SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat...

8
SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert A. Colaprete 20 November 2014

Transcript of SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat...

Page 1: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

Atromos

Exploring the Martian Surface with Nano-SatTechnology

M. MurbachP. Papadopoulos

D. AtkinsonJ. Muylaert

A. Colaprete

20 November 2014

Page 2: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

WHY COMPANION MISSIONS…?

Permits augmentation of main-line missions at small cost, compartmental ‘risk’

Large potential ROITechnical, Educational, Scientific, Public Outreach…

Pursuing a NEW Paradigm:

Problem with the good work on the 55M DS-2 missions…The Initial ‘companion’ mission

Need to compartmentalize ‘risk’ :MarsPod (analog to PPOD)Robust system design/COM

‘Gentle’ EDLEvolvable design topology

Incremental flight test approach

Page 3: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

Simple I/F and Probe Release Example Mars Entry Annulus

Jettison fromMarsPod

Release PhaseCOM ~ hourly

Entry-Landing Phaseb=10kg/m2g = 10-20qconv(max)= 20w/cm2

Operation Concept

Surface Science Phase2W Transceiver MarsRadio

Evolvable Science/Technology StrategyTier 1: Non-targetedTier 2: TargetedTier 3: Targeted, long duration (2+ RHU power

generators)

Page 4: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

Probe Deployment and Mission Sequence

Probe Key Attributes:• Large static margin• Self-orienting ‘badminton birdie’• Low ballistic coefficient (order 10 kg/m2)• Compact stowage with simple interfaces to

Carrier Spacecraft (‘Mars-POD’ concept)

Arc-jet test of materials(first material screening)

Sub-orbital flight test(SOAREX-7 Initial Validation)

Mission Sequence:• Deployed 20+ days from Mars Carrier Spacecraft• Mars entry commences with rapid self-orientation• Low ballistic coefficient permits high altitude parachute

deployment• Compact airbag attenuates impact • Orientation independent design • Telemetry established with Mars Communication Relays

Initial mW GeneratorFits at the core of the Baseline Science Station

Cubesat Compatible Spine(Science Station Baseline)

Page 5: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

Example Science Mission Proposed in SALMON

Mars Southern Polar Cap Asymmetry• Two regional weather systems formed by winds blowing through Hellas Basin• Western hemisphere – strong low-pressure system causes CO2 snow• Eastern hemisphere – strong high-pressure system causes CO2 ground frost

Mars Global Dust Storms• Ten global scale storms reported since 1877• Tend to originate on the northeast rim of Hellas Basin• Can raise surface temperatures as much as 40º K• Can last for months• 10º temperature differential from bottom to rim causes

updrafts• Dust storm formation theory:

o Dust particles absorb sun’s heat warming local atmosphere

o Warm pockets of air attracted to colder airo Resulting winds lift more dusto Needs Validation!

Page 6: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

TechEdSat-N and SOAREX Flight Series

Evolving technology/capability…All successful flights

TechEdSat-1

TechEdSat-2

TechEdSat-3

TechEdSat-4

TechEdSat-5/6

Active Flight Development

Page 7: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

M-POD Prototype(Al version incorporatedinto the 12.077 flight)

Multi-Architecture/COM experiments

SOAREX-8 Payload/12.077

SOAREX-8 Payload and MPOD Development(Flight 12.077 April, 2014)

Page 8: SOAREX/TechEdSat-N/Atromos Team NASA/ARC-RD Atromos Exploring the Martian Surface with Nano-Sat Technology M. Murbach P. Papadopoulos D. Atkinson J. Muylaert.

SOAREX/TechEdSat-N/Atromos TeamNASA/ARC-RD

Summary

- Companion Missions could be – perhaps should be – part of all future Mars Missions.

- Compartmentalization of RISK = lower inclusion costs(e.g., MarsPod, MarsRadio, ‘gentle EDL’, incrementalism…)

- Evolvable Science/Technology StrategyTier 1: Non-targetedTier 2: TargetedTier 3: Targeted, long duration (2+ RHU power generators)

- Cost: Half to Full SALMON

- Large potential ROI for the Mars programs (NASA/ESA)

Lastly – Incremental development and TDRV flight test:SOAREX-7 flight test: https://www.youtube.com/watch?

v=Crfm7CwsXyc