Soft X ray Absorption and Resonant...

27
1 Soft Xray Absorption and Resonant S tt i Scattering DiJing Huang Nat’l Synchrotron Radiation Research Center, Taiwan Dept of Physics Nat’l Tsing Hua University Taiwan [email protected] Dept. of Physics, Nat’l Tsing Hua University , Taiwan Cheiron 2009, SPring8, Japan Oct. 3 1 Soft Xray Absorption and Resonant Scattering 1. Soft Xray Absorption Basic Experimental Setup Applications Chemical analysis Orbital polarization Magnetic Circular Dichroism 2. Resonant Soft Xray Scattering Introduction Basic of resonant Xray scattering Examples: Magnetic Transition of a Quantum Multiferroic LiCu 2 O 2 2

Transcript of Soft X ray Absorption and Resonant...

Page 1: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

1

Soft X‐ray Absorption and Resonant S tt iScattering

Di‐Jing Huang

Nat’l Synchrotron Radiation Research Center, TaiwanDept of Physics Nat’l Tsing Hua University Taiwan

[email protected]

Dept. of Physics, Nat’l Tsing Hua University, Taiwan

Cheiron 2009, SPring‐8, Japan

Oct. 31

Soft X‐ray Absorption and Resonant Scattering

1.Soft X‐ray AbsorptionBasicExperimental Setup

Applications‐ Chemical analysis‐ Orbital polarization‐Magnetic Circular Dichroism

2.Resonant Soft X‐ray Scattering Introduction

Basic of resonant X‐ray scatteringExamples:

Magnetic Transition of a Quantum Multiferroic LiCu2O2

2

Page 2: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

2

Soft x‐ray: 250 eV  a few keV3

Interaction of photons with matter:

SynchrotronRadiation

photoemissionReflected Photons

FluorescencePhotoelectric effect

Transmission(absorption)

Inelastic Scattering

Crystal

Bragg Diffraction

Photoabsorption

Scattering/diffraction    

l i f

4

• lattice structure: arrangement of atoms  

• electronic states

•magnetic order

• excitations (electronic states or phonons)

Page 3: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

3

Continuum

Absorption

Atom

EV

core levelPhoton energy

A

Continuum

Solid

EF nBand resonance + atomic multiplet

5core level

F

Photon energy

Absorptio atomic multiplet

atomicbackground

2

f if i

dE E h

d

PAPhoto‐absorption

Dipole approximation: 1 1ie i k r k r( )i t i te e k rA ε ε=

If k r << 1,

polarization of x-ray

2

f i

df i E E h

d

ˆ[ , ]

( )

ε

ε εf i

imf i f H i

imE E f i im f i

ε P r

r r

ˆ[ , ] , if [ ( ), ] 0H V ri m

P

r r 2

f if i E E h ε r

6

ˆijM f i ε r

Absorption probability:

)(2 2

ifij EEMW

Page 4: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

4

ˆijM f i ε r)(

2 2

ifij EEMW

Dipole transition 

Absorption probability:

cos,sinsin,cossinr̂

sin cos sin sin cr̂ osx y ze e e ε

),(cos 0,134 Y ),(sin 1,13

8

Ye i

41,1 1, 1 1,2 03 2

r̂ ( )xx y yi

z

iY Y Y

ε', ' 1, 1 , 0 l m l mY

1 m m m

1 l l l

when

5 1 62 3 2 3n nd d

Dipole allowed transition 2p  3d:

7

1l l l5 1 62 3 2 3n nijM p d p d ε r

L. circularly polarized: ml = +1 (∵ Y1,1)

R. circularly polarized: ml = - 1 (∵ Y1,-1)

1s np K‐edge XAS can be accurately 

described with single‐particle 

methods

Dipole allowed transitions :

methods.

2 3p d L‐edge XAS: the single‐particle 

approximation breaks down and 

the pre‐edge structure is affected 

by the core hole wave function. The 1s

2s

3s

K

L1

M2,3

L2

L3

2p1/2

2p3/2

3p1/2, 3/2

M1

8

multiplet effect exists.1sK

Page 5: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

5

L3

Fe

•Two absorption “peaks” from 2p 3d:

L3

d

L2

L2

3 22 /p

1 22 /p

•Absorption cross section is proportional to numbers of d holes and density of states in the core level.

9

• L‐edge XAS provides information on the chemical state, orbital symmetry, and spin state of materials.  

Fe

2 64 3s d

2 74 3s d2 84 3s d

CoNi

Cu

84 3s d 1 104 3s d

10

Each element has specific absorption energies. “finger print”  element specific spectroscopy

Page 6: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

6

• soft x‐ray absorption & scattering:

In transition‐metal oxides

scattering:TM: 2p  3dO:   1s  2p

• direct, element‐specific probing of electronicprobing of electronic structure of TMO

TM 2p

11

Soft X-ray Absorption and Resonant Scattering

1. Soft X-ray AbsorptionBasicExperimental SetupA li iApplications- Chemical analysis- Orbital polarization- Magnetic Circular Dichroism

2. Resonant Soft X-ray Scattering IntroductionBasic of resonant X-ray scatteringExamples:Examples:Magnetic Transition of a Quantum Multiferroic LiCu2O2

12

Page 7: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

7

incident light

Measurement of Soft X‐ray Absorption

I0incident light

transmitted light

mesh

electrometer

detector

13

Photoelectric absorption 

3d

Photoexcitation and Relaxation 

3d

Fluorescent x‐ray emission  

3d

Auger electron emission  

2p1/2

2p3/2

3p1/2

3p3/2

3d

2s

3s

L1

M

L2

L3

3d

L1

M

L2

L3

3d

L1

M

L2

L3

1s

2s

K

14

K K

Page 8: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

8

Auger electrons

hn

Photoabsorption

Auger electrons

secondary electrons

M1

L2

L32p

d

3s

og)

secondary electrons

15Kinetic energy

Intensity (l

PhotoelectronsAuger electrons

Incident light

Measurement of Soft X-ray Absorption

I0

total electrons(40 ~ 50 Å)

0

electrometer

Fluorescence(1000 Å)

transmitted light

16

(1000 Å)

Auger electrons(20 Å)

Page 9: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

9

L edge XAS provides information on theL‐edge XAS provides information on the 

chemical state, orbital symmetry, and spin 

state of materials.  

17

Soft X-ray Absorption and Resonant Scattering

1. Soft X-ray AbsorptionBasicExperimental SetupA li iApplications- Chemical analysis- Orbital polarization- Magnetic Circular Dichroism

2. Resonant Soft X-ray Scattering IntroductionBasic of resonant X-ray scatteringExamples:Examples:Magnetic Transition of a Quantum Multiferroic LiCu2O2

18

Page 10: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

10

Polarization of Synchrotron Radiation

Left handedLinearly polarized

Left‐handed circularly polarized

Right‐handed circularly polarized

19

3d

For 2p3/23d

Soft X‐Ray Magnetic Circular Dichroism in Absorption

Right‐handed circularly polarized light 

L33dFor spin up, 

3dp gpreferentially excites spin‐down electrons.

Left‐handed circularly polarized light preferentially excites 

left‐handed

right‐handed= 5/3

For spin down

20

spin‐up electrons. left‐handed

right‐handed= 3/5

Page 11: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

11

3d

Right‐handed circularly polarized light 

For 2p3/23d

Soft X‐Ray Magnetic Circular Dichroism in Absorption

3dp gpreferentially excites spin‐down electrons.

Left‐handed circularly polarized light preferentially excites 

orbital moment  (A‐B)Spin moment  (A+2B)

21

spin‐up electrons.

MCD is defined as the difference in absorption intensity of magnetic systems excited by left‐ and right‐handed circularly polarized light.

MCD

Soft X‐Ray Magnetic Circular Dichroism in Absorption

Soft X‐ray MCD in absorption provides a unique means to probe:

element‐specific magnetic hysteresis orbital and spin momentsmagnetic coupling.

There are two ways to obtain a MCD spectrum:1) Fixing M, measure XAS with left and right 1)

22

) g gcircular lights.

)

2) Fixing the helicity of light, measure XAS with two opposite directions of M. 

Page 12: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

12

Chen et al., PRB 48, 642 (1993)

23

Nature 416, 301 (2001)

24

Page 13: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

13

25

Soft X-ray Absorption and Resonant Scattering

1. Soft X-ray AbsorptionBasicExperimental SetupA li iApplications- Chemical analysis- Orbital polarization- Magnetic Circular Dichroism

2. Resonant Soft X-ray Scattering IntroductionBasic of resonant X-ray scatteringExamples:Examples:Magnetic Transition of a Quantum Multiferroic LiCu2O2

26

Page 14: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

14

Spin, Charge, and orbital ordering of correlated electron systems 

La0.5Sr1.5MnO4La1/3Ca2/3MnO3

Sternlieb et al. (1996)

Moritomo et al. (1995)

Murakami et al.(1998)

C. H. Chen et al. (1998)

La1.6‐xNd0.4SrxCuO4

modulation vector k

27J. Tranquda et al. (1995)

modulation vector k

Small valencedisproportionation !

Q/Qtotal << 1

Elastic x-ray scattering

k

'k

2

q

q k' k

momentum transfer

2 sinq k 'k2r

-k r

r'k

' kk

2 sin

4sin

q k

k

q 'k

2

3d scattering form factor

28

A volume element at will contribute an amount to the scattering field with a phase factor .

r3d r

reiq jrj(r )eiq

qj

f

Fourier transform of charge distribution.

2

qfd

d

Page 15: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

15

0( , ) ( ) '( ) ''( )q q sf f f i f

Resonant scattering

As the photon energy approaches the binding energy of one of the core-level electrons,

dispersion corrections

2222

222

)()(

)('

s

ssf

2

''

f

'f

''f

29

2222 )()(''

s

sf

0

f

Photon energy

Absorption 4Im( )f

k

Advantage of Resonant Soft X-ray Scattering

0

3 3 2

32 23'

~( )

dik r ik r

resd d

p pd

p

re ref

E E i

0, k

, 'k

2 p

3d

'q k k momentum transfer

modulation vector

TM

30

• With =E3d E2p, fres is enhanced dramatically and ordering of d is focused.

Page 16: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

16

Resonant X-ray magnetic scattering

1m

F1,1 F1,-1

1m

scattering amplitudes

1

electric dipole transitions

)(ˆ)εε(8

31,11,10

* FFzif res

mag

Hannon et al., PRL(1988)

1 lm

0ε ε

1 lm 1 lm

'kε

001

010

31

As a result of spin-orbit and exchange interactions,magnetic ordering manifests itself in resonant scattering.

kq 0ε 100

Resonant soft x‐ray magnetic scattering:

•Cross section comparable to that of neutron iscattering.

•Good q resolution (q < 0.0005 Å‐1)

•Spectroscopic information.

•Limited to a small k space, less bulk sensitive.

32

Page 17: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

17

1.5 GeVNSRRC, Taiwan

Setup of Soft X-ray Scattering

UHV two-circlediffractometer

EPU 33

Soft X-ray Absorption and Resonant Scattering

1. Soft X-ray AbsorptionBasicExperimental SetupA li iApplications- Chemical analysis- Orbital polarization- Magnetic Circular Dichroism

2. Resonant Soft X-ray Scattering IntroductionBasic of resonant X-ray scatteringExamples:Examples:Magnetic Transition of a Quantum Multiferroic LiCu2O2

34

Page 18: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

18

Magnetism: ordering of spins

Magnetization can be induced by H field

Ferroelectricity: polar arrangement of charges

35

Electric polarization can be induced by E field

Induction of magnetization by an electric field; induction of polarization by a magnetic field.

Magnetoelectric effect

‐ first presumed to exist by Pierre Curie in 1894on the basis of symmetry considerations

Multiferroics: materials exhibiting ME couplingCr O

36

Cr2O3

BiMnO3

BiFeO3

…..

However, the effects are typically too small to be useful in applications!

Page 19: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

19

Two contrasting order parameters

Magnetization: time‐reversal symmetry broken

:

t t M M

P P

37

Polarization: inversion symmetry broken

: ,

r P MP Mr P qr

Recently discovery in the coexistence and gigantic coupling of antiferromagnetism and ferroelectricityin frustrated spin systems such RMnO3 and RMn2O5

(R=Tb, Ho , …)  TbMnO3: Kimura et al., Nature 426, 55, (2003)

TbMn2O5: Hur et al., Nature 429, 392 (2004)

revived interest in “multiferroicity”

Magnetism and ferroelectricity coexist in materials called “multiferroics.”

38

• TC < TN• Ferroelectricity is induced  magnetism.

Page 20: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

20

2 5

3 0

3 5

(a )

0 T 1 T 3 T 5 T 7 T 9 T

E //b , H //a (F C )1 k H z

w a rm in g

TbMn2O5 Nature, 429, 392 (2004)

2 0

2 0

4 0

(b ) E

p o le//+ b

H //a (Z F C )

m2 )

• 3 transitions on cooling. 

•Magnetic field induces a sign reversalof the electric polarization.

2 5

0 1 0 2 0 3 0 4 0

-4 0

-2 0

0

0

P1

P2

T

P

0

40

-80

40

P1

P2

T

P

0

40

-80

40

P (n

C/c

m

T (K )

39

Quantum multiferroic magnet LiCu2O2

O2‐

Cu2+ orthorhombic, Pnmaa=5 734 Å

Cu1+

Li1+

a=5.734 Å, b=2.856 Å, c=12.415 Å

Qausi‐1D spin ½ chain:Qausi 1D spin ½ chain: •Characterization of the ground state?•Multiferroicity(Park et al. PRL98, 057601; Seki et al.,  PRL (2008); cond‐mat 0810.2533

40

Page 21: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

21

(1/ 2, ,0)q

a

b

J1

J2

94°

Masuda et al., PRL (2004)

1( )n ne S SP

along the a axis ?

(1/ 2, ,0)q

in units of  2 2 2( , , )a b c

41

ol K

)C (J/mo

Two transitions ?

Masuda et al., PRL (2004)

42Seki et al.,  PRL (2008)

Page 22: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

22

LiCu2O2 (100) single crystal

5

930 eV

3dCu2+

Resonant soft x‐ray magnetic scattering

5 mm

2p3/2

930 eV

43

Correlation length   = 1/HWHM

T = 10K:   a = 690 Å b = 2100 Å

(1/ 2, ,0)q

qa (2p/a)

qb (2p/b)

non‐zero scattering intensity above TN

qb ( p/ )

44

Masuda et al., PRL (2004)

Page 23: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

23

t iti t t

intensity

( ,1)abq q

onset of the long‐range spin ordering and induced P

21.5 K

23.5 Ktransition temperature of the precursor phase

ab: in‐planecorrelation length

cleaved LiCu2O2(001) 5 mmc: correlation length  

along the c‐axis

SW Huang  et al., PRL (2008)

46

Page 24: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

24

,( ,1)a bq qq1

q

•There is an in‐plane short‐range AFM ordering above TNq2

g N

•extension of the zero‐temperature AFM ordering

•spin coupling

47

spin coupling along the c axis is essential for inducing P.

2 /( ) e S Bk TT

Above TN, in‐plane correlation

2D renormalized

averageJ ~ 4.25 meV

2D renormalized classical behavior

48

•The ground state of LiCu2O2 exhibits a long range AFM  ordering.

•The spin coupling along the c axis is essential for inducing P.

Page 25: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

25

Thank you!

49

Appendix: Basic of Magnetic Circular Dichroism in X-ray Absorption

Considering L-edge 2p3/2 3d absorption, and ignoring the spin-orbit interaction in the 3d bands,

3d2

2ˆ, r ,l jl m j m ε

m l = 2 1 0 -1 -2 For left-handed circular light

2p3/2

2

21,1( )

2,lm j

x yiR r Y Y j m

1 1/3 1/18

m j = 3/2 1/2 -1/2 -3/2

L3 Left-handed circularly polarized light preferentially excites spin-up electrons.

radial part1/6 1/3 1/3

2For light-handed circular light

=25/185/6

1/3 1/3 1/6

m j = 3/2 1/2 -1/2 -3/2L3

m l = 2 1 0 -1 -2

=5/6 1/18 1/3 1

25/18

2

21, 1( )

2,x y

lm jR r Y Y j mi

Right-handed circularly polarized light preferentially excites spin-down electrons.

50

Page 26: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

26

33 Y 33 Y

2ˆ, r ,l jl m j m ε

cos,sinsin,cossinr̂

),(cos 0,134 Y ),(sin 1,13

8

Ye i

r̂ sin cos sin sin cosx y ze e e ε

1/3 1/3 1/6

1/18 1/3 1

m j = 3/2 1/2 -1/2 -3/2

j=3/2

L3

m l = 2 1 0 -1 -2

1,123

23 , Y

1,131

0,132

21

23 , YY

0,132

1,131

21

23 , YY

1,123

23 , Y

2

21, 1( ) ,

2x y

lm j

iR r Y Y j m

2

3 1 12,2 1,1 2 2 3,

2x y

j

iY Y j m

41,1 1, 1 1,03 2 2

r̂ ( )x y x yi i

zY Y Y

ε

)|( YYmlmlmlY Clesbsch-Gordan coefficients

31

1,11,12,231

21

23

1,12,2 , YYYmjYY j

21

21

2211)|( 2211

ll

llllmmlml YlmmlmlYY

2211

21

),|( 2211 mlmlmm

lm YYmlmlmlY

2

3 1 12,0 1, 1 2 2 18,

2x y

j

iY Y j m

.....0,261

1,11,1 YYY181

1,11,10,231

21

23

1,10,2 , YYYmjYY j2,21,11,1 YYY 51

33 Y 33 Y

2

21, 1( ) ,

2x y

lm j

iR r Y Y j m

2ˆ, r ,l jl m j m ε

41,1 1, 1 1,03 2 2

r̂ ( )x y x yi i

zY Y Y

ε

1/3 1/3 1/6

1/18 1/3 1

m j = 3/2 1/2 -1/2 -3/2

j=3/2

L3

m l = 2 1 0 -1 -2

1,123

23 , Y

1,131

0,132

21

23 , YY

0,132

1,131

21

23 , YY

1,123

23 , Y

2

3 1 12,1 1,1 2 2 3,

2x y

j

iY Y j m

3 1 2 12,1 1,1 2,1 1,1 1,02 2 3 3, jY Y j m Y Y Y

.....1,221

0,11,1 YYY

21

21

2211)|( 2211

ll

llllmmlml YlmmlmlYY

2211

21

),|( 2211 mlmlmm

lm YYmlmlmlY

Clesbsch-Gordan coefficients2

3 1 12, 1 1, 1 2 2 3,

2x y

j

iY Y j m

3 1 2 12, 1 1, 1 2, 1 1, 1 1,02 2 3 3, jY Y j m Y Y Y

.....1,221

0,11,1 YYY52

Page 27: Soft X ray Absorption and Resonant SttiScatteringcheiron2009.spring8.or.jp/images/PDF/Lecture/2009_DJ...Co Ni Cu 43sd110 10 Each element has specific absorption energies. “finger

27

33 Y 33 Y

2

21,1( ) ,

2x y

lm j

iR r Y Y j m

1 1/3 1/18

m j = 3/2 1/2 -1/2 -3/2

j=3/2

L3

m l = 2 1 0 -1 -2

1/3 1/3 1/6

m j = 3/2 1/2 -1/2 -3/2

j=3/2

L3

m l = 2 1 0 -1 -2

1,123

23 , Y

1,131

0,132

21

23 , YY

0,132

1,131

21

23 , YY

1,123

23 , Y

,2

j

2

3 1 12,1 1,1 2 2 3,

2x y

j

iY Y j m

3 1 2 12,1 1,1 2,1 1,1 1,02 2 3 3, jY Y j m Y Y Y

)|( YYmlmlmlY Clesbsch-Gordan coefficients

2

3 32,2 1,1 2 2, 1

2x y

j

iY Y j m

3 32,2 1,1 2,1 1,1 1,12 2, 1jY Y j m Y Y Y

21

21

2211)|( 2211

ll

llllmmlml YlmmlmlYY

2211

21

),|( 2211 mlmlmm

lm YYmlmlmlY

.....0,261

1,11,1 YYY

3 1 1 12,0 1,1 2,0 1,1 1, 12 2 3 18, jY Y j m Y Y Y

2,21,11,1 YYY

.....1,221

0,11,1 YYY2

3 1 12,0 1,1 2 2 18,

2x y

j

iY Y j m

11,1 1, 1 2,06 .....Y Y Y 53

X-ray magnetic scattering

kinetic energy m.B SO

2 2

2 2 2int2

2 ( )2 2( ) ( )

e e

j jmc me e

j jmc mcj

cjj j

AA r sH P s

tA AA

Non‐resonant

Blume, J. Appl. Phys. (1985)2

222 2

2

int

2

2

2 2 ' '

jj iq rj

j

iq r

j

f ec e

V m

f H i

mi e i

cf s

ci

f

54

Resonant

int int

22

( )

n ii

nf

f H n

EE

n HE

i

E

mag 32

charge

~ ~ 10f

f mc

6

e

mag 10~

for ~ 600 eV