Smooth Sensitivity and Sampling

33
Smooth Sensitivity and Sampling CompSci 590.03 Instructor: Ashwin Machanavajjhala 1 Lecture 7 : 590.03 Fall 12

description

Smooth Sensitivity and Sampling. CompSci 590.03 Instructor: Ashwin Machanavajjhala. Project Topics. 2-3 minute presentations about each project topic . 1-2 minutes of questions about each presentation. Recap: Differential Privacy. For every pair of inputs that differ in one value. - PowerPoint PPT Presentation

Transcript of Smooth Sensitivity and Sampling

Lecture 7 : 590.03 Fall 12 1

Smooth Sensitivity and Sampling

CompSci 590.03Instructor: Ashwin Machanavajjhala

Lecture 7 : 590.03 Fall 12 2

Project Topics

• 2-3 minute presentations about each project topic.

• 1-2 minutes of questions about each presentation.

Lecture 7 : 590.03 Fall 12 3

Recap: Differential Privacy

For every output …

OD2D1

Adversary should not be able to distinguish between any D1 and D2 based on any O

Pr[A(D1) = O] Pr[A(D2) = O] .

For every pair of inputs that differ in one value

< ε (ε>0)log

Lecture 7 : 590.03 Fall 12 4

Recap: Laplacian Distribution

-10-4.300000000000021.4 7.09999999999990

0.10.20.30.40.50.6

Laplace Distribution – Lap(λ)

Database

Researcher

Query q

True answer q(d) q(d) + η

η

h(η) α exp(-η / λ)

Privacy depends on the λ parameter

Mean: 0, Variance: 2 λ2

Lecture 7 : 590.03 Fall 12 5

Recap: Laplace Mechanism

[Dwork et al., TCC 2006]

Thm: If sensitivity of the query is S, then the following guarantees ε-differential privacy.

λ = S/ε

Sensitivity: Smallest number s.t. for any d, d’ differing in one entry, || q(d) – q(d’) || ≤ S(q)

Lecture 7 : 590.03 Fall 12 6

Sensitivity of Median function• Consider a dataset containing salaries of individuals

– Salary can be anywhere between $200 to $200,000

• Researcher wants to compute the median salary.

• What is the sensitivity?

Lecture 7 : 590.03 Fall 12 7

Queries with Large Sensitivity• Median, MAX, MIN …• Let {x1, …, x10} be numbers in [0, Λ]. (assume xi are sorted)

• qmed(x1, …, x10) = x5

Sensitivity of qmed = Λ– d1 = {0, 0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ} – qmed(d1) = 0

– d2 = {0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ, Λ} – qmed(d2) = Λ

Lecture 7 : 590.03 Fall 12 8

Minimum Spanning Tree• Graph G = (V,E)• Each edge has weight between 0, Λ• What is Global Sensitivity of cost of minimum spanning tree?

• Consider complete graph with all edge weights = Λ. Cost of MST = 3Λ

• Suppose one of the edge’s weight is changed to 0Cost of MST = 2Λ

Λ

ΛΛ

0

Λ Λ

Lecture 7 : 590.03 Fall 12 9

k-means Clustering• Input: set of points x1, x2, …, xn from Rd

• Output: A set of k cluster centers c1, c2, …, ck such that the following function is minimized.

Lecture 7 : 590.03 Fall 12 10

Global Sensitivity of Clustering

Lecture 7 : 590.03 Fall 12 11

Queries with Large Sensitivity

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d’ 0Λ

x4 ≤ qmed(d’) ≤ x6

Sensitivity of qmed at d = max(x5 – x4, x6 – x5) << Λ

d’ differs from d in k=1 entry

However for most inputs qmed is not very sensitive.

Lecture 7 : 590.03 Fall 12 12

Local Sensitivity of q at d – LSq(d)[Nissim et al., STOC 2007]Smallest number s.t. for any d’ differing in one entry from d,

|| q(d) – q(d’) || ≤ LSq(d)

Sensitivity = Global sensitivityS(q) = maxd LSq(d)

Can we add noise proportional to local sensitivity?

Lecture 7 : 590.03 Fall 12 13

Noise proportional to Local Sensitivity• d1 = {0, 0, 0, 0, 0, 0, Λ, Λ, Λ, Λ}

• d2 = {0, 0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ}

differ in one value

Lecture 7 : 590.03 Fall 12 14

Noise proportional to Local Sensitivity• d1 = {0, 0, 0, 0, 0, 0, Λ, Λ, Λ, Λ}

qmed(d1) = 0

LSqmed(d1) = 0 => Noise sampled from Lap(0)

• d2 = {0, 0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ}

qmed(d2) = 0

LSqmed(d2) = Λ => Noise sampled from Lap(Λ/ε)

= ∞Pr[answer > 0 | d2] > 0

Pr[answer > 0 | d1] = 0

Pr[answer > 0 | d2] > 0

Pr[answer > 0 | d1] = 0implies

Lecture 7 : 590.03 Fall 12 15

Local SensitivityLSqmed(d1) = 0 & LSqmed(d2) = Λ implies S(LSq(.)) ≥ Λ

LSqmed(d) has very high sensitivity.

Adding noise proportional to local sensitivity does not guarantee differential privacy

Lecture 7 : 590.03 Fall 12 16

Sensitivity

D1 D2 D3 D4 D5 D6

Local Sensitivity

Global Sensitivity

Smooth Sensitivity

Lecture 7 : 590.03 Fall 12 17

Smooth Sensitivity[Nissim et al., STOC 2007]S(.) is a β-smooth upper bound on the local sensitivity if,

For all d, Sq(d) ≥ LSq(d)

For all d, d’ differing in one entry, Sq(d) ≤ exp(β) Sq(d’)

• The smallest upper bound is called β-smooth sensitivity.

S*q(d) = maxd’ ( LSq(d’) exp(-mβ) )

where d and d’ differ in m entries.

Lecture 7 : 590.03 Fall 12 18

Smooth sensitivity of qmed

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d

x1 x2 x3 x4 x5 x6 x7x8 x9 x10d’

d’ differs from d in k=3 entries

0 0 0Λ Λ Λ

• x5-k ≤ qmed(d’) ≤ x5+k

• LS(d’) = max(xmed+1 – xmed, xmed – xmed-1)

S*qmed(d) = maxk (exp(-kβ) x max 5-k ≤med≤ 5+k(xmed+1 – xmed, xmed – xmed-1))

Lecture 7 : 590.03 Fall 12 19

Smooth sensitivity of qmed

For instance, Λ = 1000, β = 2.

S*qmed(d) = max ( max0≤k≤4(exp(-β k) 1), ∙ ∙

max5≤k≤10 (exp(-β k) ∙ ∙ Λ) )

= 1

1 2 3 4 5 6 7 8 9 10d

Lecture 7 : 590.03 Fall 12 20

Calibrating noise to smooth sensitivity

Lecture 7 : 590.03 Fall 12 21

Calibrating noise to smooth sensitivity

Theorem• If h is an (α,β) admissible distribution• If Sq is a β-smooth upper bound on local sensitivity of query q.

• Then adding noise from h(Sq(D)/α) guarantees:

P[f(D) O] ≤ eε P[f(D’) O] + δfor all D, D’ that differ in one entry, and for all outputs O.

Lecture 7 : 590.03 Fall 12 22

Calibrating Noise for Smooth Sensitivity

A(d) = q(d) + Z (S*∙ q(x) /α)

• Z sampled from h(z) 1/(1 + |z|γ), γ > 1• α = ε/4γ, • S* is ε/γ smooth sensitive

P[f(D) O] ≤ eε P[f(D’) O]

Lecture 7 : 590.03 Fall 12 23

Calibrating Noise for Smooth Sensitivity• Laplace and Normally distributed noise can also be used.

• They guarantee (ε,δ)-differential privacy.

Lecture 7 : 590.03 Fall 12 24

Summary of Smooth Sensitivity• Many functions have large global sensitivity.

• Local sensitivity captures sensitivity of current instance.– Local sensitivity is very sensitive. – Adding noise proportional to local sensitivity causes privacy breaches.

• Smooth sensitivity – Not sensitive.– Much smaller than global sensitivity.

Lecture 7 : 590.03 Fall 12 25

Computing the (Smooth) Sensitivity• No known automatic method to compute (smooth) sensitivity

• For some complex functions it is hard to analyze even the sensitivity of the function.

Lecture 7 : 590.03 Fall 12 26

Sample and Aggregate Framework

Original Data Sample without replacement

Original Function

New Aggregation

Function

( )

Lecture 7 : 590.03 Fall 12 27

Example: Statistical Analysis [Smith STOC’11]

• Let T be some statistical point estimator on data (assumed to be drawn i.i.d. from some distribution)

• Suppose T takes values from [-Λ/2, Λ/2], sensitivity = Λ

Solution:• Divide data X into K parts• Compute T on each of the K parts: z1, z2, …, zK

• Compute (z1, z2, …, zK)/K

Lecture 7 : 590.03 Fall 12 28

Example: Statistical Analysis [Smith STOC’11]

Solution:• Divide data X into K parts• Compute T on each of the K parts: z1, z2, …, zK

• Compute : AveK,T = (z1, z2, …, zK)/K

Utility Theorem:

Lecture 7 : 590.03 Fall 12 29

Example: Statistical Analysis [Smith STOC’11]

Solution:• Divide data X into K parts• Compute T on each of the K parts: z1, z2, …, zK

• Compute : AveK,T = (z1, z2, …, zK)/K

Privacy: Average is a deterministic algorithm. So does not guarantee differential privacy. (Add noise calibrated to sensitivity of average)

Lecture 7 : 590.03 Fall 12 30

Widened Windsor Mean• α-Windsorized Mean: W(z1, z2, …, zk)

– Round up the αk smallest values to zαk

– Round down the αk largest values to z(1-α)k

– Compute the mean on the new set of values.

• If statistician knows a = z(1-α)k and b = zαk

– Sensitivity = |a-b|/kε

• If not known, a and b can be estimated using exponential mechanism.

Lecture 7 : 590.03 Fall 12 31

Summary• Local sensitivity can be much smaller than global sensitivity

• But local sensitivity may be a very insensitive function.

• Need to use a smooth upperbound on local sensitivity

• Sample and Aggregate framework helps apply differential privacy when computing sensitivity is hard.

Lecture 7 : 590.03 Fall 12 32

Next Class• Optimizing noise when a workload of queries are known.

Lecture 7 : 590.03 Fall 12 33

ReferencesC. Dwork, F. McSherry, K. Nissim, A. Smith, “Calibrating noise to sensitivity in private data

analysis”, TCC 2006K. Nissim, S. Raskhodnikova, A. Smith, “Smooth Sensitivity and sampling in private data

analysis”, STOC 2007A. Smith, "Privacy-preserving statistical estimation with optimal convergence rates", STOC

2011