engineering.Pearson Education India, 1996.

Verruijt, Arnold. An introduction to soil dynamics. Vol.24. Springer Science & Business Media, 2009.

Page 2: (Soil Dynamics)S * Tn dm,

12

)Soil Dynamics(

3

) (

. . .

. . .

. . .

4

- - . .

. .

. .

- - . .

. .

. .

- - - - - - - - - . .

.

. .

.

.

Page 3: (Soil Dynamics)S * Tn dm,

5

:

- - -

.

. .

: .

6

: .

.

Lambe & Witman

: )( )( .

Page 4: (Soil Dynamics)S * Tn dm,

7

.

Hz25

Hz5 .

:- ) (-

:-

-

8

.

1- (a) (b)

Page 5: (Soil Dynamics)S * Tn dm,

9

2- : .

3- ) (

10

4- )( ) (

Page 6: (Soil Dynamics)S * Tn dm,

11

rD )

( 3

:

1 -

2 -

3- ) (

12

- )(

) ( ) ( .

- )(

) ( .

- )( .

- ) (

) ( .

Page 7: (Soil Dynamics)S * Tn dm,

13

-

.

.] n) (n [.

.

- )( n

. . n n n

n . .

12

)Soil Dynamics (

14

) (

Page 8: (Soil Dynamics)S * Tn dm,

15

. :1- 2-

.

16

)(

: .

Page 9: (Soil Dynamics)S * Tn dm,

17

18

- •

Page 10: (Soil Dynamics)S * Tn dm,

19

k . ( )

m W

statZ :

k

WZ stat

-

20

: ( )

ZmFy .

Z .

ZmFy . ZmWZKZK stat

...

gmW . statZKW . :

. . , . . 0K Z m Z m Z K Z

2

:

m

KB

m

KAZZ

m

KZtBtAZ nn cossin0cossin

Page 11: (Soil Dynamics)S * Tn dm,

21

AB, n

Z :

m

Kf

K

mT

m

K

fm

KZ

m

K

nn

nn

nnnn

2

1,2

2

21

0 22

( ) statZ nf .

:

Kmg

g

gm

gKfn /2

1..

21

stat

nstat Z

gfZ

K

WKmg

21

/

sin cosn nZ A t B t

22

tBtAZ nn cossin

:

0 0 00 0t Z Z Z V t B Z

:

tZtV

Z nnn

cossin 00

. . 0m Z K Z :

2

2 0 00

0

cos , , arctan

n n

nn n

i t i t

V VZ Z t Z Z

Z

Z Ae Be

Page 12: (Soil Dynamics)S * Tn dm,

23

2

2 0 00

0

cos , , arctannn n

V Vz Z t Z Z

Z

24

Page 13: (Soil Dynamics)S * Tn dm,

25

: 45

1 : (

( 41 1 10

) 7.43 Hz,2 2 45 / 9.811 1

) 0.135 sec7.43

n

n

ka f

m

b Tf

26

The animated gif shows the simple harmonic motion of three undampedmass-spring systems, with natural frequencies (from left to right) of ωo,2ωo, and 3ωo. All three systems are initially at rest, but displaced adistance xmfrom equilibrium.

-

Page 14: (Soil Dynamics)S * Tn dm,

27

0 sin ,Q Q t Q

0 sinmz kz Q t

.

:

1 sinpz A t

02

sinp

Q mz t

k m

28

0 sinmz kz Q t

: 2 3cos sinh n nz A t A t

02

sinp

Q mz t

k m

:

:

02 32

sin cos sinp h n n

Q mz z z t A t A t

k m

Page 15: (Soil Dynamics)S * Tn dm,

29

02 32

sin cos sinp h n n

Q mz t z z t A t A t

k m

: 0 0 00 0, 0t

dzz z v

dt

30

0

0

2 2sin sin

1n

nn

Q kz t t

0 2 2

1sin sin , ,

1s n s

n n

z z M t t z Q k M

Page 16: (Soil Dynamics)S * Tn dm,

31

0 2 2

1sin sin , ,

1s n s

n n

z z M t t z Q k M

: .

.

2 2

sin sinlim

1n

n ns

n

d d t tz z

d d

2 2

sin sinlim

1n

n ns

n

d d t tz z

d d

1sin cos ,

2 s n n nz z t t t

0 1

0n

M

M

M

32

: 1sin cos ,

2 s n n nz z t t t

:

Page 17: (Soil Dynamics)S * Tn dm,

33

0 2 2

1sin sin , ,

1s n s

n n

z z M t t z Q k M

: .

cos sin ,s n

dzz v z M t t

dt

1 10 cos sin 2sin sin ,

2 2n n nz t t t t

1 2

2

1 2

2

nn

nn

nt n t

mt m t

34

: SDOF Kips10

Kips5 04.0 .

-

-

. -

5125 /

0.04

125 12 32.2.69.5 / sec

102 2

0.09sec69.5 / sec

n

nn

K Kips in

K K grad

m Wrad

Trad

: : ttZt

VZ

VZZ

nnn

5.69cos04.0cossin

004.0

00

000

Page 18: (Soil Dynamics)S * Tn dm,

35

: . -

tQ sin8000 :

inlbKlbWW

cyclef

mf /400000,40000

min/800

.

5

4

1 1

0

4 1062.16 / sec

4 10 / 32.2 12

800? 2 2 83.8 / sec

60

83.81 8000 1 23000

62.16

n

maxn

Krad

m

f rad

F Q lb

maxF !!!

+ ( + )maxF

- ( + )maxF

lb630004000023000 lb170002300040000

36

The animation shows response of the masses to the applied forces. The direction andmagnitude of the applied forces are indicated by the arrows. The dashed horizontallines provide a reference to compare magnitudes of resulting steady statedisplacement.

Transient response to an appliedforce: Three identical damped 1-DOF mass-spring oscillators, allwith natural frequency f0=1, areinitially at rest. A time harmonicforce F=F0cos(2 pi f t) is applied toeach of three damped 1-DOF mass-spring oscillators starting attime t=0. The driving frequencies ωof the applied forces are (matchingcolors)f0=0.4, f0=1.01, f0=1.6

Page 19: (Soil Dynamics)S * Tn dm,

37

The animation shows the motion of the base and the resulting motion of all threeoscillators together. The horizontal lines indicate the maximum displacement of thebase.

Three simple 1-DOF mass-springoscillators have natural frequencies(from left to right)of f1=1.6, f2=1.0, f3=0.63. At time t=0the base starts moving with sinusoidaldisplacement s(t) = S0sin(t) where thedriving frequency is f=1.001. Thedamping rate for all three oscillators is0.1 so that the initial transient motiondecays and a steady-state is obtained.

38

)1( ZmF .

)2( . .SK Z Z W C Z m Z

)3(. . . 0m z C z K z

.

. 2 .

.

. . , . .

r t

r t r t

z Ae

z r Ae z r Ae

, ,z z z ) 3 : (

)4(0........ 2 rtrtrt eAKeArCeArm

)5(00.. 22

m

Kr

m

CrKrCrm

mKC ,, r) 5 : (

-

Page 20: (Soil Dynamics)S * Tn dm,

39

)6 (m

K

m

C

m

Cr

2

2

42

:

:

m

K

m

C

20

m

Cr

2

:

m

K

m

C

20

:

m

K

m

C

20

:

40

-

- Over damped

D>1 .

1 2. .1 2.r t r tz A e A e

. . . 0m z C z K z

Page 21: (Soil Dynamics)S * Tn dm,

41

-

- Critically damped D=1 .

1 2. .1 2.r t r tz A e A e

. . . 0m z C z K z

42

-

- Under damped D<1 .

1 2. .1 2.r t r tz A e A e

. . . 0m z C z K z

Page 22: (Soil Dynamics)S * Tn dm,

43

-

44

t D

1n nZ Z : .

:1 2D D

Page 23: (Soil Dynamics)S * Tn dm,

45

This image cannot currently be displayed.

46

:mKNKmKNC /11000,sec/.200

KNW 60 .

Cpsdf

fDdf

n

nn

23.660

81.911000

2

1368.01

1

2

2

-

- - - .

1386.076.518

200

sec/.76.51881.9

60110002.2

DC

C

mKNmKC

C

C

.

2 2

2 0.38622.63

1 1 0.386

D

D

87.1363.2

1

eeZ

Z

n

n

Page 24: (Soil Dynamics)S * Tn dm,

47

-

With damping:The animated gif shows two 1-DOF mass-spring systems initially at rest, but displaced from equilibrium by x=xmax . The black mass is undampedand the blue mass is damped (underdamped). After being released from rest the undamped (black) mass exhibits simple harmonic motion while the damped (blue) mass exhibits an oscillatory motion which decays with time.

48

0. . . sinm z c z k z Q t :

. :

3 4sin cosnD th nd ndz e A t A t 1 2sin cospz z A t A t

g p hz z z

Page 25: (Soil Dynamics)S * Tn dm,

49

0. . . sinm z c z k z Q t

1 2sin cospz z A t A t

:

m :

. . .

. . .

. . .

50

:0. . . sinm z c z k z Q t

2 .C

C CD

C K m

Page 26: (Soil Dynamics)S * Tn dm,

. . .

. . .

. . .

51

:

220

1,

1 2 n

ZM

Q DK

0M

2

2

1 2 ,

11 2

2

m n

m n

D

f D

52

220

1,

1 2 n

ZM

Q DK

0C 0CC

CD

.

nmDif 02

2

1 2 ,

11 2

2

m n

m n

D

f D

10, 1

2mif D M

Page 27: (Soil Dynamics)S * Tn dm,

53

:

max max.F k z

:

. .dynamF k z c z

22

1,

1 2 n

ZD

54

: lbtQ sin100

.

:

201 2 2 22

1sin cos 1 sin 2 cos

1 2

nD tn n

QZ e C dt C dt t D t

K D

000 tZ : .( )

0 0

0 2 22 22 22 2

2 20

1 2 1 2

Q QD DZ C C

K KD D

22

100 12 32.26.22 sec1000

3 32.2 120.093

2 2 2 1000 6.22

1 6.22 1 0.093 6.19 sec

n

n n

nd n

K K g radm WC C g

Dm W

radD

Page 28: (Soil Dynamics)S * Tn dm,

55

201 2 2 22

1sin cos 1 sin 2 cos

1 2

nD tn n

QZ e C dt C dt t D t

K D

000 tZ : .( )

0 0

0 2 22 22 22 2

2 20

1 2 1 2

Q QD DZ C C

K KD D

00 Z 0t :

2

00 1 2 2 22

10 . . .

1 2nd n

QZ C C D

K D

222

20

121

1

DdK

QC

n

tDtDK

QZ

dtDdtDeDK

QZ nn

tD n

cos2sin121

1

cos2sin1221

1

2

222

02

22

222

01

21 ZZZ

56

tDtDK

QZ

dtDdtDeDK

QZ nn

tD n

cos2sin121

1

cos2sin1221

1

2

222

02

22

222

01

21 ZZZ

Page 29: (Soil Dynamics)S * Tn dm,

57

KN140

mKN /1012,2.0 4: 46sin157 ( kN)Q t

. :

-

-

-

4

4

01 1

2 22 22 22 2

1 1 12 1014.59 , 2 2 14.59 91.67 / sec, 1.71

2 2 140 / 9.81

46 / 12 10/0.000187

1 2 1 1.71 2 0.2 1.71

n n nn

Kf Cps f rad

m

Q KZ m

D

max

22 4

22 22 4

140. 2 . 2 0.2 12 10 523.46kNsec/m

9.81

0.000187 . 0.000187 12 10 523.46 157 27.20kNdynam

A Z k c C D k m

F A k c

58

Page 30: (Soil Dynamics)S * Tn dm,

59

:

60

:1-

2-

Page 31: (Soil Dynamics)S * Tn dm,

61

:1- 2-

:1- .2- - .3- 4- 5- :

0.707 resZ

resZ

1f2f

62

0. . . sinm z c z k z Q t

2

2

1 2 ,

11 2

2

m n

m n

D

f D

:

Page 32: (Soil Dynamics)S * Tn dm,

63

64

:1- 2-

:1- .2- - .3- 4- 5- :

0.707 resZ

resZ

1f2f

Page 33: (Soil Dynamics)S * Tn dm,

65

:

66

:

Page 34: (Soil Dynamics)S * Tn dm,

67

:

68

:

Page 35: (Soil Dynamics)S * Tn dm,

69

:

. .

70

The 2-DOF system has two natural frequencies, corresponding to the two naturalmodes of vibration for the system. In the lower frequency mode both masses move inthe same direction, in-phase with each other. In the higher frequency mode the twomasses move in opposite direction, 180° out of phase with each other. The animationshows the motion of the 2-DOF system at normalized forcing frequenciesof f.left=0.67 (in-phase mode), fmiddle=1 (undamped classical tuned dynamic absorber),and fright=1.3 (opposite-phase mode). The arrows in the movie represent themagnitude and phase of the force applied to the main mass.

2

1

k

k

Page 36: (Soil Dynamics)S * Tn dm,

71

A 1-degree-of-freedom system has1 mode of vibration and 1 naturalfrequency

A 2-degree-of-freedom system has2 modes of vibration and 2 naturalfrequencies

A 3-degree-of-freedom system has 3 modes of vibration and 3 natural frequencies

A 4-degree-of-freedom system has4 modes of vibration and 4 naturalfrequencies