SNAMP Spa al Team Workshop...

24
5/21/12 1 Lidar analysis in support of the Sierra Nevada Adap�ve Management Project SNAMP Spa�al Team Workshop May 16, 17, 2012 Maggi Kelly, Qinghua Guo Sam Blanchard, Jacob Flanagan, Marek Jakubowski, Wenkai Li, Feng Zhao snamp.cnr.berkeley.edu Sierra Nevada Adap�ve Management Project SNAMP Spa�al Team Workshop Agenda 99:10 Welcome and the day’s overview 9:1010 PART 1: Introduc�on SNAMP Background Lidar refresher: Lidar basics, Types; Applica�ons SNAMP Lidar spec Ques�ons 1010:15 Break 10:1511:00 PART 2: SNAMP and Lidar SNAMP Lidar products SNAMP Lidar research Lidar + imagery data sources Ques�ons 11:0011:45 PART 3: Data and So�ware 11:4512:00 – Ques�ons and Evalua�ons 12:00 Adjourn May 16 2012 – Oakhurst, CA May 17, 2012 – Foresthill, CA

Transcript of SNAMP Spa al Team Workshop...

5/21/12  

1  

Lidar  analysis  in  support  of  the    Sierra  Nevada  Adap�ve  Management  Project  

SNAMP  Spa�al  Team  Workshop  May  16,  17,  2012  Maggi  Kelly,  Qinghua  Guo  Sam  Blanchard,  Jacob  Flanagan,    Marek  Jakubowski,  Wenkai  Li,  Feng  Zhao  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

SNAMP  Spa�al  Team  Workshop  Agenda  

9-­‐9:10  -­‐  Welcome  and  the  day’s  overview  9:10-­‐10  -­‐  PART  1:  Introduc�on  

–  SNAMP  Background  –  Lidar  refresher:  Lidar  basics,  Types;  

Applica�ons  –  SNAMP  Lidar  spec  –  Ques�ons    

10-­‐10:15  -­‐  Break  10:15-­‐11:00  -­‐  PART  2:  SNAMP  and  Lidar  

–  SNAMP  Lidar  products  –  SNAMP  Lidar  research  –  Lidar  +  imagery  data  sources  –  Ques�ons    

11:00-­‐11:45  -­‐  PART  3:  Data  and  So�ware  11:45-­‐12:00  –  Ques�ons  and  Evalua�ons  12:00  Adjourn  

May  16  2012  –  Oakhurst,  CA  

May  17,  2012  –  Foresthill,  CA  

 

 

 

5/21/12  

2  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Mee�ng  Goals  and  Desired  Outcomes  

Goals:      To  inform  stakeholders  about  SNAMP  

spa�al  team  people  and  research,  with  concentra�on  on  Lidar  data.    

 Desired  Outcomes:      Increased  knowledge  of  how  spa�al  data  

are  integrated  into  SNAMP.    Open  communica�on  between  SNAMP  

spa�al  team  and  stakeholders.    Par�cipate  in  the  SNAMP  adap�ve  

management  outreach  process.    

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Sierra  Nevada  Adap�ve  Management  Project  

What  is  SNAMP?  

  A  partnership  with  the  goal  of  learning  how  to  ensure  the  long-­‐term  sustainability  of  the  Sierra  Nevada  forests.      

Who  is  SNAMP?  

  A  collabora�on  among  federal  and  state  resource  agencies.    An  independent  “third-­‐party”  of  University  researchers.    Public  and  private  stakeholders.    

5/21/12  

3  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Fire  in  the  Sierra  A  century  of  fire  suppression  management  in  the  Sierra  has  resulted  in  build-­‐up  of  fuel,  placing  millions  of  hectares  of  forest  at  risk  of  catastrophic  fire.      

2004  Sierra  Nevada  Forest  Plan  Amendment  calls  for:  

the  applica�on  of  strategic  fuel  management  at  landscape  levels.    

There  is  great  uncertainty  about  treatments  impact  on  fire  behavior,  wildlife,  forest  health  and  water    

 

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Adap�ve  Management    Common  elements  to  the  challenge  of  stewardship  in  the  era  

of  global  change  

1.  Drivers  of  global  change  operate  on  the  landscape  scale.  

2.  The  science  is  not  always  available  to  inform  management.    

3.  Most  modern  strategies  for  resource  stewardship  acknowledges  uncertainty.  

4.  Most  modern  strategies  invokes  “adap�ve  management”  as  part  of  the  solu�on.  

Broader  implica�ons  of  SNAMP  

  Sierra  Nevada  Forest  Plan  Amendment  describes  a  landscape  scale  management  strategy  (SPLATs).      

  Learning  how  to  do  adap�ve  management  is  the  explicit  goal  of  SNAMP.    

5/21/12  

4  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

UC  Science  Team  

The  UC  Science  Team’s  role  as  a  neutral  third  party  observer:  evaluate  the  efficacy  of  treatments  across  four  response  variables  (water,  wildlife,  fire,  

public  par�cipa�on),  involve  the  public,  feedback  into  the  AM  cycle  

Public   MOUP  

UCST/    AES    

County/Local  CE  

Campus  CE  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Sierra  Nevada  Adap�ve  Management  Project  

  SNAMP  was  formed  to  develop,  implement  and  test  Adap�ve  Management  processes  through  tes�ng  the  efficacy  of  Strategically  Placed  Landscape  Treatments  (SPLATs)  across  four  response  variables,  including:  

  Public  par�cipa�on    Wildlife  

  Pacific  Fisher    California  Spo�ed  Owl  

  Water    Fire/forest  health  

  Each  of  these  groups  has  an  associated  research  team,  and  all  are  supported  by  a  spa�al  team.    

5/21/12  

5  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

SNAMP  Study  Areas  and  Research  Teams  Two  Study  Areas:  

 -­‐  Tahoe  Na�onal  Forest  

 -­‐  Sierra  Na�onal  Forest  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

SNAMP  Research  Design  

  Research  design    BACI  –  Before,  A�er,  Control,  Implementa�on  

   Spa�al  Scale  

  Each  team  will  perform  their  research  at  a  specific  scale:    Fire  &  Forest  Health  team  works  at  the  scale  of  the  

individual  tree,  to  the  forest  stand,  to  the  fireshed…    Wildlife  teams  work  at  the  scale  of  the  individual  

tree  and  its  environs  to  the  scale  of  an  animal’s  home  range…  

  Water  team  works  at  the  scale  of  the  watershed…    Public  Par�cipa�on  works  at  local  and  na�onal  

scales.    Spa�al  models  will  be  used  to  integrate  across  

teams,  and  extrapolate  results  in  a  common  spa�al  framework  

5/21/12  

6  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Immediate  goal  of  SNAMP:  

Helping  to  ensure  sustainability  of  Sierra  Nevada  forests  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Spa�al  Scaling  in  the  Research  

5/21/12  

7  

Op�cal  Remote  Sensing:  the  View  from  Overhead  MODIS  –  Landsat  –  Orthophotography  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Lidar  and  SNAMP  Lidar-­‐based  forest  products  as  inputs  to  process-­‐based  models  

Eleva�on,  canopy  cover,  biomass,  LAI,  all  drive  fire  behavior  models  and  hydrology  models…  

Forest  characteriza�on  to  understand  wildlife  habitats  

Loca�on  and  descrip�on  of  individual  trees  across  a  landscape  help  us  understand  Pacific  fisher  or  California  spo�ed  owl  behavior…  

Novel  lidar  visualiza�ons  

Help  describe  the  poten�al  impact  of  treatments  

 

5/21/12  

8  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

SNAMP  Spa�al  Team  

Spa�al  Team  Goals    Developed  to  assist  in  the  GIS  and  

remote  sensing  technology  that  all  teams  require.    

  Members  of  the  spa�al  team  have  the  responsibility  for  suppor�ng  all  other  teams’  GIS,  remote  sensing  and  spa�al  analysis  needs.  

  Conduct  applied  research  in  applica�on  of  spa�al  technology  to  forest  science  and  management  

Spa�al  Team  Ac�vi�es    LIDAR  data  acquisi�on  and  analysis    Field  campaign    SNAMP  team  support  

 

 

Principal  Inves�gators:  

Qinghua  Guo,  UC  Merced  

Maggi  Kelly,  UC  Berkeley  

Graduate  Students:  

Marek  Jakubowski,  UCB  

Wenkai  Li,  UCM  

Jacob  Flanagan,  UCM  

Postdoc:    

Feng  Zhao,  UCB  

Staff:    

Hong  Yu,  UCM  

Sam  Blanchard,  UCB  

 

 

 

LiDAR = Light Detection And Ranging

5/21/12  

9  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Terrestrial  Lidar  Lasers  for  terrestrial  applica�ons  generally  have  wavelengths  in  the  range  of  900–1064  nanometers,  where  vegeta�on  reflectance  is  high.    

One  drawback  of  working  in  this  range  of  wavelengths  is  absorp�on  by  clouds,  which  impedes  the  use  of  these  devices  during  overcast  condi�ons.    

terrestrial  lidar  

Bathymetric  lidar  

how does it work?

amplitude of etected signal

t

laser pulse detector

LiDAR

5/21/12  

10  

how does it work?

amplitude of etected signal

t

LiDAR

how does it work?

amplitude of etected signal

t

LiDAR

total time traveled

distance = time x speed

total distance traveled = (total time traveled) x (speed of light)

distance to the ground = (total time traveled) x (speed of light) 2 distance

to the ground

5/21/12  

11  

what about multiple returns? LiDAR

amplitude of etected signal

t

what about multiple returns? LiDAR

amplitude of etected signal

t

last return 1st return

5/21/12  

12  

what about multiple returns?

LiDAR

GPS IMU

(X, Y, elevation)

(yaw, pitch, roll angles)

roll angle

dist

ance

(X1, Y1, Z1)

(X2, Y2, Z2)

Discrete  and  Waveform  Lidar  

Graphics  from  Bernhard  Hoefle,  University  of  Heidelberg  

5/21/12  

13  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Waveform  targets  In  addi�on  to  height,  we  can  analyze  three  other  characteris�cs  of  the  lidar  return:    

1.  Echo  width:  distribu�on  of  returns,  rougher  objects  give  larger  widths  

2.  Amplitude:  strength  of  reflec�on  (reflectance  and  area  size  of  target)    

3.  Backsca�er  cross-­‐sec�on  (E  x  A):  electromagne�c  energy  intercepted  and  reradiated  by  objects    

 Graphics  from  Bernhard  Hoefle,  University  of  Heidelberg  

Lidar Applications In 2002, Lefsky wrote: “Developments in lidar remote sensing are occurring so rapidly that it is difficult to predict which applications will be dominant in 5 years.” Currently ecological applications of lidar remote sensing:   ground topography,   3D structure and function of

vegetation canopies,   forest stand structure

attributes,   Carbon, carbon, carbon

5/21/12  

14  

0  

500  

1000  

1500  

2000  

2500  

3000  

3500  

4000  

year   2000   2001   2002   2003   2004   2005   2006   2007   2008   2009   2010   2011  

lidar+topography  

lidar+forest  

lidar+carbon,  biomass  

lidar+wildlife  

Lidar publications (from Google Scholar) are trending upwards through the past decade (any use of the keywords in the entire article)

lidar+topography lidar+forest

lidar+wildlife lidar+carbon, biomass

Number of articles

Year

Lidar increasingly used for large-scale mapping of topography

DEM  of  Neuse  River  basin  in  North  Carolina  derived  from  390  million  lidar  390  million  points  and  grid  DEMs  containing  more  than  1.3  billion  

cells

5/21/12  

15  

NNaattiioonnaall EElleevvaattiioonn DDaattaasseett ((NNEEDD)) vvss lliiddaarr--ddeerriivveedd DDEEMM

From: jesse amundson, http://www.trishock.com/academic/index.shtml#information

5/21/12  

16  

Mapping  Sea  Level  Rise  Poten�al  sea-­‐level  rise  impact  to  downtown  Ft.  Lauderdale,  FL.  Blue  indicates  impacted  areas  at  two  feet  above  mean  higher  high  water,  and  orange  indicates  the  associated  uncertainty  area  based  on  the  eleva�on  data  and  water  surface  calcula�on.  From:  h�p://www.csc.noaa.gov/digitalcoast  

Lidar  and  wetlands  Moeslund,  J.E.,  Arge,  L.,  Burcher,  P.K.,  Nygaard,  B.,  Svenning,  J.C.,  2011.  Geographically  Comprehensive  Assessment  of  Salt-­‐Meadow  Vegeta�on-­‐Eleva�on  Rela�ons  Using  LiDAR.  Wetlands,  1-­‐12.    

5/21/12  

17  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Mapping  carbon  Combining  field  measurements,  airborne  lidar-­‐based  observa�ons,  and  satellite-­‐based  imagery,  we  developed  a  30-­‐meter-­‐resolu�on  map  of  aboveground  C  density  spanning  40  vegeta�on  types  found  on  the  million-­‐hectare  Island  of  Hawaii.  

Asner,  et  al.  2011.  High-­‐resolu�on  carbon  mapping  on  the  million-­‐hectare  Island  of  Hawaii.  Fron�ers  in  Ecology  and  the  Environment  9,  434-­‐439.  

 

Lidar + carbon Example LiDAR-based maps of aboveground carbon stocks highlighting: (A) effects of deforestation on humid, low-elevation forests in the northern region, and (B) a natural gradient in elevation and plant available water, from dry forests with low canopy height in the lowlands to humid forests in the uplands. Asner et al. High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon Biogeosciences Discuss., 9, 2445-2479, 2012 doi:10.1186/1750-0680-7-2

5/21/12  

18  

Lidar  +  hyperspectral  imagery  can  map  biomass  and  stress  Swatantran,  et  al.  2011.  Mapping  biomass  and  stress  in  the  Sierra  Nevada  using  lidar  and  hyperspectral  data  fusion.  Remote  Sensing  of  Environment.  115(11):  2917-­‐2930  

Lidar Applications: Vegetation Canopies From Vierling et al. 2008. Lidar: shedding new light on habitat characterization and modeling. Frontiers in Ecology and Environment. Lidar can provide fine-grained information about the 3-D structure of ecosystems across broad spatial extents. This data can be used to

investigate:   Animal-habitat

relationships;   Fire behavior;   Carbon and energy

balance;   Infiltration, canopy

capture and sublimation.

Lidar-­‐derived  ver�cal  distribu�on  plots  showing  the  percentage  of  laser  pulse  hits  that  occurred  within  a  par�cular  height  classifica�on.  This  kind  of  analysis  helps  us  more  fully  understand  the  3-­‐D  structure  of  vegeta�on.  

High:  100  

Low:  0  

Percent  

Canopy  

5/21/12  

19  

Lidar and Habitat LiDAR-derived predictors described between 4.7 and 21.6% of the variability in overall forest songbird species richness and that of several guilds. Lesak, et al. Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sensing of Environment 115(11): 2823-2835

Lidar and archaeology Chase et al. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. Journal of Archaeological Science 38(2): 387–398

Photograph  and  LiDAR  imagery  of  “Caana,”  Caracol’s  main  architectural  complex;  varying  colors  in  the  LiDAR  data  represent  different  eleva�ons.

5/21/12  

20  

Ground-based Lidar Ground-­‐based  lidar  systems  are  hemispherical  scanning  laser  range  finders  that  fire  millions  of  laser  pulses  and  records  detailed  structural  informa�on  at  a  range  of  up  to  200  m.  Data  can  be  used  to  derive:    

  canopy  height        basal  area  and  stem  density        ver�cal  foliage  distribu�on        leaf  area  index    

Yao  et  al.  Measuring  forest  structure  and  biomass  in  New  England  forest  stands  using  Echidna  ground-­‐based  lidar.  Remote  Sensing  of  Environment,  115(11):  2965–2974.        

5/21/12  

21  

Satellite Lidar: the promise of DESDynI Special Issue: Remote Sensing of Environment. Volume 115, Issue 11, Pages 2751-2974 (15 November 2011) DESDynI VEG-3D Special Issue From Scott Goetz: DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) was to provide fundamental information on multiple components of the earth system using a combination of radar and, uniquely, lidar technology. Sadly, on 15 February 2011 the equivalent of a cease and desist order was placed on DESDynI — the very same week that President Obama's science advisor stated, on NPR's Science Friday, that earth observation was the single area he would place most emphasis on were budget priorities not limiting.

Dis

cret

e Li

dar y

ield

s m

ultip

le re

turn

s

first returns

second returns

third returns

last returns

all returns

5/21/12  

22  

Lidar pulse density depending on flying height, discrete return lidar can yield pulse densities of 1-12 pulses/m2. How much is enough?

Lidar pulse density is important but flying height, flight paths, sensor design can increase costs

5/21/12  

23  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

SNAMP  Lidar  Specifica�ons    Sugar  Pine  Area  (117km2):    

–  Acquisi�on  specs:    Collected  Sept  13-­‐15  2007    Al�tude:  ~700m  AGL    4  range  measurements  per  pulse    Scan  angle:  +/-­‐  24  degrees    Scan  frequency:  40  Hz    Pulse  rate  frequency:  100  KHz      Wavelength:  1064  nm  

–  Lidar  data  specs:    5-­‐10  cm  eleva�on  accuracy    6-­‐12  points  per  m2    Footprint  size:  ~0.18m    Swath  width:  510  m  

  Last  Chance  Area  (107km2):  –  Acquisi�on  specs:  

  Collected  Sept  18-­‐22  2008    Al�tude:  ~900m  AGL    4  range  measurements  per  pulse    Scan  angle:  +/-­‐  20  degrees    Scan  frequency:  40  Hz    Pulse  rate  frequency:  70  KHz      Wavelength:  1064  nm  

–  Lidar  data  specs:    5-­‐10  cm  eleva�on  accuracy    9-­‐20  points  per  m2    Footprint  size:  ~0.225m    Swath  width:  580  m  

Contracted with National Center for Airborne Laser Mapping (NCALM;) Both  surveys  used  an  Optech  GEMINI  Airborne  Laser  Terrain  Mapper  (ALTM)  mounted  in  a  twin-­‐engine  Cessna  Skymaster.  

 

SNAMP Lidar information

5/21/12  

24  

snamp.cnr.berkeley.edu  Sierra  Nevada  Adap�ve  Management  Project  

Our Lidar Data

Acquired  pre-­‐treatment.  Discrete  return  (4  returns),  contracted  with  NCALM,  6-­‐9  pts  per  m2